ESE 531: Digital Signal Processing

Week 6

Lecture 11: February 21, 2021

Non-Integer and Multi-rate Sampling

Lecture Outline

- Review: Downsampling/Upsampling
- Non-integer Resampling
- Multi-Rate Processing
 - Interchanging Operations

Downsampling

Definition: Reducing the sampling rate by an integer number

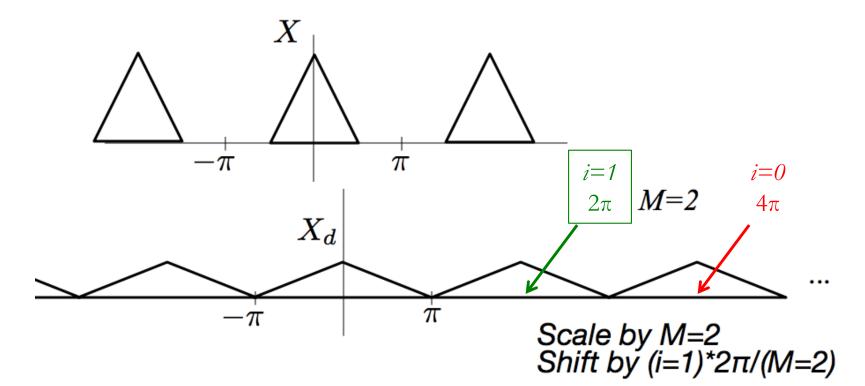
$$x[n] \longrightarrow \text{M} \qquad x_d[n] = x[nM]$$

$$= x_c(nT)$$

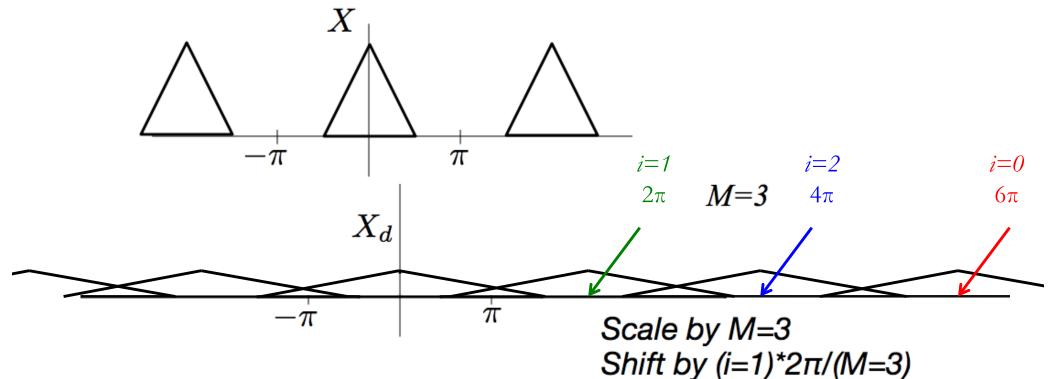
$$= x_c(nMT)$$

$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\frac{\omega}{M} - \frac{2\pi}{M}i)}) \text{stretch replicate by M}$$

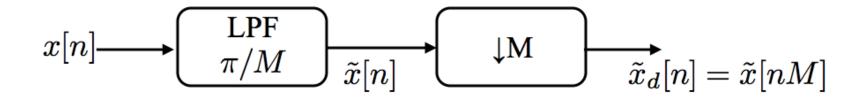
$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j(\frac{w}{M} - \frac{2\pi}{M}i)}\right)$$

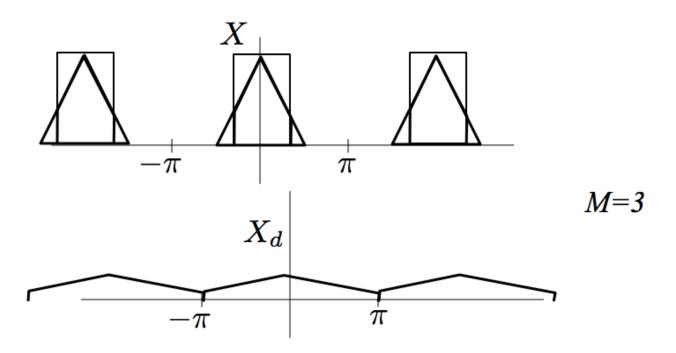


$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j(\frac{w}{M} - \frac{2\pi}{M}i)}\right)$$



Shift by $(i=2)*2\pi/(M=3)$





Upsampling

Definition: Increasing the sampling rate by an integer number

$$x[n] = x_c(nT)$$

$$x_i[n] = x_c(nT') \quad \text{where} \quad T' = \frac{T}{L} \qquad \qquad L \text{ integer}$$

Frequency Domain Interpretation

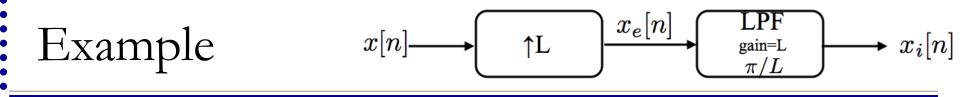
$$x[n] \xrightarrow{\uparrow L} \xrightarrow{x_e[n]} \xrightarrow{LPF}_{\substack{\text{gain=L} \\ \pi/L}} \xrightarrow{x_i[n]} x_i[n]$$

