ESE 531: Digital Signal Processing

Week 7

Lecture 13: February 28, 2021

Data Converters, Noise Shaping

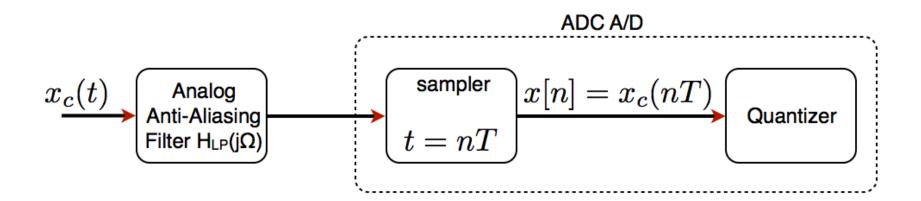
Lecture Outline

- Data Converters
 - Anti-aliasing
 - ADC
 - Quantization
 - Practical DAC
- Noise Shaping

ADC

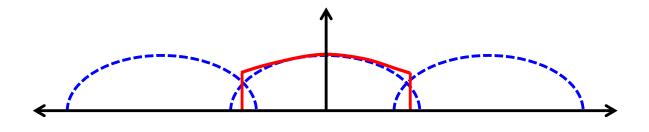
Analog to Digital Converter

Anti-Aliasing Filter with ADC



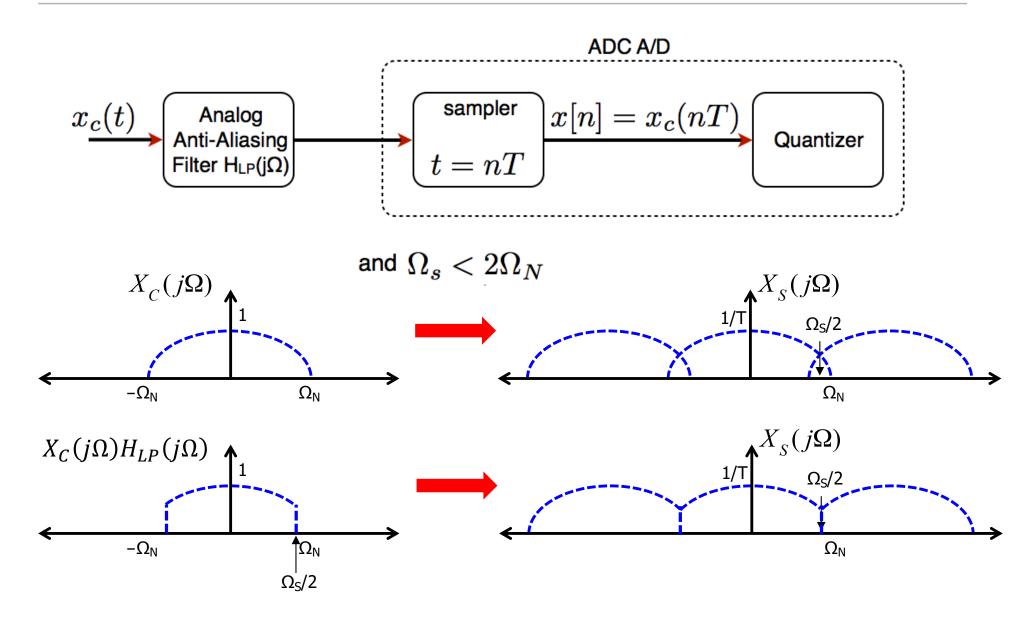
Aliasing

□ If $\Omega_N > \Omega_s/2$, $x_r(t)$ an aliased version of $x_c(t)$

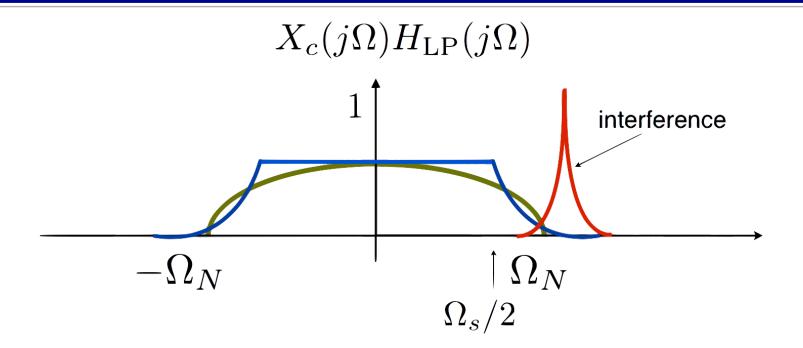


$$X_r(j\Omega) = \begin{cases} TX_s(j\Omega) & \text{if } |\Omega| \le \Omega_s/2\\ 0 & \text{otherwise} \end{cases}$$

