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0 Discrete Time Signals
0 Signal Properties

0 Discrete Time Systems
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Discrete Time Signals
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Signals

z
Q
=
=
w
w
a

Q

Signal (n): A detectable physical quantity ...by which messages or information
can be transmitted (Merriam-Webster)

Signals carry information

Examples:

Speech signals transmit language via acoustic waves

Radar signals transmit the position and velocity of targets via electromagnetic
waves

Electrophysiology signals transmit information about processes inside the

body

Financial signals transmit information about events in the economy

0 Signal processing systems manipulate the information carried by signals
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Signals are Functions

A signal is a function that maps an independent variable to a dependent variable.

5
=
Z
T
w
o

0 Signal x[n]: each value of n produces the value x[n]

0 In this course we will focus on discrete-time signals:
= Independent variable is an integer: n € 7 (will refer to n as_time)

= Dependent variable is a real or complex number: X[n] € R

z[n]

“l*ll" n

-101234567
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A Menagerie of Signals

0  Google Share daily share price for 5 months

5
8

: 500

0

0 50 100 150

I

0 Temperature at Houston International Airport in 2013

40
0

£
8

0

50 100 150 200 250 300 350
n

0 Excerpt from a reading of Shakespeare’s Hanzlet
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Plotting Signals Correctly

0 In a discrete-time signal x[n], the independent variable » is discrete

a0 To plot a discrete-time signal in a program like Matlab, you should use
the stem or similar command and not the plot command

I%,.,L.,..,mrTTTTTTTm,,
R Y U0

-15 -10 -5 5 10 15

o Correct:

=0

0 Incorrect:
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Unit Sample

1 n=0

The delta function (aka unit impulse) §[n] = ,
0 otherwise

DEFINITION

1

.05
o

=15 =10 -5 5 10 15

0
n
0 The shifted delta function §[n-m] peaks up at n=m; here m=9

1

0.5

§[n — 9]

=15 =10 -5

So
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Unit Step

1 n>0
0 n<0

o O

-15 -10 -5 0 5 10 15
n

=
Q
=
=
T
i
Q

The unit step uln| = {

0 The shifted unit step u[n-m] jumps from O to 1 at n=m ; here, m=5

g a—L 1111

=15 =10 -5 5 10 15

u[n — 5]

0
n
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Unit Pulse

DEFINITION

0 n< Ar]_
The unit pulse (aka boxcar) pln]=<1 N, <n<N,
0 n>N,

Ex: p[n] for N =-5 and N, =3

One of many different formulas for the unit pulse
pln] = u[n — Ni] —u[n — (N2 +1)]

Penn ESE 531 Spring 2021 - Khanna
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Real Exponential

The real exponential r[n]=a",a€R, a>0

DEFINITION

0 For a>1, #[n] shrinks to the left and grows to the right; hete a=1.1

oq,;???fZTTTTITTTTTTTI[[

10 15

rn]

-15 -10
n

o For 0<a<]l, r{n] grows to the left and shrinks to the right; here ¢ =0.9

]HH”TTTTTT?Hnnnw

-15 -10 -5 0 5 10 15
n

r(n]
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Sinusoids

0 There are two natural real-value sinusoids:  cos(wn +¢) and sin(wn + ¢)
o Frequency: o (units: radians/sample)

0 Phase: ¢ (units: radians)

cojwn]

4?TTT$. Rtk Rt
RSN PO

So

sin[wn ]
p !
=
'
¢
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Sinusoid Examples

——————

Sz 2z ;.? e | o | o/ | ()
O sin|=n+— $TT4 ¢4 ¢ 1s *l e
(4 6) B u su : Lé ‘o u 115

——————

cos(tn)

111111
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Sinusoid in Matlab

0 It’s easy to play around in Matlab to get comfortable with the properties
of sinusoids

N=36;

n=0:N-1;
omega=pi/6;
phi=pi/4;
x=cos(omega*n+phi);
stem(n,x)
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Complex Sinusoid

0 The complex-value sinusoid combines both the cos and sin terms using

Euler’s identity:

e/ (“nt9) = cos(wn + ¢) + j sin(wn + ¢)

Penn ESE 531 Spring 2021 - Khanna

111, l,rh.

Re(e’“™) = cos(wn)

F‘ A A SRR 2 5 SRR 4 & S
03 LS § L S SRS 00

0 5 10 15
T

Im(e’“™) = sin(wn)

gl e
SR YP!

.

‘

-1
-15 -10 -5 0 5 10 15

T
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Complex Sinusoid as Helix

el @nt9) = cos(wn + @) + jsin(wn + @)

/"/
7
m A complex sinusoid is a helix in 3D space (Re{},Im{},n) \,\
e Real part (cos term) is the projection onto the Re{} axis \k\

e Imaginary part (sin term) is the projection onto the Im{} axis

m Frequency w determines rotation speed and direction of helix

e w > 0 = anticlockwise rotation
e w < 0 = clockwise rotation

Animation: https://upload.wikimedia.org/wikipedia/commons/4/41/Rising_circular.gif
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Negative Frequency?

0 Negative frequency is nothing to be afraid of!

Penn ESE 531 Spring 2021 - Khanna
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Negative Frequency

0 Negative frequency is nothing to be afraid of! Consider a sinusoid with a
negative frequency

el-wn — e=iwn — cog(—wn) + jsin(—wn) = cos(wn) — j sin(wn)
a AISO note: ej(—w)‘"v = e Jwn — (ejw'n.)"'