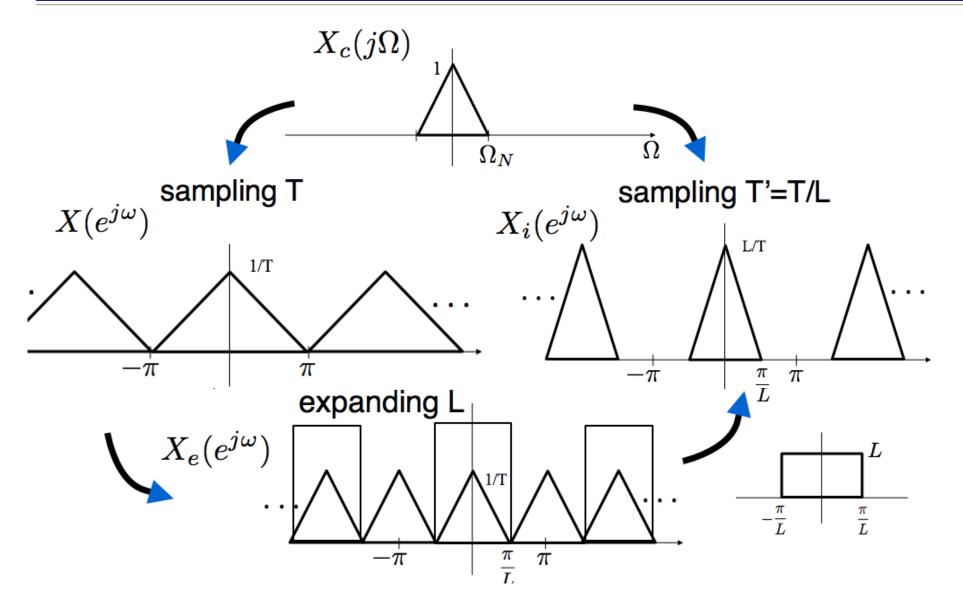
$$X_e(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \underbrace{x_e[n] e^{-j\omega n}}_{\neq 0 \text{ only for n=mL}}$$

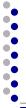
$$(\text{integer m})$$

$$= \sum_{m=-\infty}^{\infty} \underbrace{x_e[mL] e^{-j\omega mL}}_{=x[m]} = X(e^{j\omega L})$$

Compress DTFT by a factor of L!

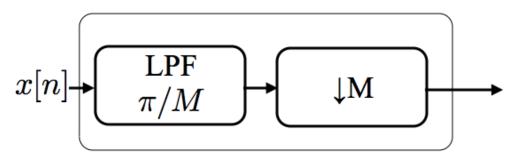




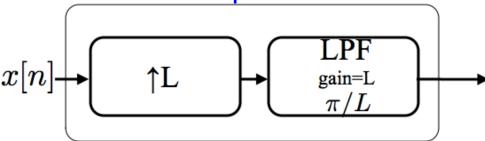


Interpolation and Decimation

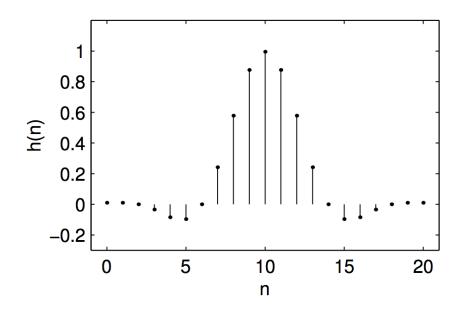
decimator

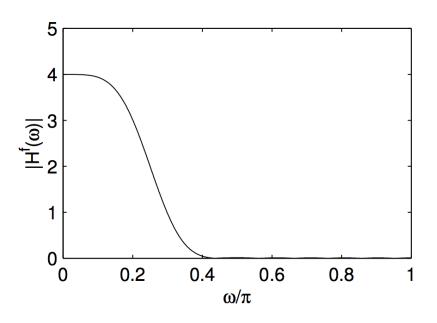


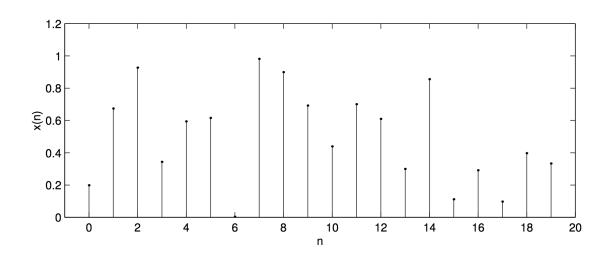
interpolator

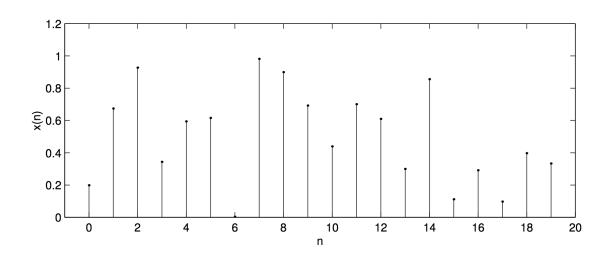


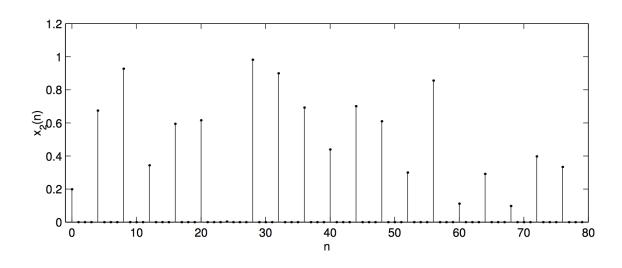
- □ In this example, we interpolate a signal x(n) by a factor of 4.
- We use a linear phase Type I FIR lowpass filter of length 21.