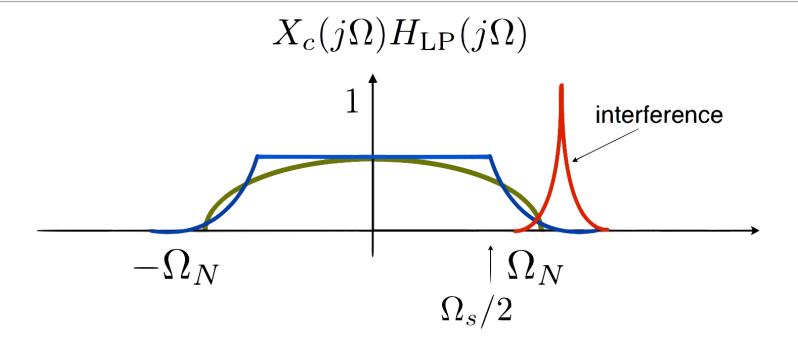
Anti-Aliasing Filter with ADC

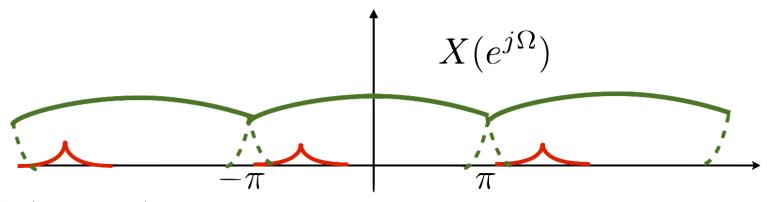


Non-Ideal Anti-Aliasing Filter

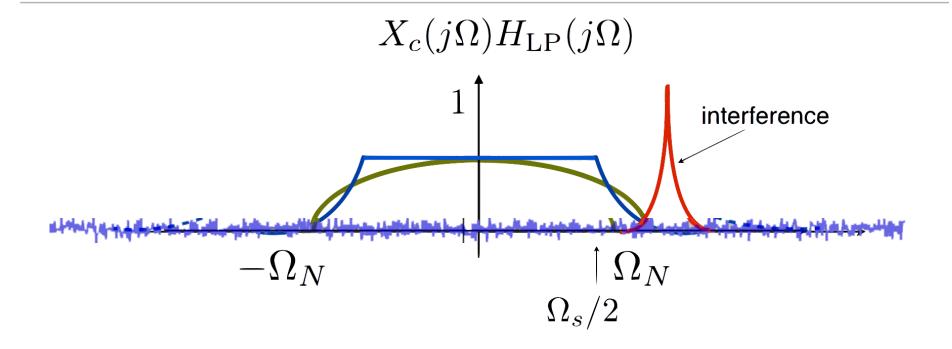


Non-Ideal Anti-Aliasing Filter



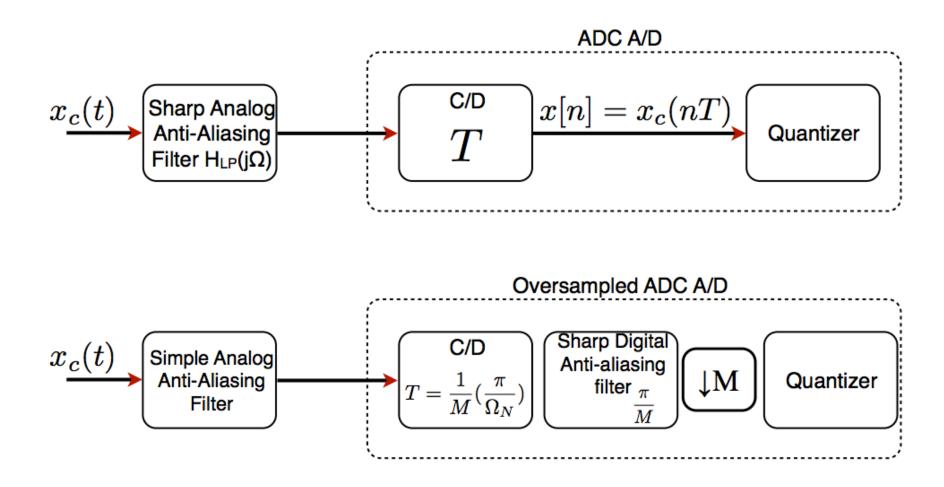


Non-Ideal Anti-Aliasing Filter

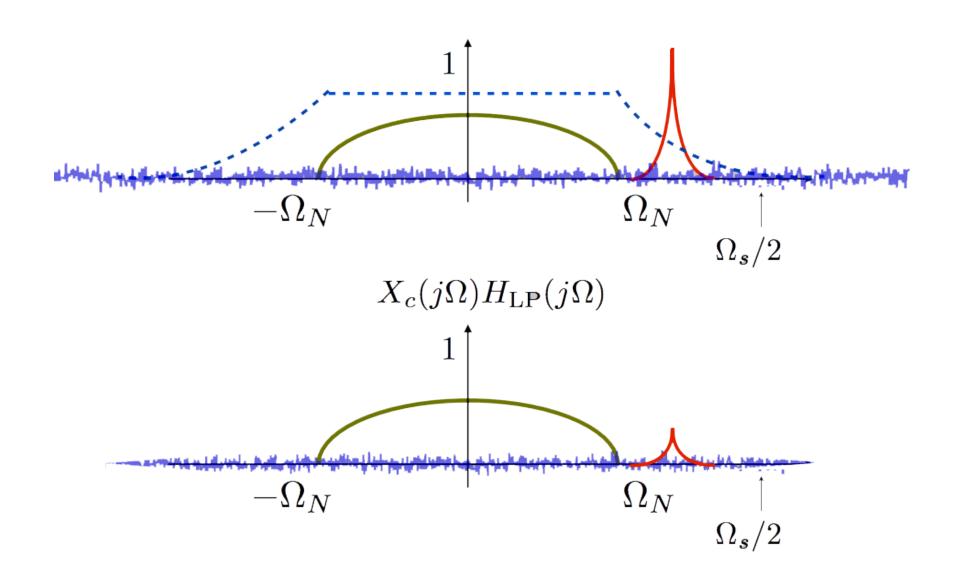


- Problem: Hard to implement sharp analog filter
- □ Consequence: Crop part of the signal and suffer from noise and interference

