ESE 531: Digital Signal Processing

Week 2:

Lecture 2: January 24, 2021 Discrete Time Signals and Systems, Pt 1

- Discrete Time Signals
- Signal Properties
- Discrete Time Systems

Discrete Time Signals

DEFINITION

Signal (n): A detectable physical quantity ... by which messages or information can be transmitted (Merriam-Webster)

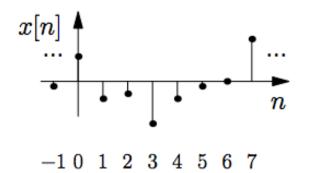
- Signals carry information
- Examples:
 - Speech signals transmit language via acoustic waves
 - Radar signals transmit the position and velocity of targets via electromagnetic waves
 - Electrophysiology signals transmit information about processes inside the body
 - Financial signals transmit information about events in the economy
- Signal processing systems manipulate the information carried by signals



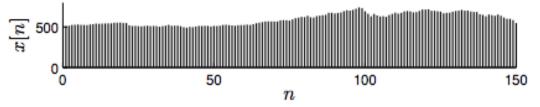
DEFINITION

A signal is a function that maps an independent variable to a dependent variable.

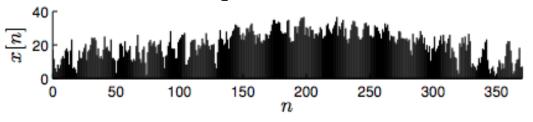
- □ Signal x[n]: each value of n produces the value x[n]
- □ In this course we will focus on **discrete-time** signals:
 - Independent variable is an **integer**: $n \in \mathbb{Z}$ (will refer to n as <u>time</u>)
 - Dependent variable is a real or complex number: $x[n] \in R$



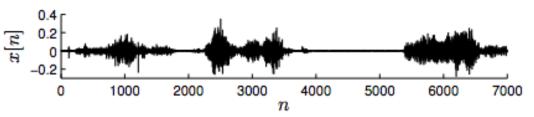
• Google Share daily share price for 5 months



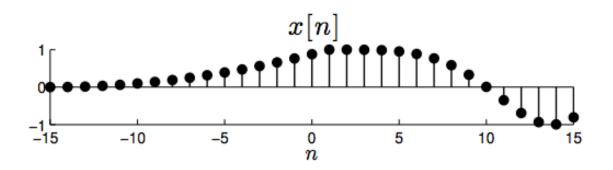
Temperature at Houston International Airport in 2013



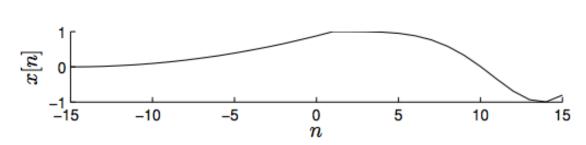
• Excerpt from a reading of Shakespeare's *Hamlet*

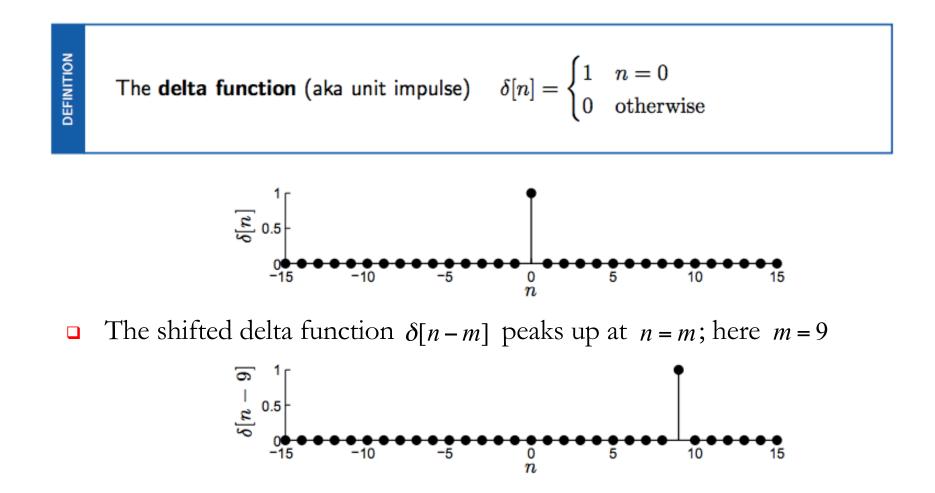


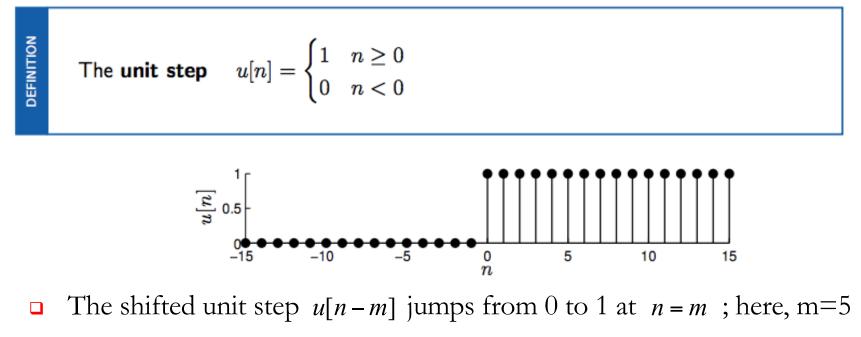
- □ In a discrete-time signal x[n], the independent variable n is discrete
- To plot a discrete-time signal in a program like Matlab, you should use the <u>stem</u> or similar command and not the <u>plot</u> command
- Correct:

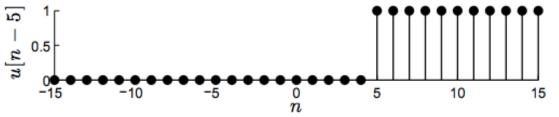


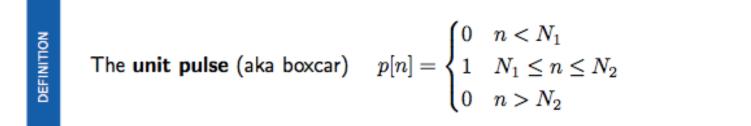
Incorrect:





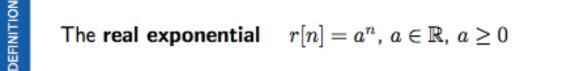




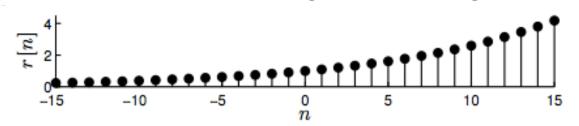


Ex:
$$p[n]$$
 for $N_1 = -5$ and $N_2 = 3$

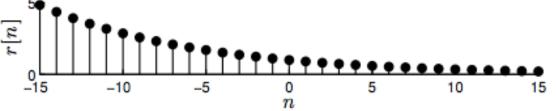
• One of many different formulas for the unit pulse $p[n] = u[n - N_1] - u[n - (N_2 + 1)]$