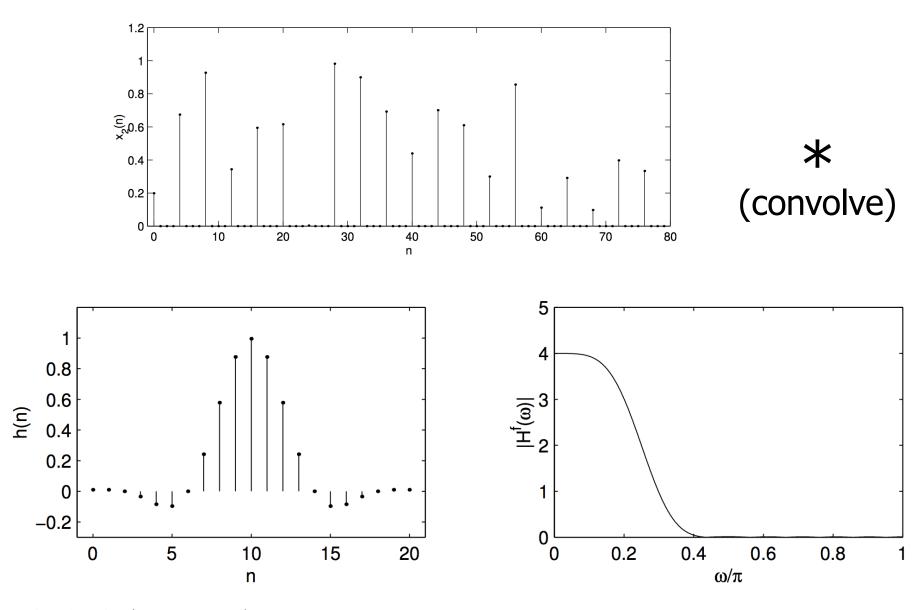




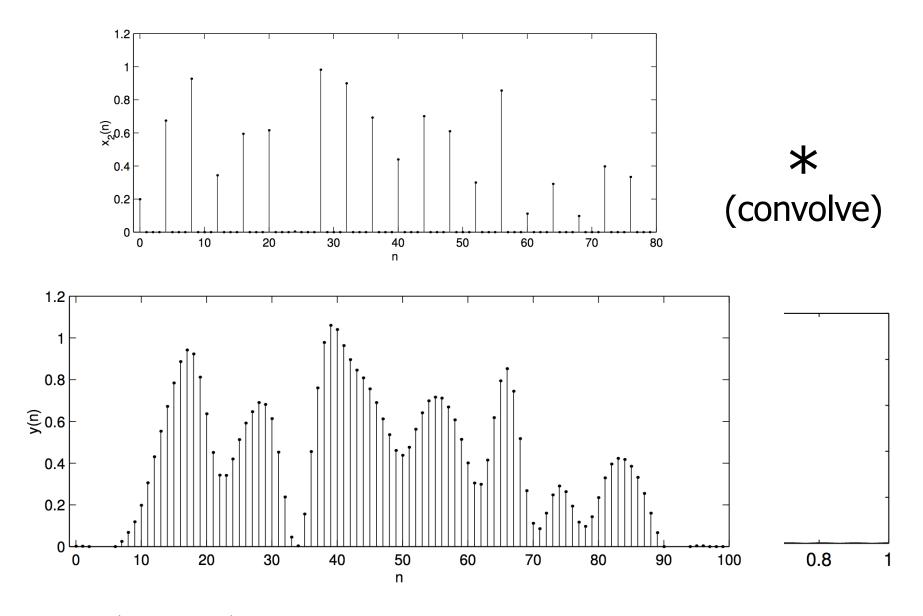




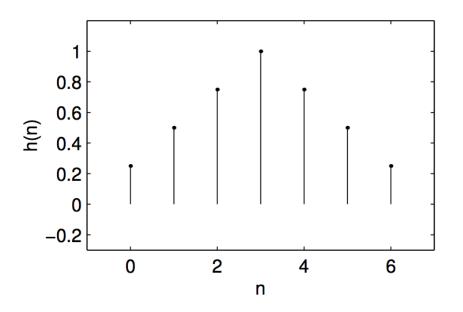


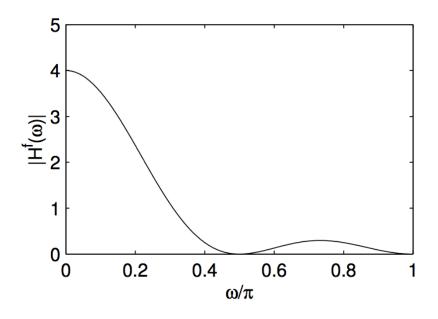


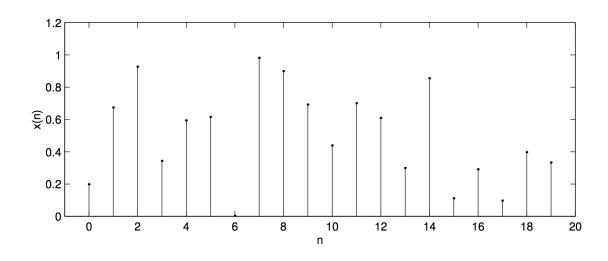
Penn ESE 531 Spring 2021 - Khanna

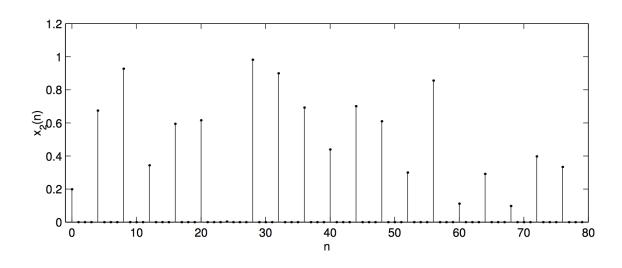


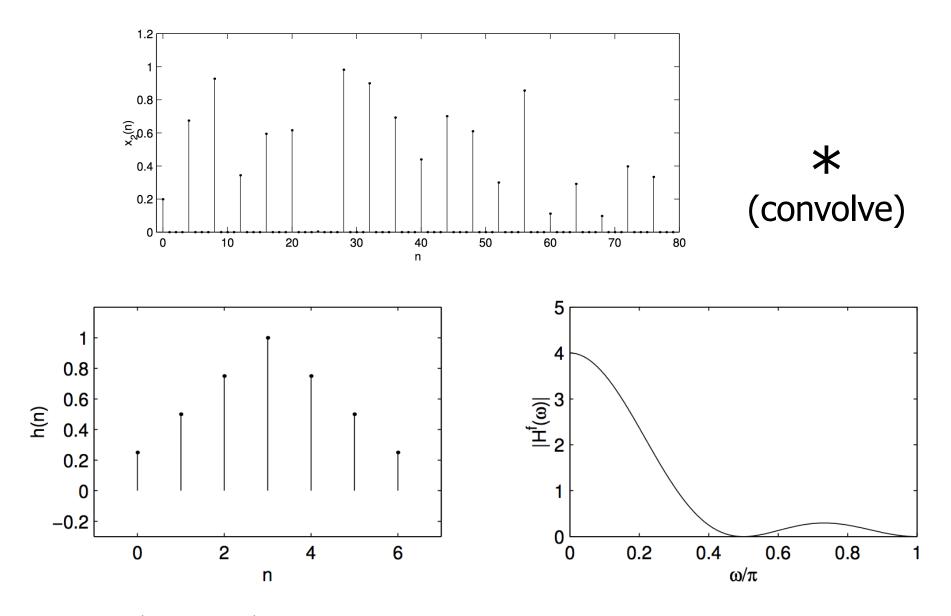
□ This time we use a filter of length 7 with the effect of linear interpolation