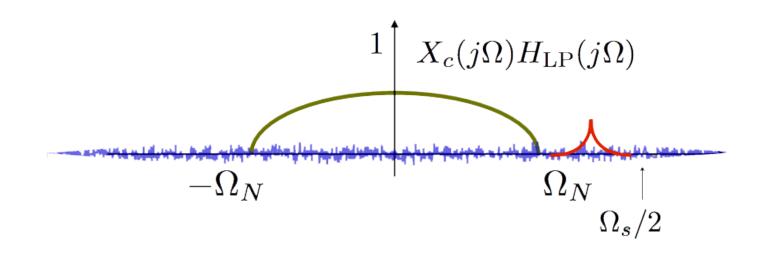
Oversampled ADC

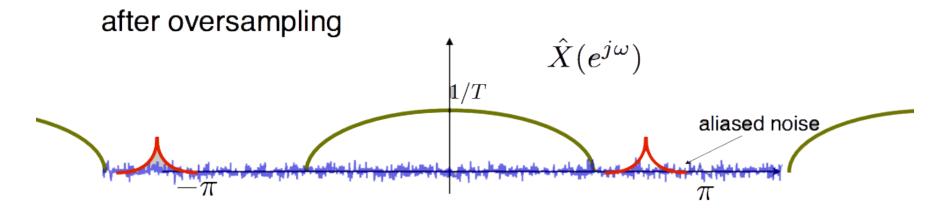


Oversampled ADC – Simple filter

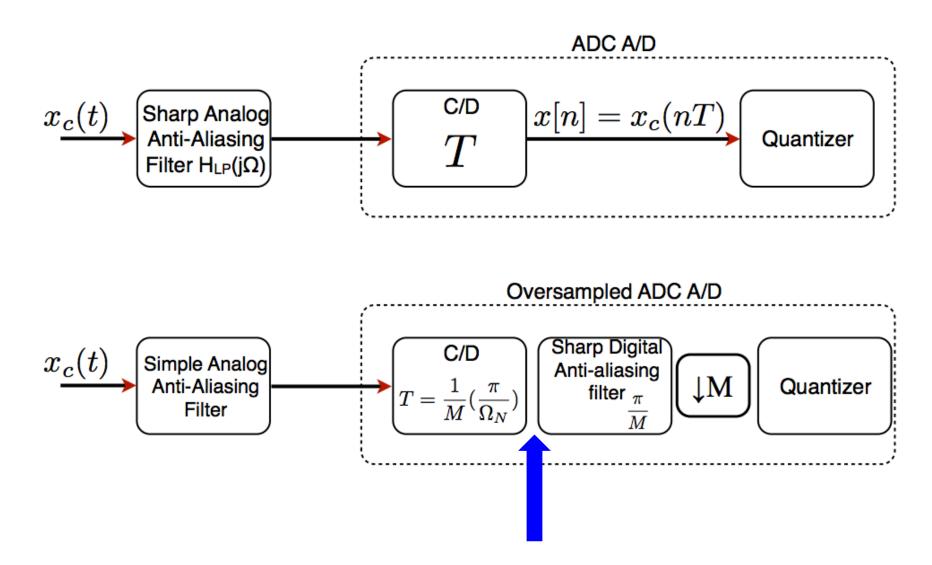


Oversampled ADC - M=2

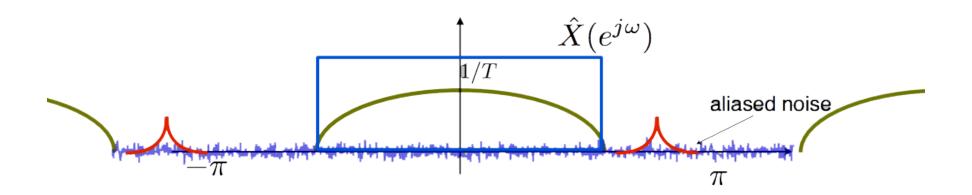




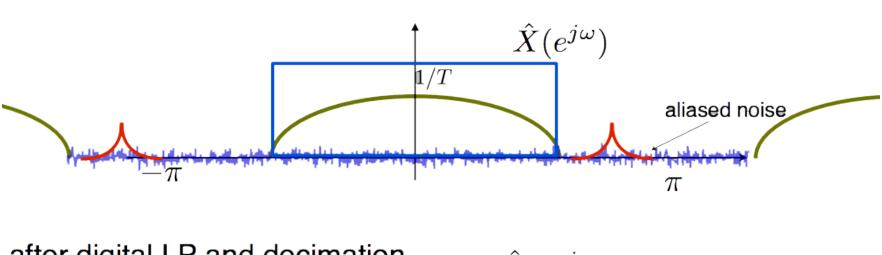
Oversampled ADC

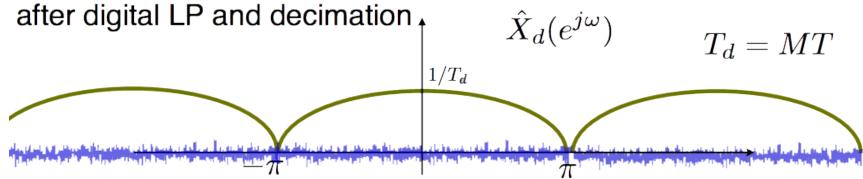


Oversampled ADC – Sharp digital filter/Downsample

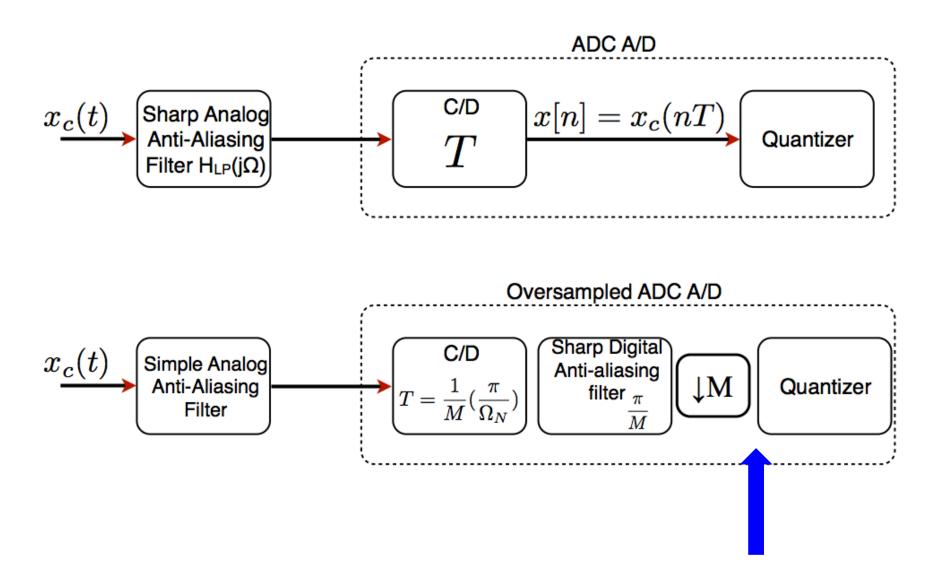


Oversampled ADC – Sharp digital filter/Downsample

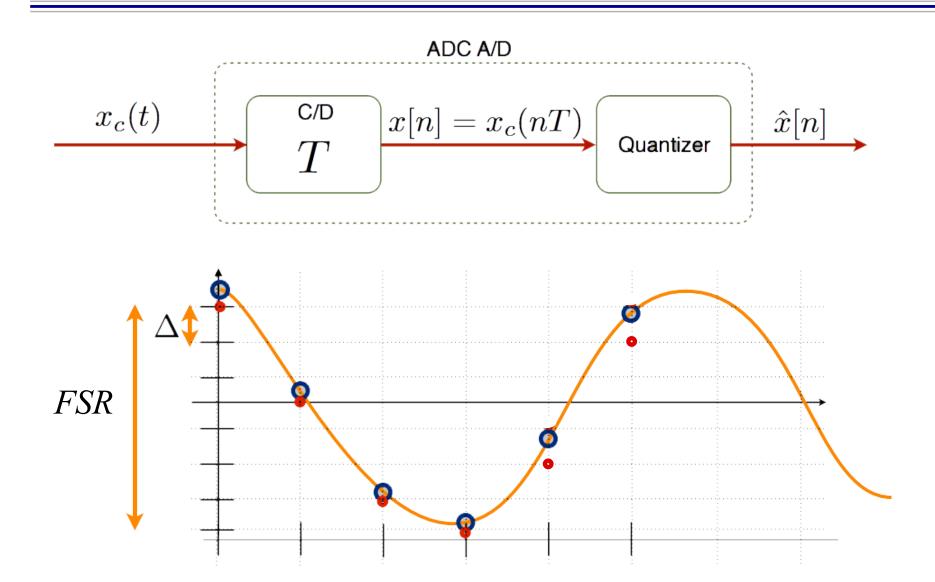




Oversampled ADC



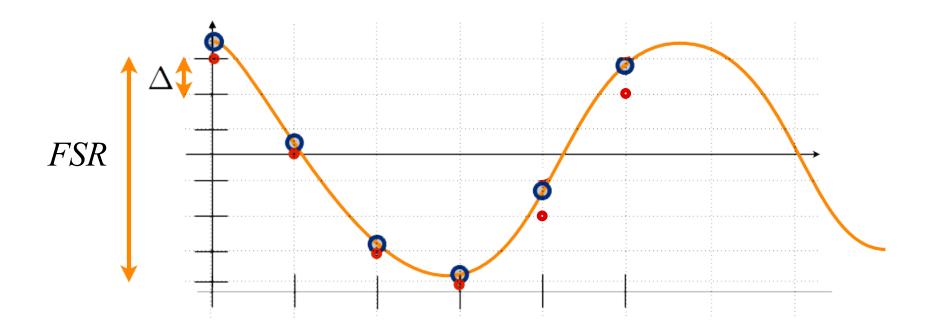
Sampling and Quantization

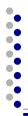


Sampling and Quantization

 \Box For an input signal with V_{pp} =FSR with B bits

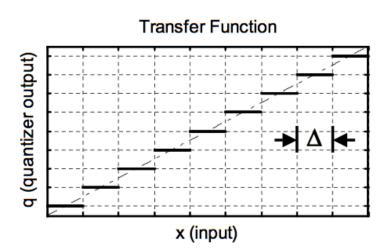
$$\Delta = \frac{FSR}{2^B}$$





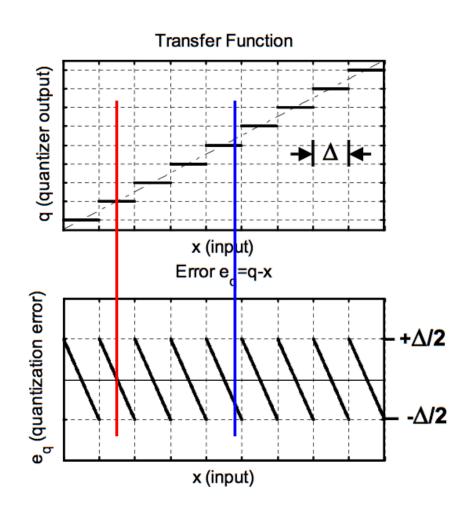
Ideal Quantizer

 \Box Quantization step Δ



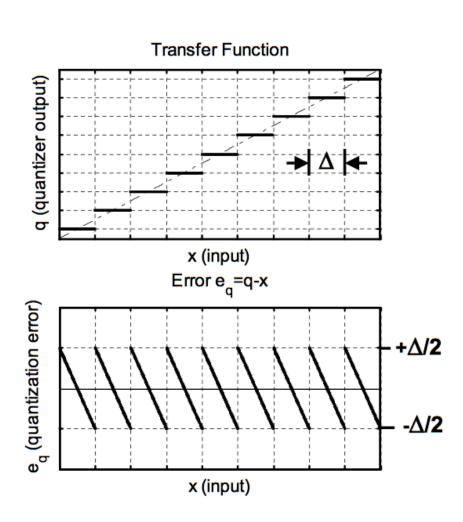
Ideal Quantizer

- \Box Quantization step Δ
- Quantization error has sawtooth shape
 - Bounded by $-\Delta/2$, $+\Delta/2$



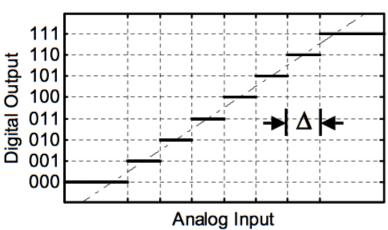
Ideal Quantizer

- \Box Quantization step Δ
- Quantization error has sawtooth shape
 - Bounded by $-\Delta/2$, $+\Delta/2$
- Ideally infinite input range and infinite number of quantization levels



Ideal B-bit Quantizer

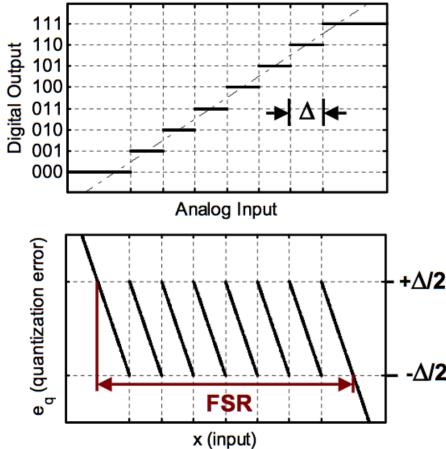
- Practical quantizers have a limited input range and a finite set of output codes
- E.g. a 3-bit quantizer can map onto 2³=8 distinct output codes



Ideal B-bit Quantizer

- Practical quantizers have a limited input range and a finite set of output codes
- E.g. a 3-bit quantizer can map onto 2³=8 distinct output codes

- Quantization error grows out of bounds beyond code boundaries
- We define the full scale range (FSR) as the maximum input range that satisfies $|e_q| \le \Delta/2$
 - Implies that $FSR = 2^B \cdot \Delta$

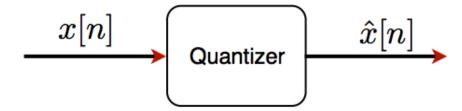


_