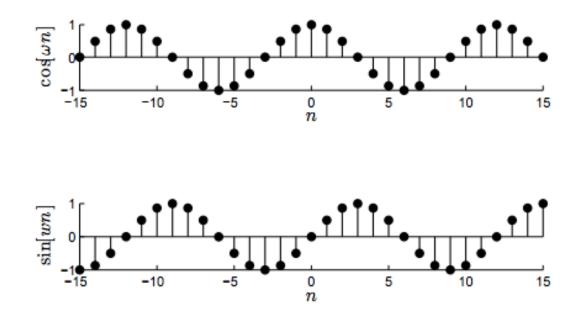
• For a > 1, r[n] shrinks to the left and grows to the right; here a = 1.1



• For 0 < a < 1, r[n] grows to the left and shrinks to the right; here a = 0.9



- □ There are two natural real-value sinusoids: $cos(\omega n + \phi)$ and $sin(\omega n + \phi)$
- **Frequency:** ω (units: radians/sample)
- **D Phase:** ϕ (units: radians)

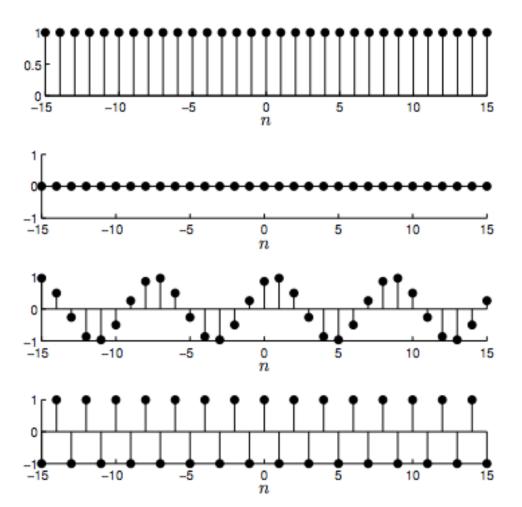


 $\Box \cos(0n)$

 $\Box \quad \sin(0n)$

 $\Box \quad \sin\left(\frac{\pi}{4}n + \frac{2\pi}{6}\right)$

 $\Box \cos(\pi n)$



Sinusoid in Matlab

 It's easy to play around in Matlab to get comfortable with the properties of sinusoids

```
N=36;

n=0:N-1;

omega=pi/6;

phi=pi/4;

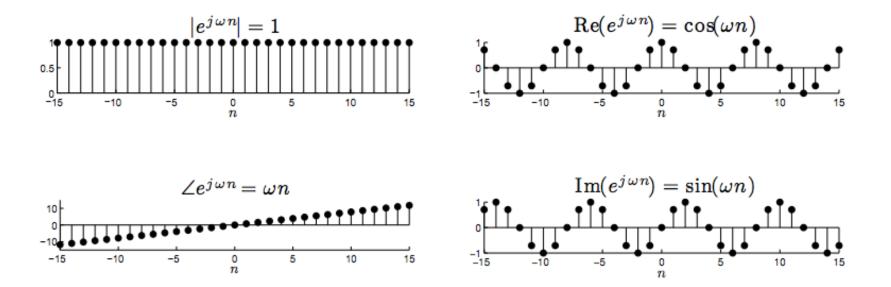
x=cos(omega*n+phi);

stem(n,x)
```



The complex-value sinusoid combines both the cos and sin terms using Euler's identity:

$$e^{j(\omega n+\phi)} = \cos(\omega n+\phi) + j\sin(\omega n+\phi)$$



Complex Sinusoid as Helix

 $e^{j(\omega n+\phi)} = \cos(\omega n+\phi) + j\sin(\omega n+\phi)$

■ A complex sinusoid is a **helix** in 3D space (Re{}, Im{}, n)

- Real part (cos term) is the projection onto the Re{} axis
- Imaginary part (sin term) is the projection onto the $Im\{\}$ axis
- Frequency ω determines rotation speed and direction of helix
 - $\omega > 0 \Rightarrow$ anticlockwise rotation
 - $\omega < 0 \Rightarrow$ clockwise rotation

Animation: https://upload.wikimedia.org/wikipedia/commons/4/41/Rising_circular.gif

Penn ESE 531 Spring 2021 - Khanna

🖏 2008 - vessos, radartutorial, ou

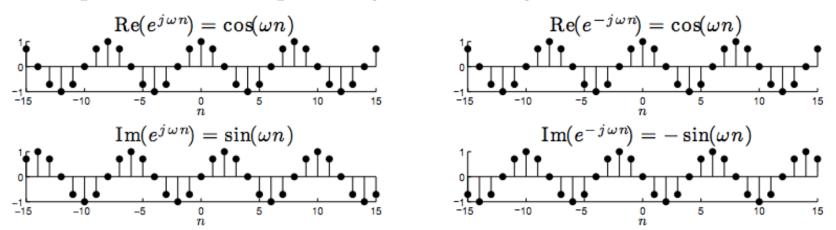
• Negative frequency is nothing to be afraid of!

Negative frequency is nothing to be afraid of! Consider a sinusoid with a negative frequency:

$$e^{j(-\omega)n} = e^{-j\omega n} = \cos(-\omega n) + j\sin(-\omega n) = \cos(\omega n) - j\sin(\omega n)$$

• Also note:
$$e^{j(-\omega)n} = e^{-j\omega n} = (e^{j\omega n})^{\dagger}$$

Takeaway: negating the frequency is equivalent to complex conjugating a complex sinusoid—flips the sign of the imaginary sin term



 \Box ϕ is a (frequency independent) shift that is referenced to one period of oscillation

 $\cos\left(\frac{\pi}{6}n-0\right)$ -1 L -15 -10 10 15 0 $\cos\left(\frac{\pi}{6}n - \frac{\pi}{4}\right)$ -1^T--15 -10 n^{0} 10 15 5 $\cos\left(\frac{\pi}{6}n - \frac{\pi}{2}\right) = \sin\left(\frac{\pi}{6}n\right)$ -10--10 5 15 -5 10 0 $\cos\left(\frac{\pi}{6}n - 2\pi\right) = \cos\left(\frac{\pi}{6}n\right)$ -1 L -15 -10 15 0 10 5 -5 n