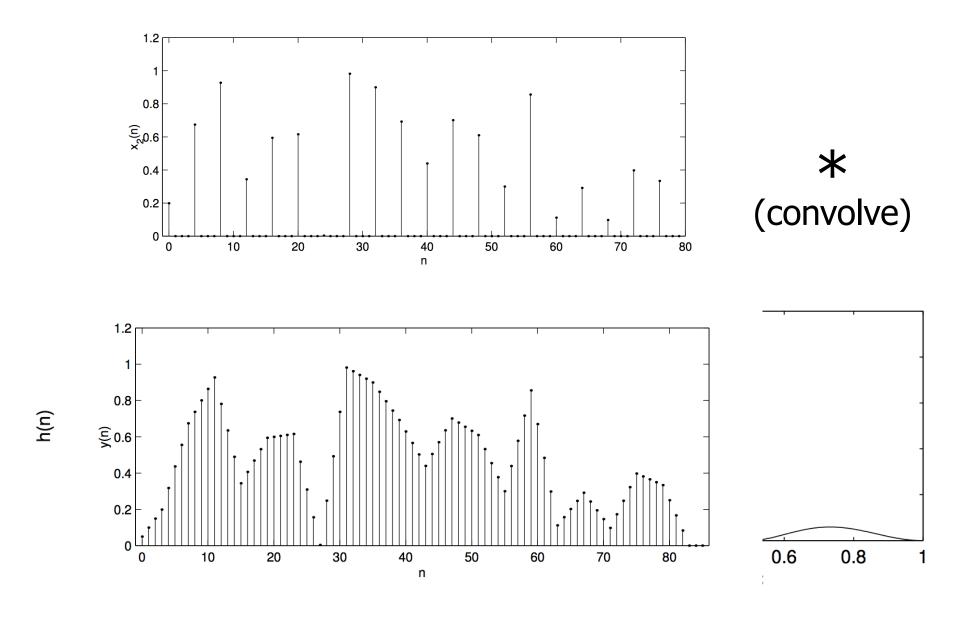


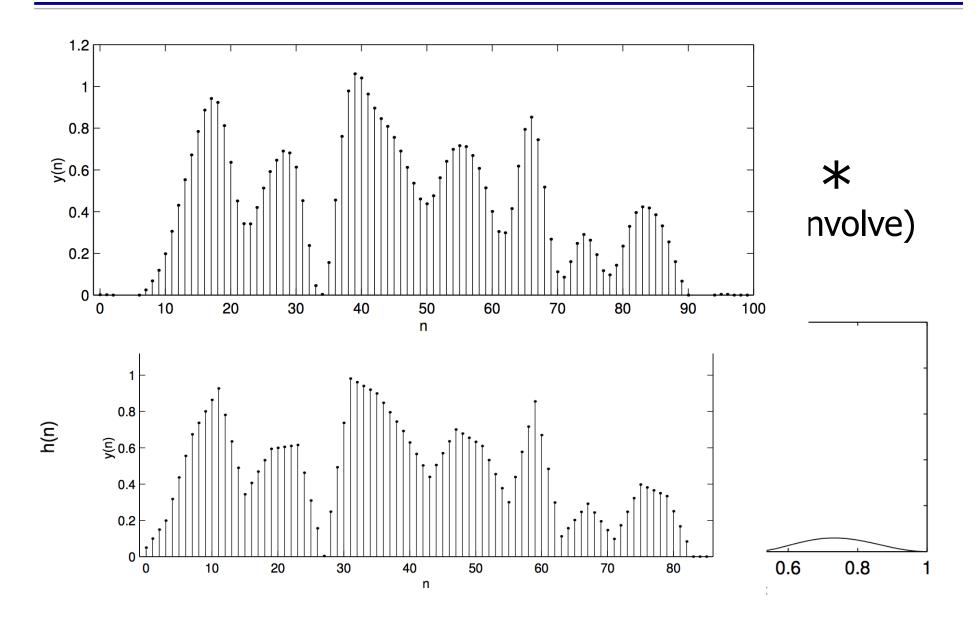












- When interpolating a signal x(n), the interpolation filter h(n) will in general change the samples of x(n) in addition to filling in the zeros.
- \Box Can a filter be designed so as to preserve the original samples x(n)?

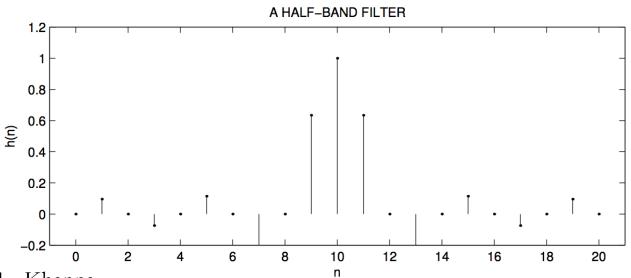
- When interpolating a signal x(n), the interpolation filter h(n) will in general change the samples of x(n) in addition to filling in the zeros.
- \Box Can a filter be designed so as to preserve the original samples x(n)?
- □ To be precise, if $y(n) = h(n) * [\uparrow 2] x(n)$ then can we design h(n) so that y(2n) = x(n)?

- When interpolating a signal x(n), the interpolation filter h(n) will in general change the samples of x(n) in addition to filling in the zeros.
- \Box Can a filter be designed so as to preserve the original samples x(n)?
- □ To be precise, if $y(n) = h(n) * [\uparrow 2] x(n)$ then can we design h(n) so that y(2n) = x(n)?
 - Or more generally, so that $y(2n + n_0) = x(n)$?

- When interpolating by a factor of 2, if h(n) is a half-band filter, then it will not change the samples x(n).