Effect of Quantization Error on Signal

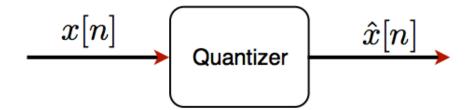
- Quantization error is a deterministic function of the signal
 - Consequently, the effect of quantization strongly depends on the signal itself
- □ Unless, we consider fairly trivial signals, a deterministic analysis is usually impractical
 - More common to look at errors from a statistical perspective
 - "Quantization noise"
- □ Two aspects
 - How much noise power (variance) does quantization add to our samples?
 - How is this noise distributed in frequency?

Quantization Error



Model quantization error as noise:

Quantization Error



Model quantization error as noise:

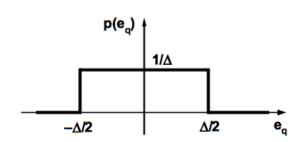
$$\begin{array}{c}
x[n] \\
& e[n] \\
\end{array}$$

□ In that case:

$$-\Delta/2 \le e[n] < \Delta/2$$

Quantization Error Statistics

- \Box Crude assumption: $e_q(x)$ has uniform probability density
- □ This approximation holds reasonably well in practice when
 - Signal spans large number of quantization steps
 - Signal is "sufficiently active"
 - Quantizer does not overload



Mean

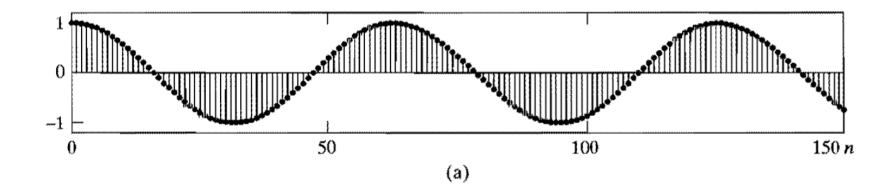
$$e^{-\frac{1}{2}} = \int_{-\Delta/2}^{+\Delta/2} \frac{e}{\Delta} de = 0$$

Variance
$$e^2 = \int_{-\Delta/2}^{+\Delta/2} \frac{e^2}{\Delta} de = \frac{\Delta^2}{12}$$

Noise Model for Quantization Error

- Assumptions:
 - Model e[n] as a sample sequence of a stationary random process
 - e[n] is not correlated with x[n]
 - e[n] not correlated with e[m] where $m \neq n$
 - $e[n] \sim U[-\Delta/2, \Delta/2]$ (uniform pdf)
- □ Result:
- $lue{}$ Assumptions work well for signals that change rapidly, are not clipped, and for small Δ

Figure 4.57 Example of quantization noise. (a) Unquantized samples of the signal $x[n] = 0.99\cos(n/10)$.



□ **Figure 4.57**(continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer.

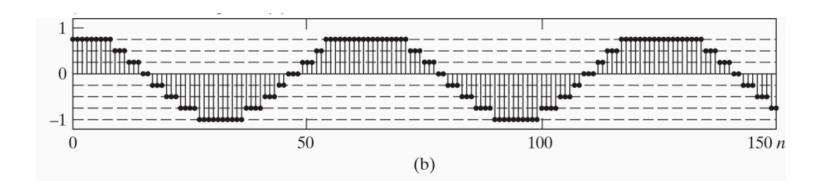


Figure 4.57(continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of the signal in (a).