- Complex sinusoid $e^{j(\omega n + \phi)}$ is of the form $e^{\text{Purely Imaginary Numbers}}$
- \Box Generalize to $e^{\text{General Complex Numbers}}$

- Complex sinusoid $e^{j(\omega n + \phi)}$ is of the form $e^{\text{Purely Imaginary Numbers}}$
- \Box Generalize to $e^{\text{General Complex Numbers}}$
- Consider the general complex number $z = |z| e^{j\omega}, z \in \mathbb{C}$
 - |z| = magnitude of z
 - $\omega = \angle(z)$, phase angle of z
 - Can visualize $z \in \mathbb{C}$ as a **point** in the **complex plane**

- Complex sinusoid $e^{j(\omega n + \phi)}$ is of the form $e^{\text{Purely Imaginary Numbers}}$
- \Box Generalize to $e^{\text{General Complex Numbers}}$
- Consider the general complex number $z = |z| e^{j\omega}$, $z \in \mathbb{C}$
 - |z| = magnitude of z
 - $\omega = \angle(z)$, phase angle of z
 - Can visualize $z \in \mathbb{C}$ as a **point** in the **complex plane**

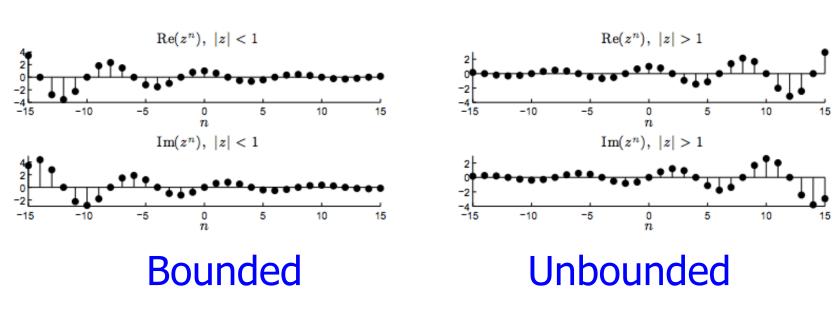
• Now we have

$$z^{n} = (|z|e^{j\omega})^{n} = |z|^{n}(e^{j\omega})^{n} = |z|^{n}e^{j\omega n}$$
• $|z|^{n}$ is a real exponential $(a^{n} \text{ with } a = |z|) \xrightarrow{\Xi}_{a} \underbrace{\int_{1}^{a} \underbrace$

$$z^n \;=\; \left(|z| \, e^{j \omega n}
ight)^n \;=\; |z|^n \, e^{j \omega n}$$

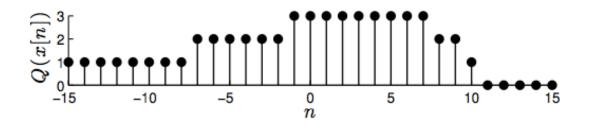
 \Box $|z|^n$ is a real exponential envelope $(a^n \text{ with } a = |z|)$

|z| < 1



|z| > 1

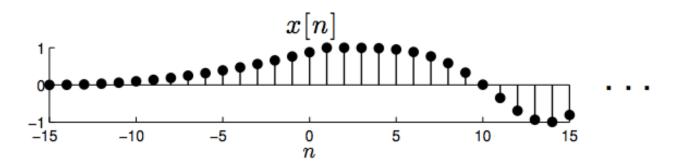
- **Digital signals** are a special subclass of discrete-time signals
 - Independent variable is still an integer: $n \in \mathbb{Z}$
 - Dependent variable is from a finite set of integers: $x[n] \in \{0, 1, \dots, D-1\}$
 - Typically, choose D=2^q and represent each possible level of x[n] as a digital code with q
 bits
 - Ex. Digital signal with q=2 bits --> D=4 levels



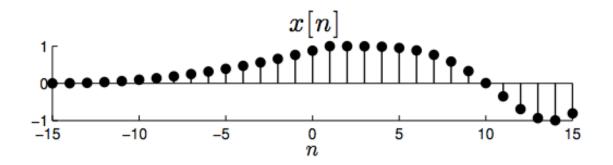
Signal Properties

Finite/Infinite Length Sequences

• An infinite-length discrete-time signal x[n] is defined for all integers $-\infty < n < \infty$

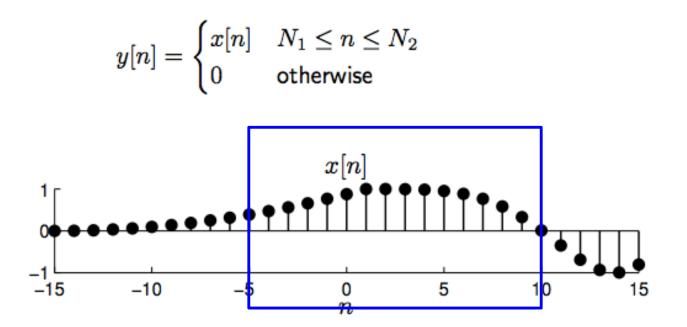


• A finite-length discrete-time signal x[n] is defined only for a finite range of $N_1 \le n \le N_2$



• Important: a finite-length signal is undefined for $n < N_1$ and $n > N_2$

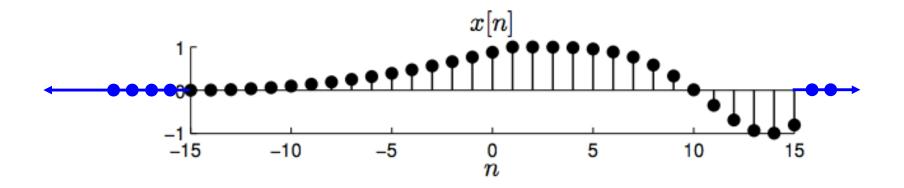
• Windowing converts a longer signal into a shorter one



 Generally, we define a window signal, w[n], with some finite length and multiply to implement the windowing: y[n]=w[n]*x[n]

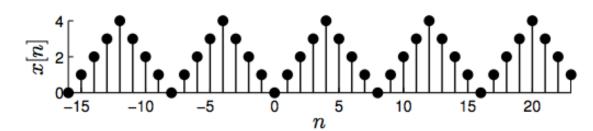
• Converts a shorter signal into a larger one

Say x[n] is defined for N₁
$$\leq$$
 n \leq N₂
Given N₀ \leq N₁ \leq N₂ \leq N₃
$$y[n] = \begin{cases} 0 & N_0 \leq n < N_1 \\ x[n] & N_1 \leq n \leq N_2 \\ 0 & N_2 < n \leq N_3 \end{cases}$$



A discrete-time signal is **periodic** if it repeats with period $N \in \mathbb{Z}$:

$$x[n+mN] = x[n] \quad \forall \, m \in \mathbb{Z}$$



Notes:

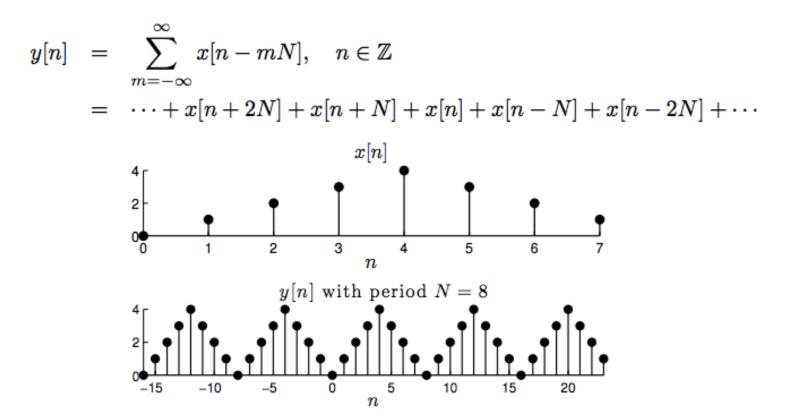
DEFINITION

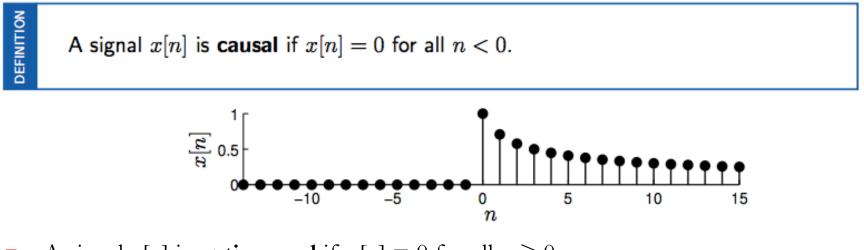
DEFINITION

- The period N must be an integer
- A periodic signal is infinite in length

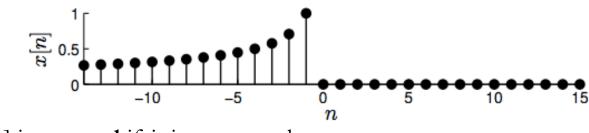
A discrete-time signal is aperiodic if it is not periodic

- Converts a finite-length signal into an infinite-length, periodic signal
- \Box Given finite-length x[n], replicate x[n] periodically with period N

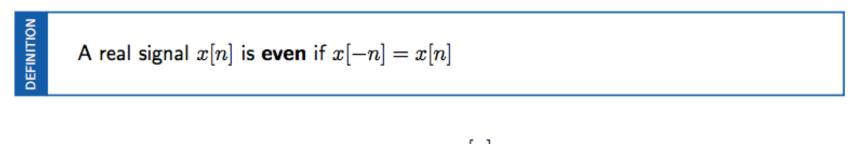


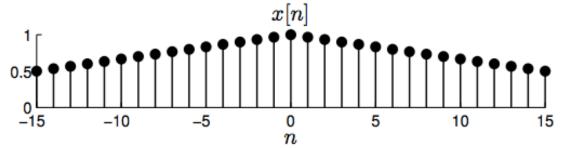


□ A signal x[n] is **anti-causal** if x[n] = 0 for all $n \ge 0$

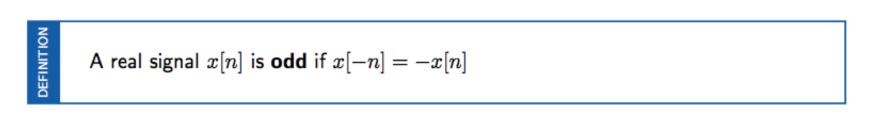


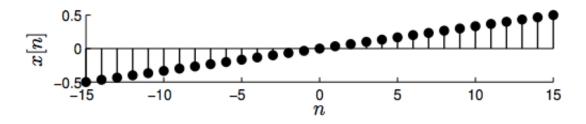
• A signal x[n] is **acausal** if it is not causal





• Even signals are symmetrical around the point n = 0





• Odd signals are anti-symmetrical around the point n = 0

 Useful fact: Every signal x[n] can be decomposed into the sum of its even part and its odd part

Even part: $e[n] = \frac{1}{2} (x[n] + x[-n])$ (easy to verify that e[n] is even)Odd part: $o[n] = \frac{1}{2} (x[n] - x[-n])$ (easy to verify that o[n] is odd)Decompositionx[n] = e[n] + o[n]

 Useful fact: Every signal x[n] can be decomposed into the sum of its even part and its odd part

Even part: $e[n] = \frac{1}{2} (x[n] + x[-n])$ (easy to verify that e[n] is even)

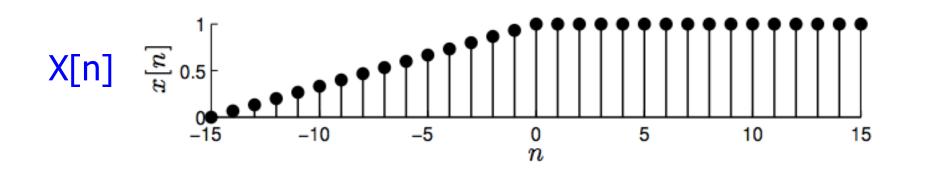
(easy to verify that o[n] is odd)

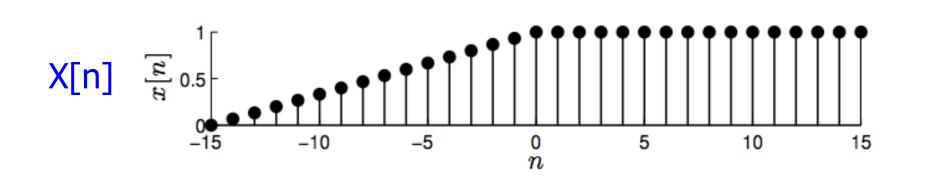
Odd part: $o[n] = \frac{1}{2} (x[n] - x[-n])$

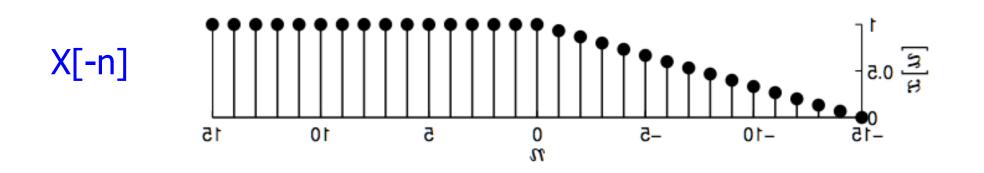
Decomposition x[n] = e[n] + o[n]