- \blacksquare A n_o-centered half-band filter h(n) is a filter that satisfies:

$$h(n) = \begin{cases} 1, & \text{for } n = n_o \\ 0, & \text{for } n = n_o \pm 2, 4, 6, \dots \end{cases}$$

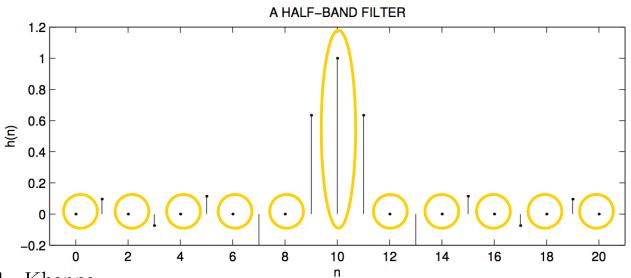
□ That means, every second value of h(n) is zero, except for one such value, as shown in the figure.



- When interpolating by a factor of 2, if h(n) is a half-band filter, then it will not change the samples x(n).
- \blacksquare A n_o-centered half-band filter h(n) is a filter that satisfies:

$$h(n) = \begin{cases} 1, & \text{for } n = n_o \\ 0, & \text{for } n = n_o \pm 2, 4, 6, \dots \end{cases}$$

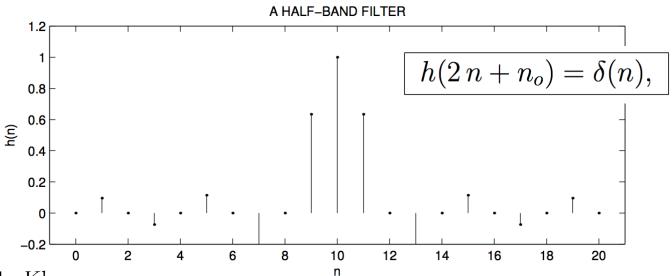
□ That means, every second value of h(n) is zero, except for one such value, as shown in the figure.



- When interpolating by a factor of 2, if h(n) is a half-band filter, then it will not change the samples x(n).
- \blacksquare A n_o-centered half-band filter h(n) is a filter that satisfies:

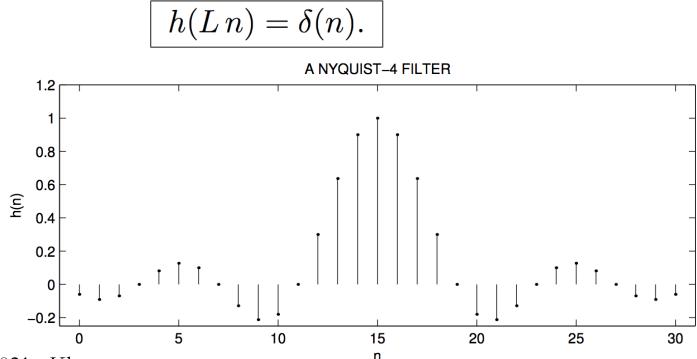
$$h(n) = \begin{cases} 1, & \text{for } n = n_o \\ 0, & \text{for } n = n_o \pm 2, 4, 6, \dots \end{cases}$$

□ That means, every second value of h(n) is zero, except for one such value, as shown in the figure.