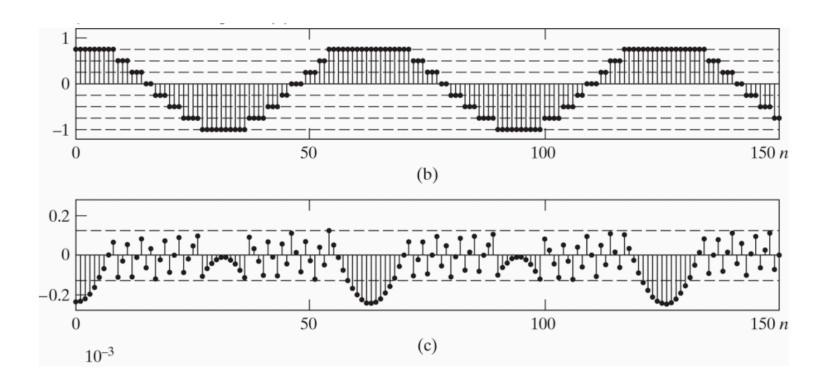
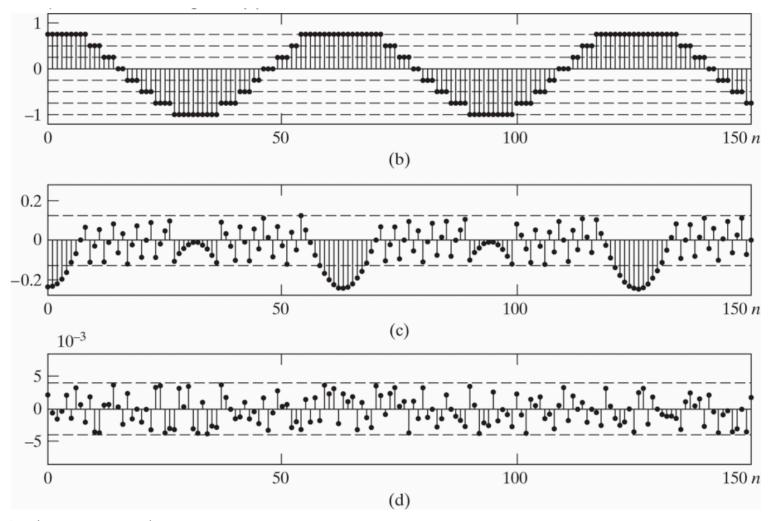


Figure 4.57(continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of the signal in (a). (d) Quantization error sequence for 8-bit quantization of the signal in (a).



For uniform B bits quantizer

$$SNR_Q = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2} \right)$$

For uniform B bits quantizer

$$SNR_Q = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2}\right)$$
$$= 10 \log_{10} \left(\frac{12 \cdot 2^{2B} \sigma_x^2}{FSR^2}\right)$$

$$\mathrm{SNR}_Q = 6.02B + 10.8 - 20\log_{10}\left(rac{FSR}{\sigma_x}
ight)$$
 Quantizer range rms of amp

$$\mathrm{SNR}_Q = 6.02B + 10.8 - 20\log_{10}\left(rac{\mathit{FSR}}{\sigma_x}
ight)$$
 Ruantizer range rms of amp

- □ Improvement of 6dB with every bit
- □ The range of the quantization must be adapted to the rms amplitude of the signal
 - Tradeoff between clipping and noise!
 - Often use pre-amp
 - Sometimes use analog auto gain controller (AGC)

Assuming full-scale sinusoidal input, we have

$$\mathrm{SNR}_Q = 6.02B + 10.8 - 20\log_{10}\left(\frac{\mathit{FSR}}{\sigma_x}\right)^{\text{Quantizer range}}_{\text{rms of amp}}$$

Signal-to-Quantization-Noise Ratio

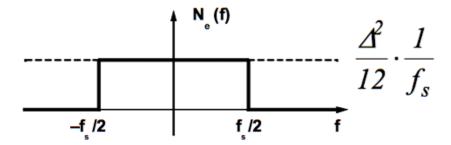
Assuming full-scale sinusoidal input, we have

$$SNR_Q = 6.02B + 1.76 dB$$

B (Number of Bits)	SQNR
8	50dB
12	74dB
16	98dB
20	122dB

Quantization Noise Spectrum

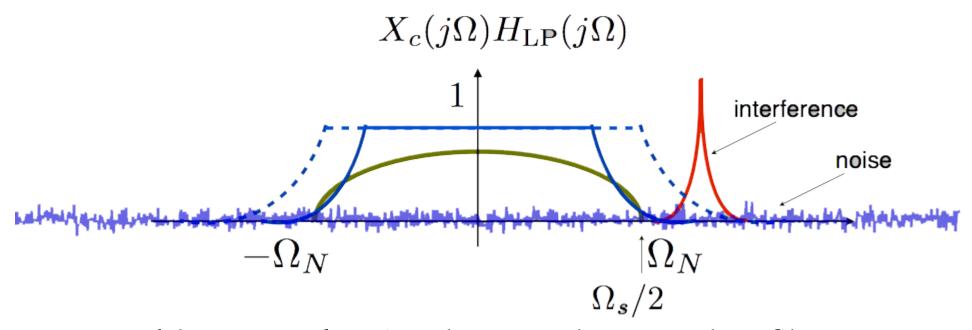
□ If the quantization error is "sufficiently random", it also follows that the noise power is uniformly distributed in frequency



References

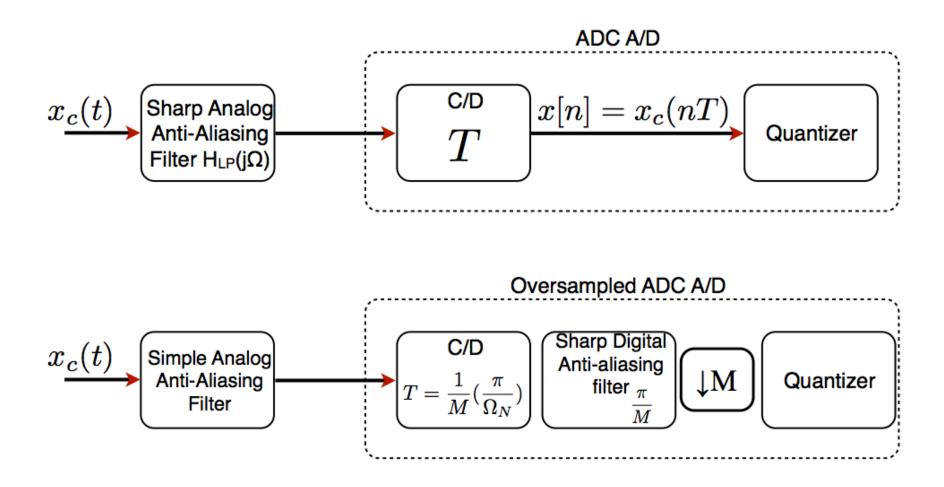
- W. R. Bennett, "Spectra of quantized signals," Bell Syst. Tech. J., pp. 446-72, July 1988.
- B. Widrow, "A study of rough amplitude quantization by means of Nyquist sampling theory," IRE Trans. Circuit Theory, vol. CT-3, pp. 266-76, 1956.