Verify the decomposition:

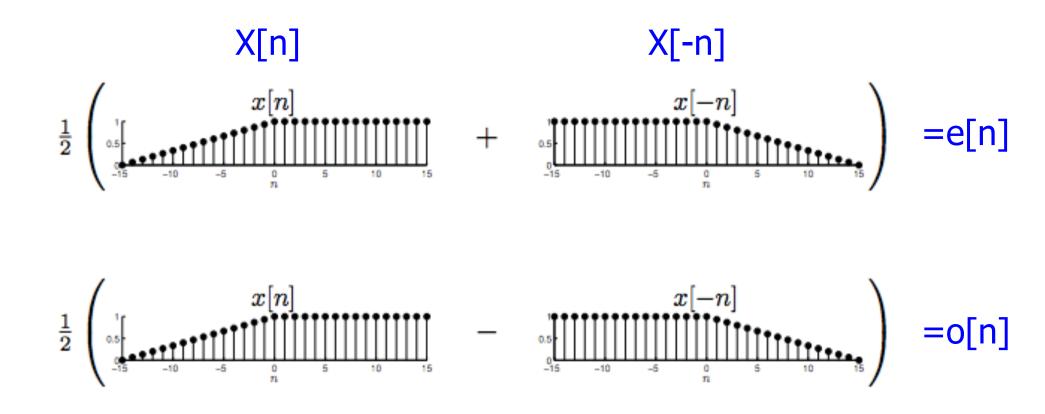
$$\begin{array}{lll} e[n] + o[n] &=& \frac{1}{2}(x[n] + x[-n]) + \frac{1}{2}(x[n] - x[-n]) \\ &=& \frac{1}{2}(x[n] + x[-n] + x[n] - x[-n]) \\ &=& \frac{1}{2}(2\,x[n]) = x[n] \checkmark \end{array}$$

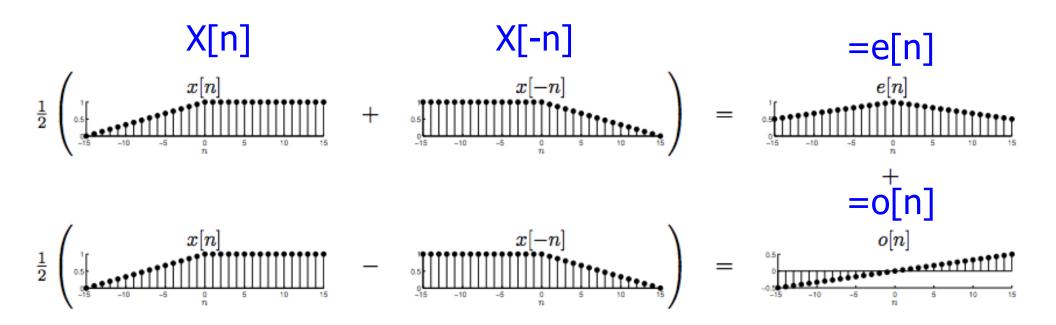


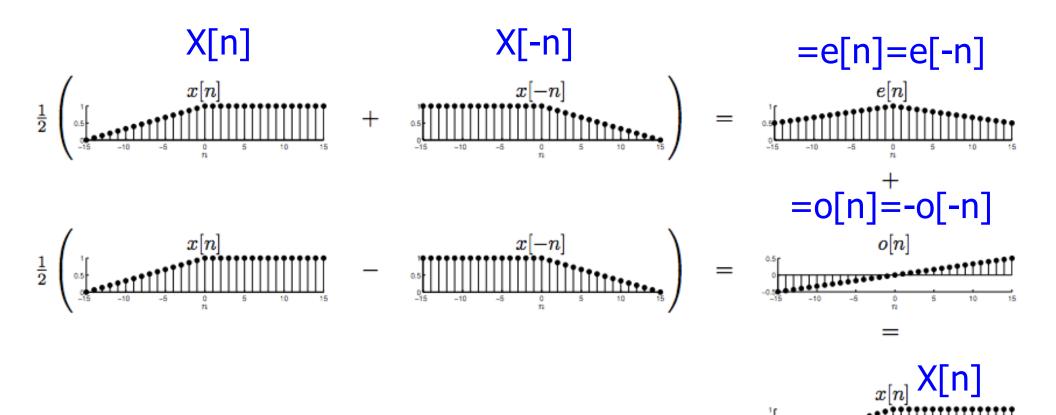




Decomposition Example







Discrete-time sinusoids $e^{j(\omega n + \phi)}$ have two counterintuitive properties

 \Box Both involve the frequency ω

Property #1: Aliasing

Property #2: Aperiodicity

• Consider two sinusoids with two different frequencies

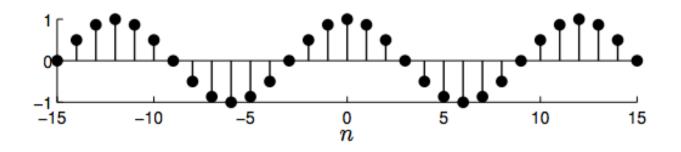
But note that

$$x_2[n] = e^{j((\omega + 2\pi)n + \phi)} = e^{j(\omega n + \phi) + j2\pi n} = e^{j(\omega n + \phi)} e^{j2\pi n} = e^{j(\omega n + \phi)} = x_1[n]$$

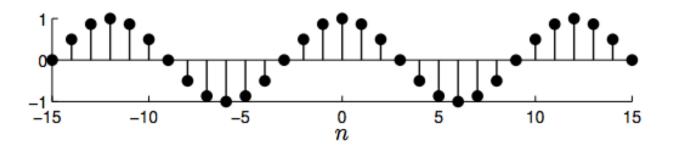
- \Box The signals x_1 and x_2 have different frequencies but are **identical!**
- \Box We say that x_1 and x_2 are aliases; this phenomenon is called aliasing
- □ Note: Any integer multiple of 2π will do; try with $x_3[n] = e^{j((\omega + 2\pi m)n + \phi)}$, $m \in \mathbb{Z}$