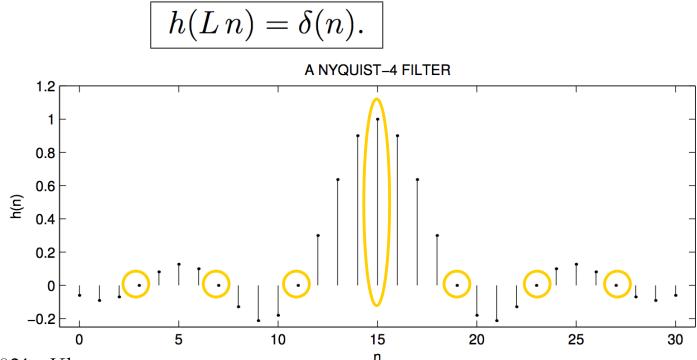


- When interpolating a signal x(n) by a factor L, the original samples of x(n) are preserved if h(n) is a Nyquist-L filter.
- All A Nyquist-L filter simply generalizes the notion of the halfband filter to L > 2.

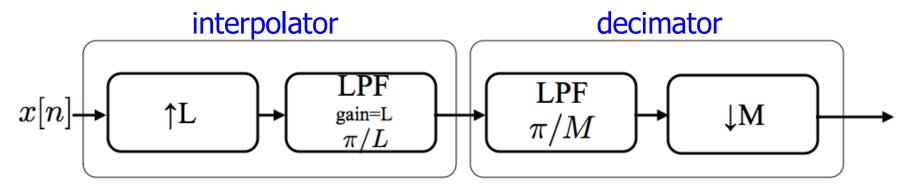
- When interpolating a signal x(n) by a factor L, the original samples of x(n) are preserved if h(n) is a Nyquist-L filter.
- All A Nyquist-L filter simply generalizes the notion of the halfband filter to L > 2.
- □ A (0-centered) Nyquist-L filter h(n) is one for which



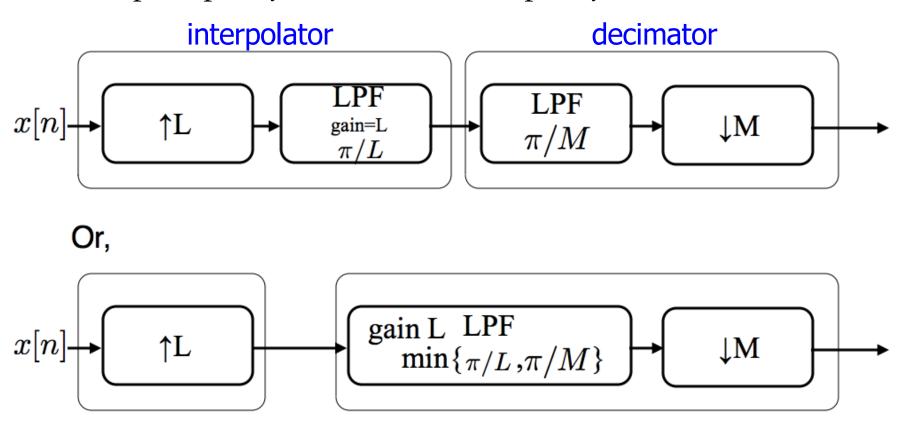
- When interpolating a signal x(n) by a factor L, the original samples of x(n) are preserved if h(n) is a Nyquist-L filter.
- All A Nyquist-L filter simply generalizes the notion of the halfband filter to L > 2.
- □ A (0-centered) Nyquist-L filter h(n) is one for which

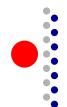


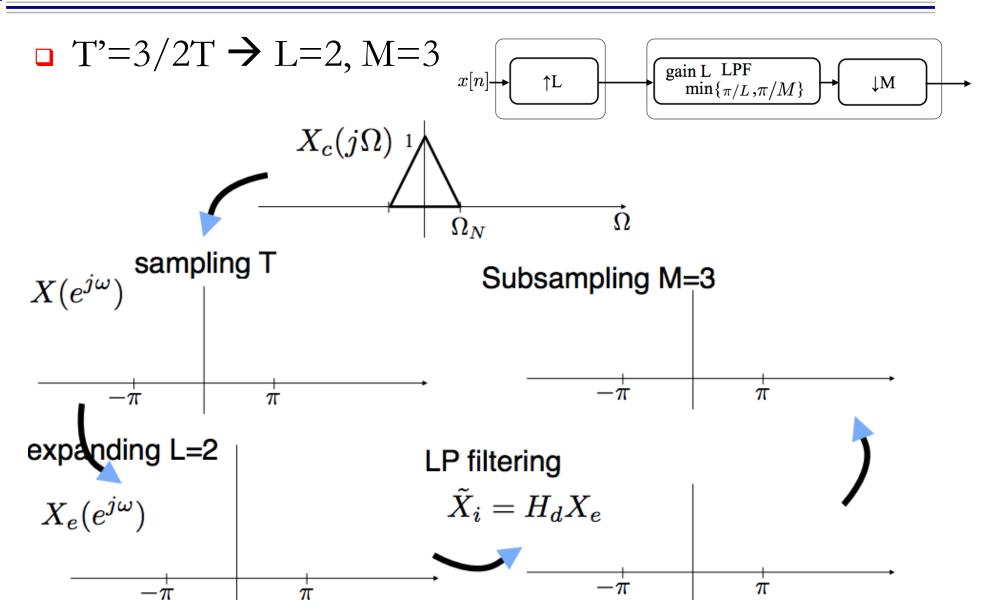
- □ T'=TM/L
 - Upsample by L, then downsample by M