Non-Ideal Anti-Aliasing Filter

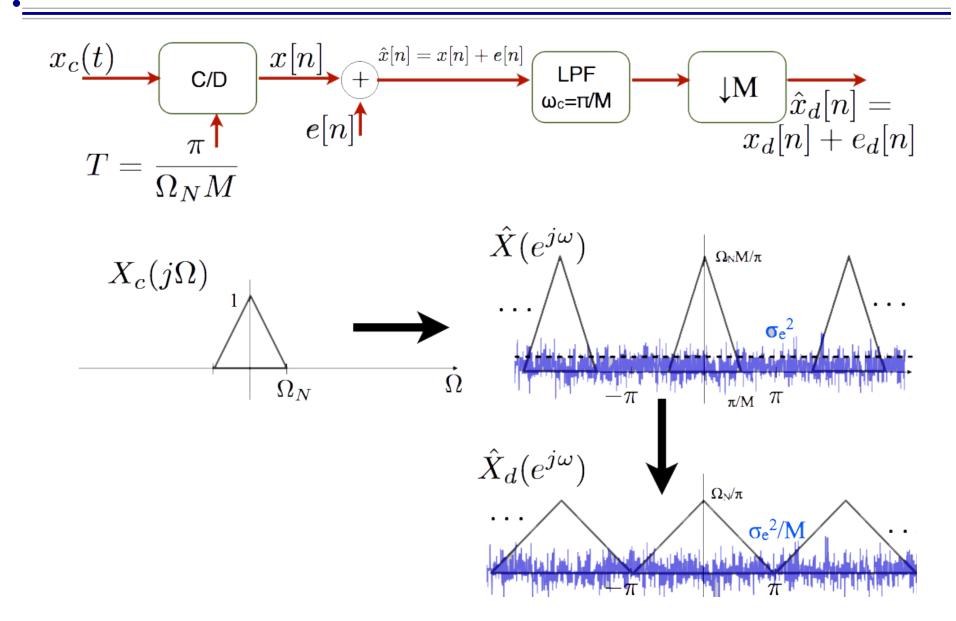


- Problem: Hard to implement sharp analog filter
- □ Consequence: Crop part of the signal and suffer from noise and interference

Oversampled ADC



Quantization Noise with Oversampling



Quantization Noise with Oversampling

- \blacksquare Energy of $x_d[n]$ equals energy of x[n]
 - No filtering of signal!
- Noise variance is reduced by factor of M

$$\mathrm{SNR}_Q = 6.02B + 10.8 - 20\log_{10}\left(\frac{FSR}{\sigma_x}\right) + 10\log_{10}M$$

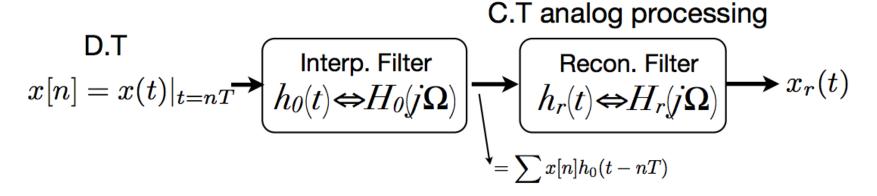
- □ For doubling of M we get 3dB improvement, which is the same as 1/2 a bit of accuracy
 - With oversampling of 16 with 8bit ADC we get the same quantization noise as 10bit ADC!

Practic

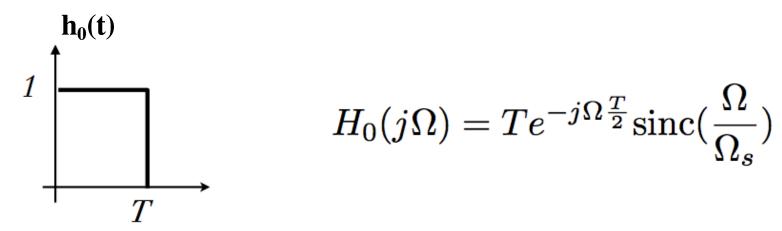
Practical DAC

D.T
$$x[n] = x(t)|_{t=nT} \longrightarrow \text{sinc pulse generator} \xrightarrow{} x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \text{sinc} \left(\frac{t-nT}{T}\right)$$

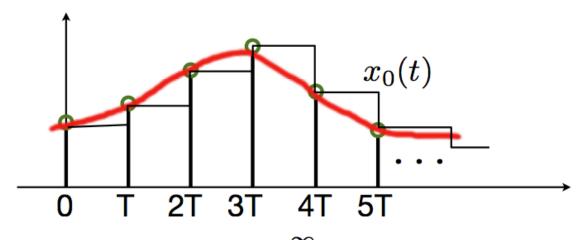
- Scaled train of sinc pulses
- □ Difficult to generate sinc → Too long!



- ightharpoonup $h_0(t)$ is finite length pulse \rightarrow easy to implement
- For example: zero-order hold

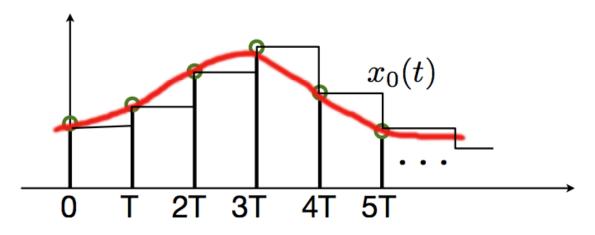


Zero-Order-Hold interpolation



$$x_0(t) = \sum_{n=-\infty}^{\infty} x[n]h_0(t - nT) = h_0(t) * x_s(t)$$

Zero-Order-Hold interpolation



$$x_0(t) = \sum_{n=-\infty}^{\infty} x[n]h_0(t-nT) = h_0(t) * x_s(t)$$

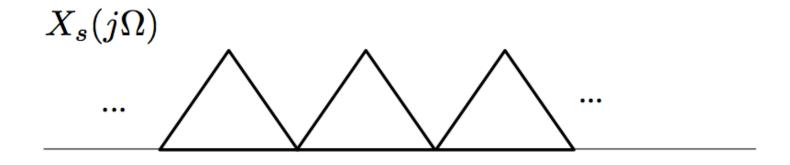
Taking a FT:

$$X_0(j\Omega) = H_0(j\Omega)X_s(j\Omega)$$

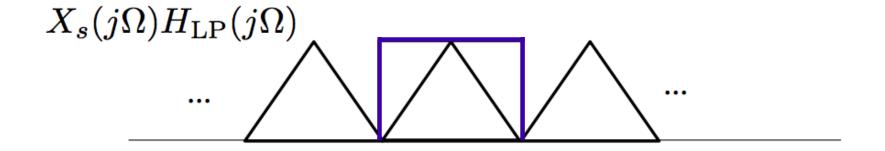
= $H_0(j\Omega)\frac{1}{T}\sum_{k=-\infty}^{\infty}X(j(\Omega-k\Omega_s))$

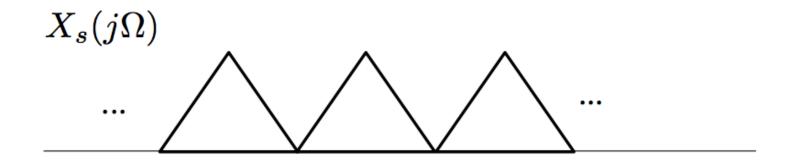
Output of the reconstruction filter construction filter processing D.T Interp. Filter $x[n] = x(t)|_{t=nT}$ Interp. Filter $h_0(t) \Leftrightarrow H_0(j\Omega)$ Recon. Filter $h_r(t) \Leftrightarrow H_r(j\Omega)$ $x_r(t) \Leftrightarrow H_r(j\Omega)$