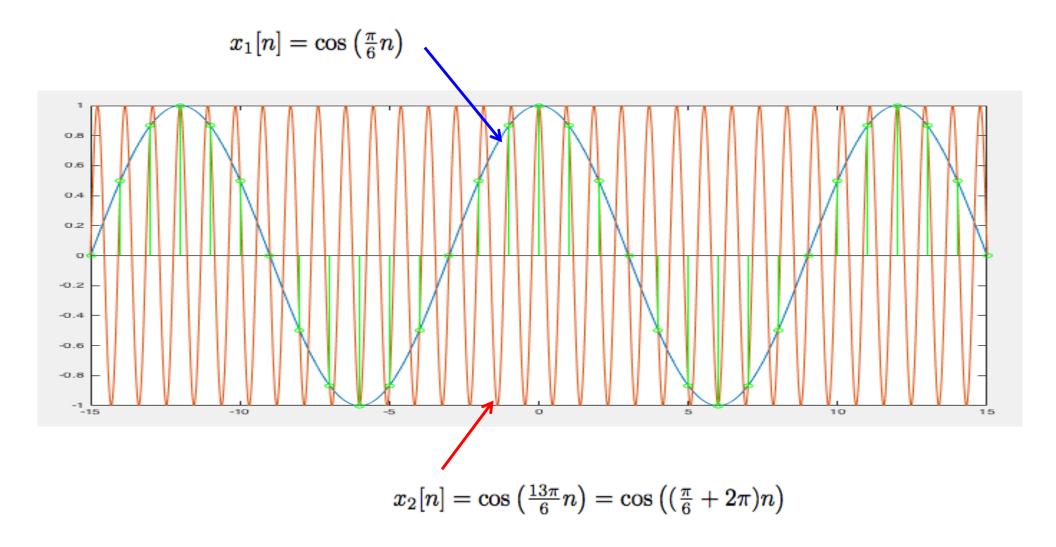
Penn ESE 531 Spring 2021 - Khanna

$$x_1[n] = \cos\left(\frac{\pi}{6}n\right)$$



$$x_2[n] = \cos\left(\frac{13\pi}{6}n\right) = \cos\left(\left(\frac{\pi}{6} + 2\pi\right)n\right)$$





□ Since

$$x_3[n] = e^{j(\omega + 2\pi m)n + \phi)} = e^{j(\omega n + \phi)} = x_1[n] \quad \forall m \in \mathbb{Z}$$

□ the only frequencies that lead to unique (distinct) sinusoids lie in an interval of length 2π

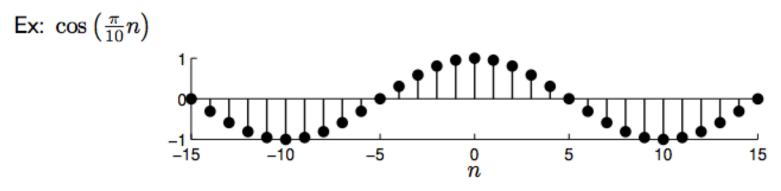
Two intervals are typically used in the signal processing literature (and in this course)

 $0 \le \omega < 2\pi$ $-\pi < \omega \le \pi$

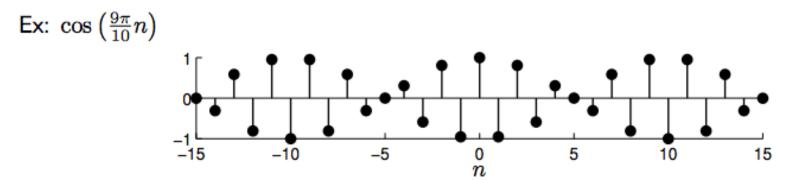
Which is higher in frequency?

 $\Box \cos(\pi n) \operatorname{or} \cos(3\pi/2n)$?

Low frequencies: ω close to 0 or 2π radians



High frequencies: ω close to π or $-\pi$ radians

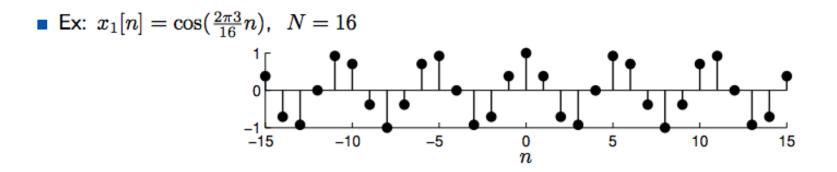


• Consider $x_1[n] = e^{j(\omega n + \phi)}$ with frequency $\omega = \frac{2\pi k}{N}$, $k, N \in \mathbb{Z}$ (harmonic frequency)

• Consider
$$x_1[n] = e^{j(\omega n + \phi)}$$
 with frequency $\omega = \frac{2\pi k}{N}$, $k, N \in \mathbb{Z}$ (harmonic frequency)

It is easy to show that x_1 is periodic with period N, since

$$x_1[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n+\omega N+\phi)} = e^{j(\omega n+\phi)} e^{j(\omega N)} = e^{j(\omega n+\phi)} e^{j(\frac{2\pi k}{N}N)} = x_1[n] \checkmark$$



Note: x_1 is periodic with the (smaller) period of $\frac{N}{k}$ when $\frac{N}{k}$ is an integer

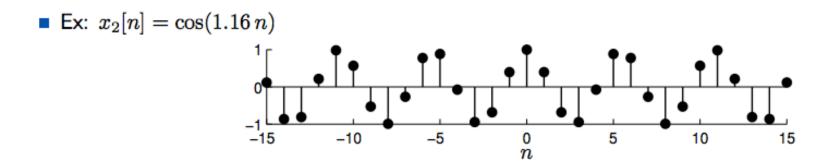
• Consider $x_2[n] = e^{j(\omega n + \phi)}$ with frequency $\omega \neq \frac{2\pi k}{N}$, $k, N \in \mathbb{Z}$ (not harmonic frequency)

- Consider $x_2[n] = e^{j(\omega n + \phi)}$ with frequency $\omega \neq \frac{2\pi k}{N}$, $k, N \in \mathbb{Z}$ (not harmonic frequency)
- Is x₂ periodic?

$$x_2[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n+\omega N+\phi)} = e^{j(\omega n+\phi)} e^{j(\omega N)} \neq x_1[n] \quad \text{NO!}$$

- Consider $x_2[n] = e^{j(\omega n + \phi)}$ with frequency $\omega \neq \frac{2\pi k}{N}$, $k, N \in \mathbb{Z}$ (not harmonic frequency)
- Is x₂ periodic?

$$x_2[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n+\omega N+\phi)} = e^{j(\omega n+\phi)} e^{j(\omega N)} \neq x_1[n] \quad \text{NO!}$$



If its frequency ω is not harmonic, then a sinusoid oscillates but is not periodic!

$e^{j(\omega n + \phi)}$

 Semi-amazing fact: The only periodic discrete-time sinusoids are those with harmonic frequencies

$$\omega = \frac{2\pi k}{N}, \quad k, N \in \mathbb{Z}$$

Which means that

- Most discrete-time sinusoids are not periodic!
- The harmonic sinusoids are somehow magical (they play a starring role later in the DFT)

 $\Box \cos(5/7\pi n)$

 $\Box \cos(\pi/5n)$

What are N and k? (I.e How many samples is one period?