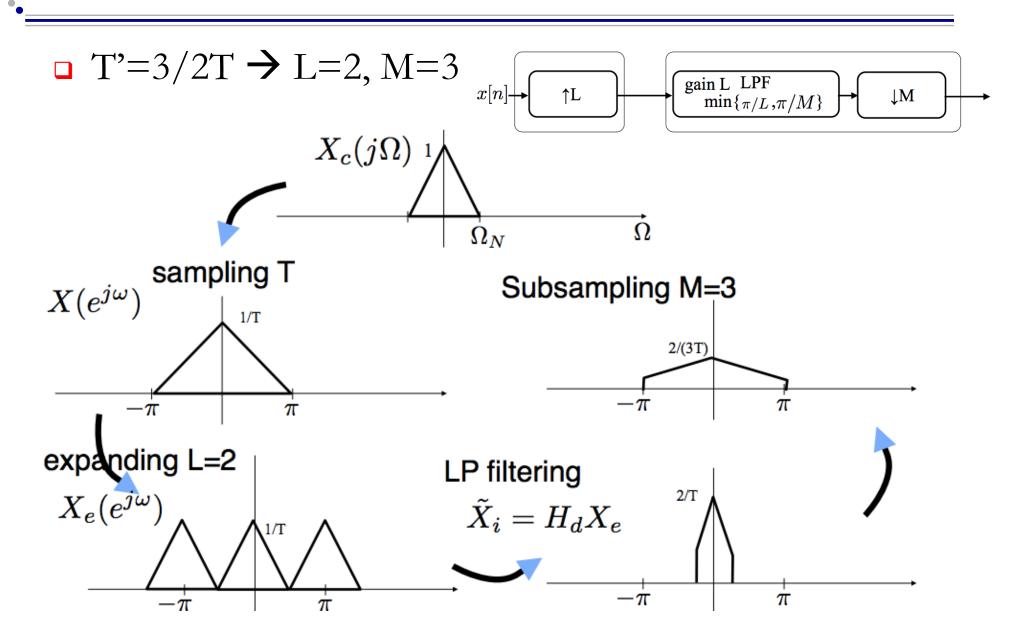


- □ T'=TM/L
 - Upsample by L, then downsample by M

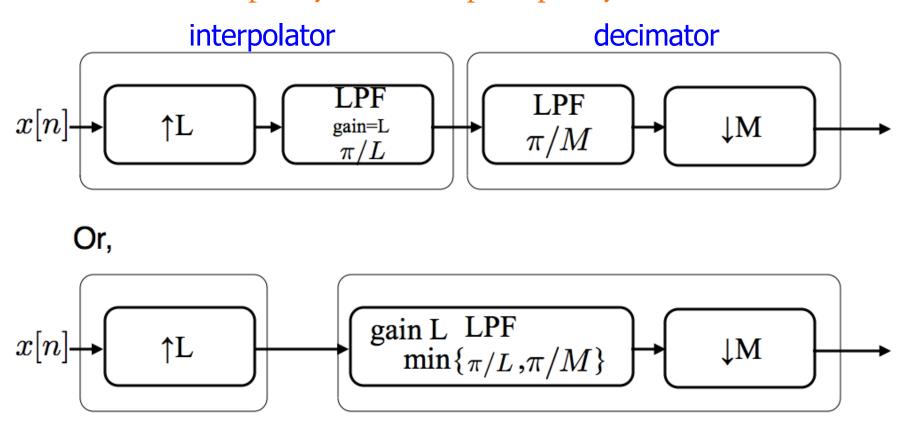








- □ T'=TM/L
 - Downsample by M, then upsample by L?



Example

□ What if we want to resample by 1.01T?

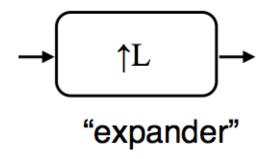
Example

- □ What if we want to resample by 1.01T?
 - Upsample by L=100
 - Filter $\pi/101$
 - Downsample by M=101

Example

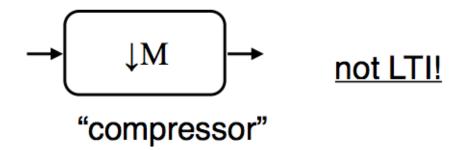
- What if we want to resample by 1.01T?
 - Upsample by L=100
 - Filter $\pi/101$ (\$\$\$\$\$)
 - Downsample by M=101
- Fortunately there are ways around it!
 - Called multi-rate signal processing
 - Uses compressors, expanders and filtering

Interchanging Operations



Upsampling

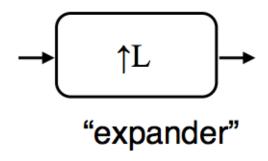
- -expanding in time
- -compressing in frequency



Downsampling

- -compressing in time
- -expanding in frequency

Interchanging Operations - Expander

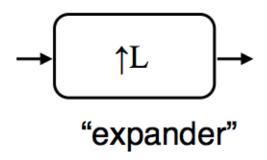


Upsampling

- -expanding in time
- -compressing in frequency

$$x[n] \rightarrow H(z) \rightarrow fL \rightarrow y[n]$$
 ? $x[n] \rightarrow fL \rightarrow H(z) \rightarrow y[n]$