Output of the reconstruction filter C.T analog processing Interp. Filter Recon. Filter $x[n] = x(t)|_{t=nT}$ $h_0(t) \Leftrightarrow H_0(j\Omega)$ $h_r(t) \Leftrightarrow H_r(j\Omega)$ $=\sum x[n]h_0(t-nT)$ $X_r(j\Omega) = H_r(j\Omega) \cdot H_0(j\Omega) \cdot X_s(j\Omega)$ $= \underbrace{H_r(j\Omega)} \cdot Te^{-j\Omega \frac{T}{2}} \operatorname{sinc}(\frac{\Omega}{\Omega_s}) \cdot \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\Omega - k\Omega_s))$ $k=-\infty$ recon from zero-order Shifted copies from filter hold sampling $H_r(j\Omega)$ $H_0(j\Omega)$ $X_{s}(j\Omega)$

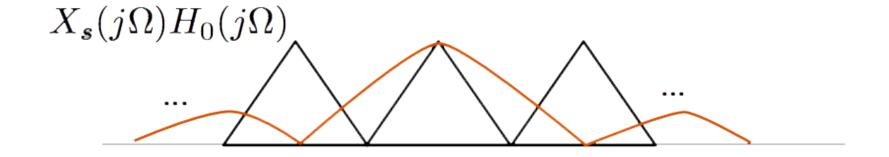


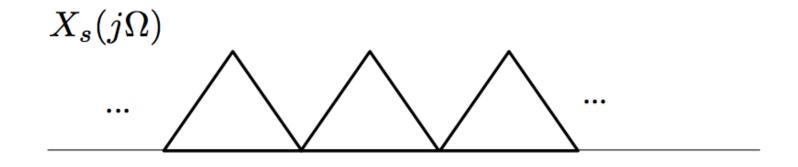
Ideally:





Practically:

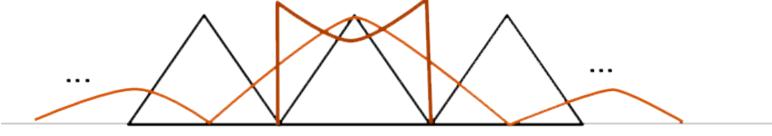




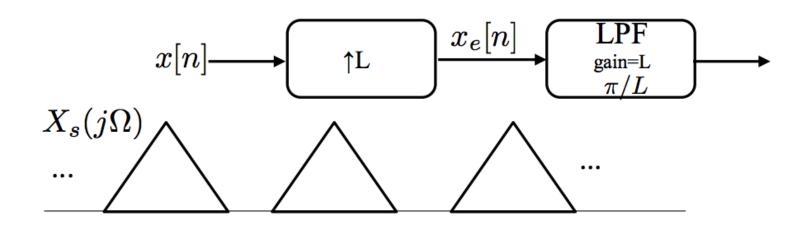
Practically:

= *

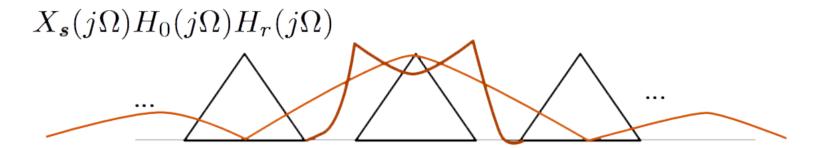
$$X_s(j\Omega)H_0(j\Omega)H_r(j\Omega)$$



Practical DAC with Upsampling

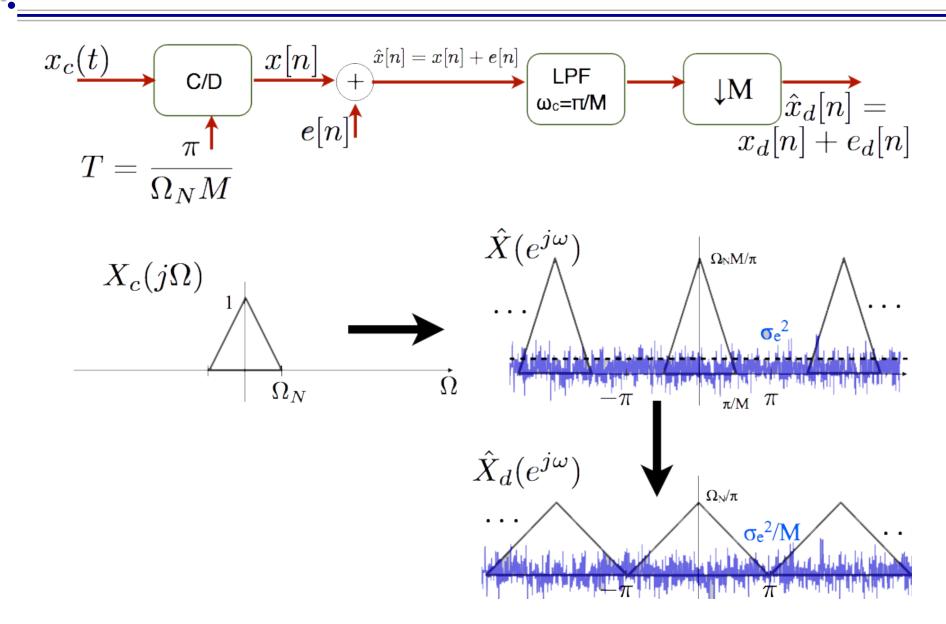


Practically:



Noise Shaping

Quantization Noise with Oversampling



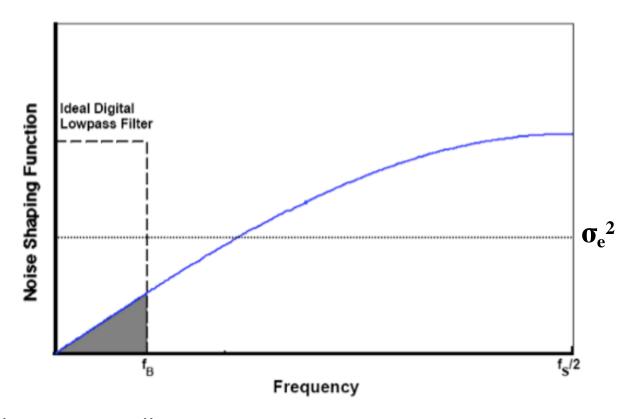
Quantization Noise with Oversampling

- \blacksquare Energy of $x_d[n]$ equals energy of x[n]
 - No filtering of signal!
- Noise variance is reduced by factor of M

$$SNR_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{X_m}{\sigma_x}\right) + 10 \log_{10} M$$

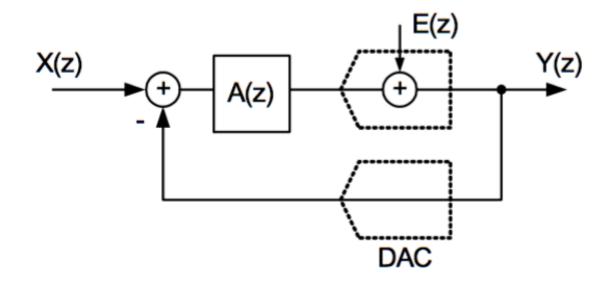
- □ For doubling of M we get 3dB improvement, which is the same as 1/2 a bit of accuracy
 - With oversampling of 16 with 8bit ADC we get the same quantization noise as 10bit ADC!