Periodic or not?

$\Box \cos(5/7\pi n)$

- N=14, k=5
- $\cos(5/14*2\pi n)$
- Repeats every N=14 samples
- $\Box \cos(\pi/5n)$
 - N=10, k=1
 - $\cos(1/10*2\pi n)$
 - Repeats every N=10 samples

Periodic or not?

$\Box \cos(5/7\pi n)$

- N=14, k=5
- $\cos(5/14*2\pi n)$
- Repeats every N=14 samples
- $\Box \cos(\pi/5n)$
 - N=10, k=1
 - $\cos(1/10*2\pi n)$
 - Repeats every N=10 samples

$\Box \cos(5/7\pi n) + \cos(\pi/5n) ?$

- $\Box \cos(5/7\pi n) + \cos(\pi/5n)$?
 - $N=SCM\{10,14\}=70$
 - $\cos(5/7*\pi n) + \cos(\pi/5n)$
 - $n=N=70 \rightarrow \cos(5/7*70\pi) + \cos(\pi/5*70) = \cos(25*2\pi) + \cos(7*2\pi)$

Discrete-Time Systems

A discrete-time system \mathcal{H} is a transformation (a rule or formula) that maps a discrete-time input signal x into a discrete-time output signal y

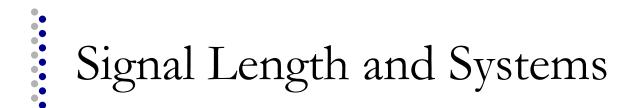
$$y = \mathcal{H}\{x\}$$

 $x \longrightarrow \mathcal{H} \longrightarrow y$

- Systems manipulate the information in signals
- **•** Examples:

DEFINITION

- A speech recognition system converts acoustic waves of speech into text
- A radar system transforms the received radar pulse to estimate the position and velocity of targets
- A fMRI system transforms measurements of electron spin into voxel-by-voxel estimates of brain activity
- A 30 day moving average smooths out the day-to-day variability in a stock price



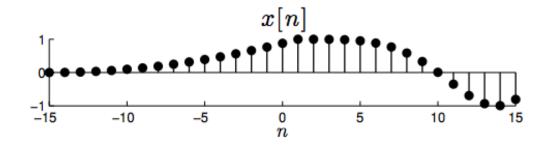
$$x \longrightarrow \mathcal{H} \longrightarrow y$$

Recall that there are two kinds of signals: infinite-length and finite-length

- Accordingly, we will consider two kinds of systems:
 - Systems that transform an infinite-length signal x into an infinite-length signal y
 - Systems that transform a length-N signal x into a length-N signal y
- For generality, we will assume that the input and output signals are complex valued

Identity	$y[n] = x[n] \forall n$
Scaling	$y[n] = 2x[n] \forall n$
Offset	$y[n] = x[n] + 2 \forall n$
Square signal	$y[n] = (x[n])^2 \forall n$
Shift	$y[n] = x[n+2] \forall n$
Decimate	$y[n] = x[2n] \forall n$
Square time	$y[n] = x[n^2] \forall n$

Penn ESE 531 Spring 2021 - Khanna



□ Shift system $(m \in \mathbb{Z} \text{ fixed})$

$$y[n] = x[n-m] \quad \forall n$$

□ Moving average (combines shift, sum, scale)

$$y[n] = rac{1}{2}(x[n] + x[n-1]) \quad orall n$$

Recursive average

$$y[n] = x[n] + \alpha \, y[n-1] \quad \forall n$$

Penn ESE 531 Spring 2021 - Khanna

System Properties

- Memoryless
- □ Linearity
- **Time Invariance**
- Causality
- BIBO Stability

$$x \longrightarrow \mathcal{H} \longrightarrow y$$

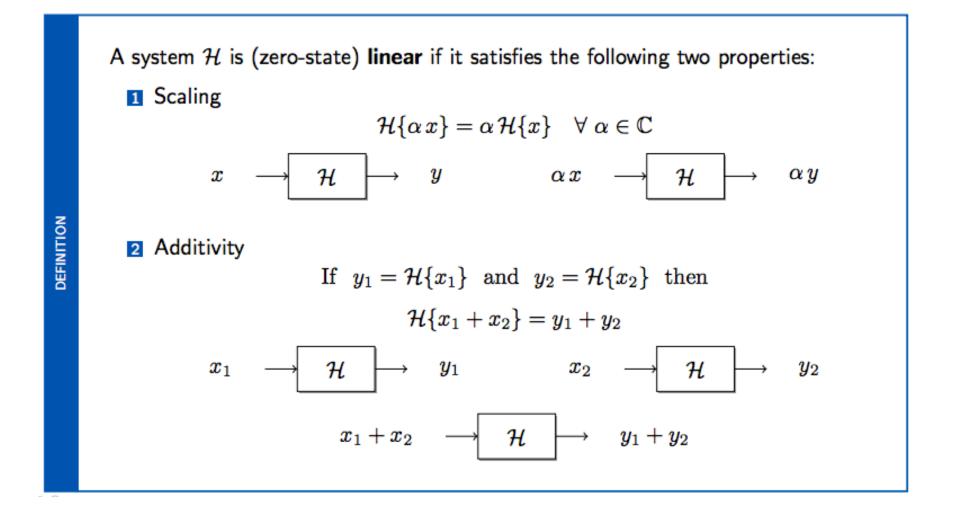
□ y[n] depends only on x[n]

- Examples:
- □ Ideal delay system (or shift system):
 - y[n]=x[n-m] memoryless?

□ Square system:

• $y[n] = (x[n])^2$ memoryless?

Penn ESE 531 Spring 2021 - Khanna

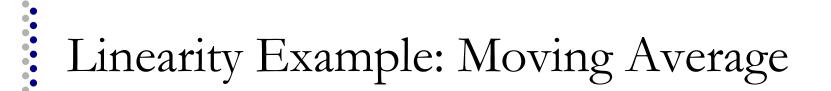


- A system that is not linear is called **nonlinear**
- To prove that a system is linear, you must prove rigorously that it has **both** the scaling and additive properties for **arbitrary** input signals
- **•** To prove that a system is nonlinear, it is sufficient to exhibit a **counterexample**