Interchanging Operations - Expander

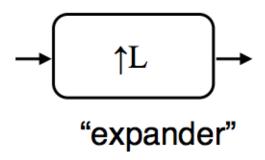


Upsampling

- -expanding in time
- -compressing in frequency

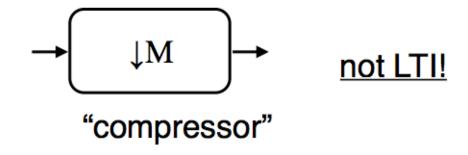
$$x[n] \longrightarrow \underbrace{H(z)} \longrightarrow \underbrace{\uparrow L} \longrightarrow y[n] \qquad \neq \qquad x[n] \longrightarrow \underbrace{\uparrow L} \longrightarrow \underbrace{H(z)} \longrightarrow y[n] \qquad \qquad \downarrow \qquad H(e^{j\omega}) X(e^{j\omega L}) \qquad \qquad X(e^{j\omega L}) \qquad \qquad X(e^{j\omega L})$$

Interchanging Operations - Expander



Upsampling

- -expanding in time
- -compressing in frequency



Downsampling

- -compressing in time
- -expanding in frequency

$$x[n] \longrightarrow \underbrace{\downarrow M} \longrightarrow \underbrace{H(z)} \longrightarrow y[n] = x[n] \longrightarrow \underbrace{H(z^M)} \longrightarrow \underbrace{\downarrow M} \longrightarrow \underbrace{\tilde{y}[n]}$$

$$x[n] \longrightarrow \underbrace{\downarrow M} \longrightarrow \underbrace{H(z)} \longrightarrow y[n] = x[n] \longrightarrow \underbrace{H(z^M)} \longrightarrow \underbrace{\downarrow M} \longrightarrow \underbrace{\tilde{y}[n]}$$

$$x[n] \longrightarrow \underbrace{\downarrow M} \longrightarrow \underbrace{H(z)} \longrightarrow y[n] = x[n] \longrightarrow \underbrace{\downarrow M} \longrightarrow \tilde{y}[n]$$

$$v[n]$$

$$\begin{split} Y(e^{j\omega}) &= H(e^{j\omega}) \left(\frac{1}{M} \sum_{i=0}^{M-1} X \left(e^{j\left(\frac{\omega}{M} - \frac{2\pi i}{M}\right)} \right) \right) \\ &= \frac{1}{M} \sum_{i=0}^{M-1} \underbrace{H \left(e^{j\left(\omega - 2\pi i\right)} \right)}_{H\left(e^{j\omega}\right)} X \left(e^{j\left(\frac{\omega}{M} - \frac{2\pi i}{M}\right)} \right) \\ &= \frac{1}{M} \sum_{i=0}^{M-1} H \left(e^{jM\left(\frac{\omega}{M} - \frac{2\pi i}{M}\right)} \right) X \left(e^{j\left(\frac{\omega}{M} - \frac{2\pi i}{M}\right)} \right) \end{split}$$

$$x[n] \longrightarrow \bigvee H(z) \longrightarrow y[n] = x[n] \longrightarrow H(z^{M}) \longrightarrow \bigvee M \longrightarrow \widetilde{y}[n]$$

$$Y(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} H\left(e^{jM(\frac{\omega}{M} - \frac{2\pi i}{M})}\right) X\left(e^{j(\frac{\omega}{M} - \frac{2\pi i}{M})}\right)$$

$$V(e^{j\omega}) = H(e^{j\omega M}) X(e^{j\omega})$$

$$\tilde{Y}(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} V\left(e^{j(\frac{\omega}{M} - \frac{2\pi i}{M})}\right)$$

Interchanging Operations - Summary

Filter and expander

Expander and expanded filter*

$$x[n] \rightarrow H(z) \rightarrow \begin{bmatrix} \uparrow L \\ \downarrow \downarrow \end{bmatrix} \rightarrow y[n] \equiv x[n]$$

$$\equiv x[n] \longrightarrow \boxed{\uparrow L} \longrightarrow H(z^L) \longrightarrow y[n]$$

$$x[n] \longrightarrow \underbrace{\downarrow \mathbf{M}} \longrightarrow \underbrace{H(z)} \longrightarrow y[n] \qquad \equiv \qquad x[n] \longrightarrow \underbrace{H(z^M)} \longrightarrow \underbrace{\downarrow \mathbf{M}} \longrightarrow y[n]$$

Compressor and filter

Expanded filter* and compressor

^{*}Expanded filter = expanded impulse response, compressed freq response

Multi-Rate Signal Processing

□ What if we want to resample by 1.01T?

- Expand by L=100
- Filter $\pi/101$ (\$\$\$\$)
- Compress by M=101

$$x[n] \longrightarrow \underbrace{H(z)} \longrightarrow \underbrace{\uparrow L} \longrightarrow y[n] \quad \equiv \quad x[n] \longrightarrow \underbrace{\uparrow L} \longrightarrow \underbrace{H(z^L)} \longrightarrow y[n]$$

$$x[n] \longrightarrow \bigcup M \longrightarrow \bigcup H(z) \longrightarrow y[n] \qquad \equiv \qquad x[n] \longrightarrow \bigcup H(z^M) \longrightarrow \bigcup M \longrightarrow y[n]$$

Big Ideas

- Non-integer Resampling
- Multi-Rate Processing
 - Interchanging Operations

$$x[n] \longrightarrow \underbrace{H(z)} \longrightarrow \underbrace{\uparrow L} \longrightarrow y[n] \quad \equiv \quad x[n] \longrightarrow \underbrace{\uparrow L} \longrightarrow \underbrace{H(z^L)} \longrightarrow y[n]$$

$$x[n] \longrightarrow \bigcup M \longrightarrow U(z) \longrightarrow y[n] \qquad \equiv \qquad x[n] \longrightarrow U(z^M) \longrightarrow \bigcup M \longrightarrow y[n]$$

Admin

HW 4 due Monday