Noise Shaping

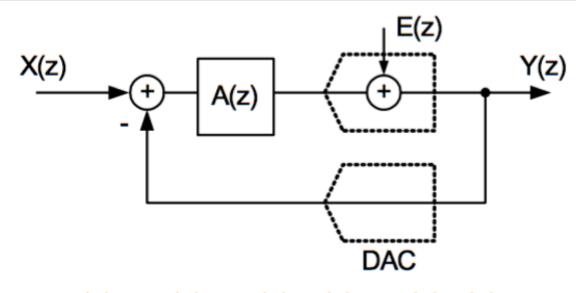


- □ Idea: "Somehow" build an ADC that has most of its quantization noise at high frequencies
- Key: Feedback

Noise Shaping Using Feedback



Noise Shaping Using Feedback



$$Y(z) = E(z) + A(z)X(z) - A(z)Y(z)$$

$$= E(z)\frac{1}{1+A(z)} + X(z)\frac{A(z)}{1+A(z)}$$

$$= E(z)H_{E}(z) + X(z)H_{X}(z)$$
Noise
Transfer
Function
Signal
Transfer
Function

Noise Shaping Using Feedback

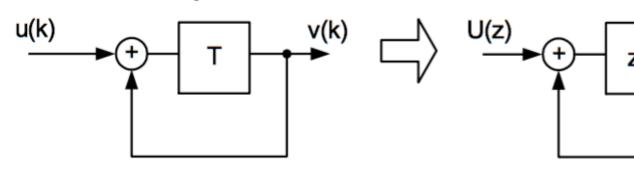
$$Y(z) = E(z) \underbrace{\frac{1}{1 + A(z)} + X(z) \underbrace{\frac{A(z)}{1 + A(z)}}_{Noise} + X(z) \underbrace{\frac{1}{1 + A(z)}}_{Signal}$$

$$\underbrace{\frac{Signal}{Transfer}}_{Function}$$
Function

- Objective
 - Want to make STF unity in the signal frequency band
 - Want to make NTF "small" in the signal frequency band
- If the frequency band of interest is around DC $(0...f_B)$ we achieve this by making |A(z)| >> 1 at low frequencies
 - Means that NTF << 1</p>
 - Means that STF \cong 1

Discrete Time Integrator

Delay Element



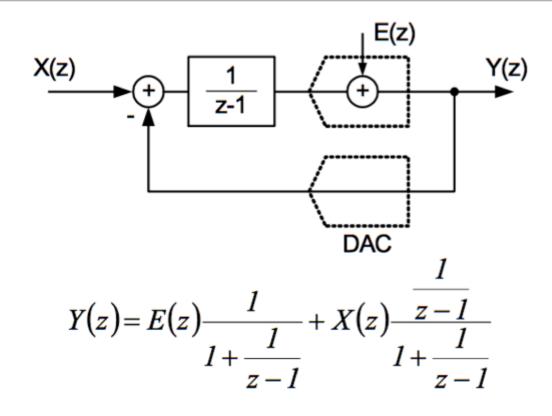
$$v(k) = u(k-1) + v(k-1)$$

$$V(z) = z^{-1}U(z) + z^{-1}V(z)$$

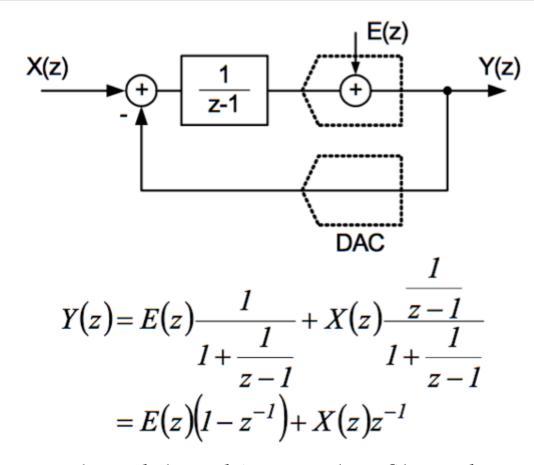
$$\frac{V(z)}{U(z)} = \frac{z^{-1}}{1 - z^{-1}} = \frac{1}{z - 1} \qquad z = e^{j\omega T}$$

□ "Infinite gain" at DC (ω =0, z=1)

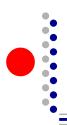
First Order Sigma-Delta Modulator



First Order Sigma-Delta Modulator



 Output is equal to delayed input plus filtered quantization noise

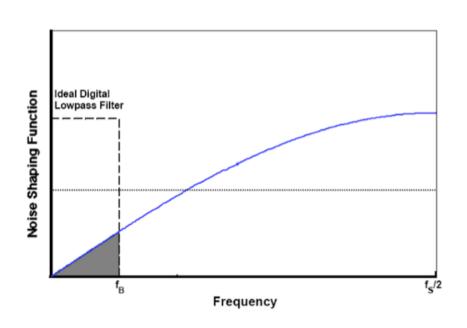


NTF Frequency Domain Analysis

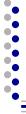
$$H_e(z) = 1 - z^{-1}$$

NTF Frequency Domain Analysis

$$\begin{split} H_e(z) &= 1 - z^{-1} \\ H_e(j\omega) &= \left(1 - e^{-j\omega T}\right) = 2e^{-j\omega T/2} \left(\frac{e^{j\omega T/2} - e^{-j\omega T/2}}{2}\right) \\ &= 2e^{-j\frac{\omega T}{2}} \left(j\sin\left(\frac{\omega T}{2}\right)\right) = 2\sin\left(\frac{\omega T}{2}\right)e^{-j\frac{\omega T - \pi}{2}} \\ |H_e(f)| &= 2|\sin(\pi f T)| = 2|\sin\left(\pi f \frac{f}{f_s}\right)| \end{split}$$



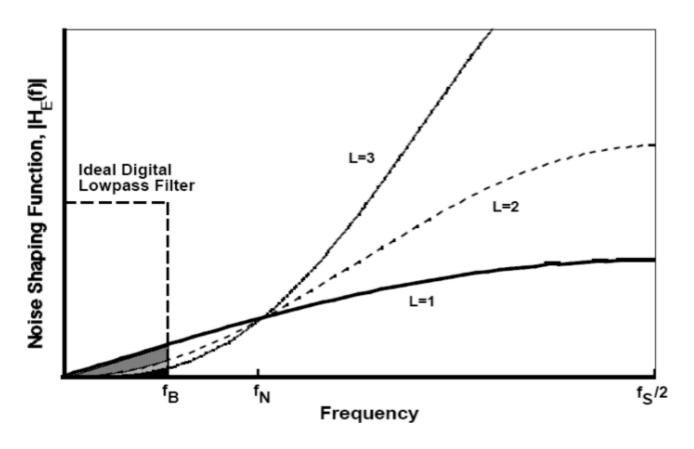
- □ "First order noise Shaping"
 - Quantization noise is attenuated at low frequencies,
 amplified at high frequencies



Higher Order Noise Shaping

□ Lth order noise transfer function

$$H_E(z) = \left(1 - z^{-1}\right)^L$$



Big Ideas

- Quantizers
 - Introduces quantization noise
- Data Converters
 - Oversampling to reduce interference and quantization noise → increase ENOB (effective number of bits)
 - Practical DACs use practical interpolation and reconstruction filters with oversampling
- Noise Shaping
 - Use feedback to reduce oversampling factor