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- Scaling: (Strategy to prove Scale input x by α, compute output y via the formula at top and verify that is scaled as well)
 - Let

$$x'[n] = lpha x[n], \quad lpha \in \mathbb{C}$$



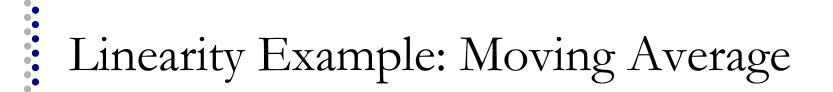
$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- Scaling: (Strategy to prove Scale input x by α, compute output y via the formula at top and verify that is scaled as well)
 - Let

$$x'[n] = \alpha x[n], \quad \alpha \in \mathbb{C}$$

- Let y' denote the output when x' is input
- Then

$$y'[n] = \frac{1}{2}(x'[n] + x'[n-1]) = \frac{1}{2}(\alpha x[n] + \alpha x[n-1]) = \alpha \left(\frac{1}{2}(x[n] + x[n-1])\right) = \alpha y[n] \checkmark$$



$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- □ Additive: (Strategy to prove Input two signals into the system and verify the output equals the sum of the respective outputs
 - Let

 $x'[n] = x_1[n] + x_2[n]$

Linearity Example: Moving Average

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- □ Additive: (Strategy to prove Input two signals into the system and verify the output equals the sum of the respective outputs
 - Let

$$x'[n] = x_1[n] + x_2[n]$$

- Let $y'/y_1/y_2$ denote the output when $x'/x_1/x_2$ is input
- Then

$$\begin{array}{lll} y'[n] &=& \displaystyle \frac{1}{2}(x'[n]+x'[n-1]) \;=\; \frac{1}{2}(\{x_1[n]+x_2[n]\}+\{x_1[n-1]+x_2[n-1]\}) \\ &=& \displaystyle \frac{1}{2}(x_1[n]+x_1[n-1])+\frac{1}{2}(x_2[n]+x_2[n-1]) \;=\; y_1[n]+y_2[n] \;\checkmark \end{array}$$

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = (x[n])^2$$

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = (x[n])^2$$

Additive: Input two signals into the system and see what happens

Let

$$y_1[n] = \left(x_1[n]
ight)^2, \qquad y_2[n] = \left(x_2[n]
ight)^2$$

Set

$$x'[n] = x_1[n] + x_2[n]$$

Then

$$y'[n] = (x'[n])^2 = (x_1[n] + x_2[n])^2 = (x_1[n])^2 + 2x_1[n]x_2[n] + (x_2[n])^2 \neq y_1[n] + y_2[n]$$

Time-Invariant Systems

DEFINITION

A system \mathcal{H} processing infinite-length signals is **time-invariant** (shift-invariant) if a time shift of the input signal creates a corresponding time shift in the output signal

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n]$$

 $x[n-q] \longrightarrow \mathcal{H} \longrightarrow y[n-q]$

- Intuition: A time-invariant system behaves the same no matter when the input is applied
- A system that is not time-invariant is called time-varying

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

□ Let

$$x'[n] = x[n-q], \quad q \in \mathbb{Z}$$

• Let y' denote the output when x' is input

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

□ Let

$$x'[n]=x[n-q],\quad q\in\mathbb{Z}$$

• Let y' denote the output when x' is input

Then

$$y'[n] = \frac{1}{2}(x'[n] + x'[n-1]) = \frac{1}{2}(x[n-q] + x[n-q-1]) = y[n-q] \checkmark$$

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = x[2n]$$

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = x[2n]$$

This system is time-varying; demonstrate with a counter-example

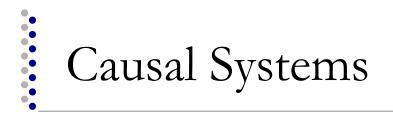
Let

$$x'[n] = x[n-1]$$

Let y' denote the output when x' is input (that is, $y' = \mathcal{H}\{x'\}$)

Then

$$y'[n] = x'[2n] = x[2n-1] \neq x[2(n-1)] = y[n-1]$$



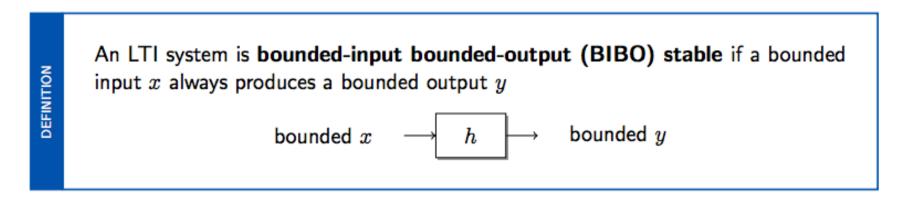
DEFINITION

A system \mathcal{H} is **causal** if the output y[n] at time n depends only the input x[m] for times $m \leq n$. In words, causal systems do not look into the future

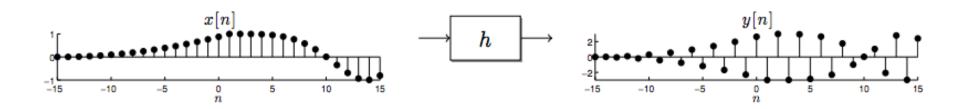
- Forward difference system:
 - y[n] = x[n+1] x[n] causal?
- Backward difference system:
 - y[n]=x[n]-x[n-1] causal?

BIBO Stability

Bounded-input bounded-output Stability



Bounded input and output means $||x||_{\infty} < \infty$ and $||y||_{\infty} < \infty$, or that there exist constants $A, C < \infty$ such that |x[n]| < A and |y[n]| < C for all n



Penn ESE 531 Spring 2021 - Khanna

System Properties - Summary

Causality

- y[n] only depends on x[m] for m<=n
- □ Linearity
 - Scaled sum of arbitrary inputs results in output that is a scaled sum of corresponding outputs
 - $Ax_1[n] + Bx_2[n] \rightarrow Ay_1[n] + By_2[n]$
- Memoryless
 - y[n] depends only on x[n]
- **Time Invariance**
 - Shifted input results in shifted output
 - $x[n-q] \rightarrow y[n-q]$
- BIBO Stability
 - A bounded input results in a bounded output (ie. max signal value exists for output if max)

Penn ESE 531 Spring 2017 - Khanna

- Discrete Time Signals
 - Unit impulse, unit step, exponential, sinusoids, complex sinusoids
 - Can be finite length, infinite length
 - Properties
 - Even, odd, causal
 - Periodicity and aliasing
 - Discrete frequency bounded!
- Discrete Time Systems
 - Transform one signal to another
 - Properties
 - Linear, Time-invariance, memoryless, causality, BIBO stability

$$y = \mathcal{H}\{x\}$$

 $x \longrightarrow \mathcal{H} \longrightarrow y$

- Regular office hours and recitation start this week
- New TA
 - Enri Kina Office hours TBD
- Enroll in Piazza site:
 - piazza.com/upenn/spring2021/ese531
- Complete Diagnostic Quiz by Sunday 1/31
 - Solutions posted after due date
- □ HW 0: Brush up on background and Matlab tutorial