0 Takeaway: negating the frequency 1s equivalent to complex conjugating
a complex sinusoid—{lips the sign of the imaginary sin term

Re(e’“™) = cos(wn) Re(e~7¥™) = cogwn)
1
0 c
Zis r: -5 0 5 0 5 “is -’ -5 0 5 0 15
T T
Im(e’“™) = sin(wn) Im(e=7%™) = — sin(wn)

b2 SRR 4 6 SRR 4 6 SRR 41 h_[,m m rTr, Rk
15 RS0 SR Y P MY P!

15 -10 -5 0 3 10 15 - 5 10 15
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Phase of a Sinusoid

a0 ¢ is a (frequency independent) shift that is referenced to one period of
oscillation

41TTT7, olTte, et
B SR YV MR P4 N,

[ o111, 1111, 1119
D Y OV SN2 VU ¥ S

cos (%n o 0)

1

cos (§n — 7) 3
| T ette, oM, et
cos(%n—%)zsm(%n) ) Jt ‘ ;m* | *l_u¢

-15 -10 -5 0 5 10 15

cos (%n — 27r) = COS (%n)

41TTT?, RaiACH RalAcH
1 REIS0 AR YU P X

15 -10 -5 0 5 10 15
n
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Complex Exponentials

0 Complex sinusoid ei(wn+é) is of the form gPurely Imaginary Numbers

o Generalize to eC.enerz-).l Complex Numbers

Penn ESE 531 Spring 2021 - Khanna
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Complex Exponentials

a Complex sinusoid ej(w'n+c5) 1s of the form ePurely Imaginary Numbers
o Generalize to eGeneral Complex Numbers

0  Consider the general complex number 2z = |z|e’%, z € C

e |z| = magnitude of z
e w= /(z), phase angle of z
e Can visualize z € C as a point in the complex plane

Penn ESE 531 Spring 2021 - Khanna
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Complex Exponentials

Qa Complex sinusoid ej(w'n-’reb) 1s of the form 6Pur(—:ly Imaginary Numbers
o Generalize to 6General Complex Numbers

0  Consider the general complex number 2z = |z|e’%, z € C

e |z| = magnitude of z
e w= /(z), phase angle of z
e Can visualize z € C as a point in the complex plane

0 Now we have
2 = (|z|6jw)n — Izl-n(ejw)n — |Z|n€‘7wn

o |2|" is a real exponential (a” witha=1=]) = |[[lI111s

fwn ° . . 0 TTT?T????QQ.QQQ......
e ¢’“™ is a complex sinusoid S 0 s 0o s w1

Penn ESE 531 Spring 2021 - Khanna
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Complex Exponentials

2" = (|Z| ejwn)" — |z|n 6jwn

O |z|* is a real exponential envelope (a™ with a = |2|)

o e“" isacomplex sinusoid

2| <1 1z| > 1
Re(z"), |z| <1 Re(z"), |z| > 1
- 2 LX) et ._T
_WW _W Q“‘C C‘ll
- . . . . . ; > . . . . . ;
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
n n
Im(z7), |z| <1 Im(2z7), |z| > 1
4 . 2{ a®e .9?9,“‘,TT7,1
0 . . . o200, 08000440 - U
oo
-2 u* -4 1 1 ' 1
-15 -10 -5 0 5 10 5 -15 -10 -5 0 5 0 15
n n

Bounded Unbounded
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Digital Signals

o Digital signals are a special subclass of discrete-time signals

= Independent variable is still an integer: n € Z

= Dependent variable is from a finite set of integers: z[n] € {0,1,...,D — 1}

= Typically, choose D=27and represent each possible level of x/#/ as a digital code with ¢
bits

= Ex. Digital signal with g=2 bits --> D=4 levels

St

00090
-10 0 5 10 15
n

_‘O
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Signal Properties
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Finite/Infinite Length Sequences

0 An infinite-length discrete-time signal x[n] is defined for all integers —00 < n < o

;{,‘,‘u.,mmﬂﬂﬁm.‘l

o A finite-length discrete-time signal x[n] is defined only for a finite range of Ny = n = N,

%.n??TTTT””TTTh,‘l

0 Important: a finite-length signal is undefined for n < N; and n > N,

Penn ESE 531 Spring 2021 - Khanna
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Windowing

0 Windowing converts a longer signal into a shorter one

yln] = {x[n] N <n< N,

0 otherwise
1 z[n]
%4444411QQ’YTTTTTTTTTTTT?.
| AMARSEIINS R L)Y

0 Generally, we define a window signal, w[n], with some finite length and multiply to
implement the windowing: y[n]=w[n]*x[n]
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Z.ero Padding

o Converts a shorter signal nto a larger one

0 Say x[n] is defined for N; < n < N,

(0 No<n< N
yln]=<z[n] Ny <n<N
0 No <n < N3

a leen NO S N1 S NZ S N3

*ﬁ““.‘“"f””””””"f% e
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Periodic Signals

A discrete-time signal is periodic if it repeats with period N € Z:

8
=
z
'8
w
o

zn+mN]|=z[n] VYmelZ

-15 -10 -5 10 20

Notes: n >

m The period N must be an integer
m A periodic signal is infinite in length

& %rTmeﬂhngfTThTf,meTL,?TmTf

A discrete-time signal is aperiodic if it is not periodic

DEFINITION

Penn ESE 531 Spring 2021 - Khanna
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Periodization

0 Converts a finite-length signal into an infinite-length, periodic signal
0 Given finite-length x[n], replicate x[n] periodically with period N

Z zln —mN|, neZ

m=—0oo

y[n]

= ---+z[n+2N|+z[n+ N]+z[n|+z[n — N|+z[n —2N] +---

y(n] with period N = 8
9 ® ® ®

3K ) ol 2K ) 3K ol
2 ol [|e o[l eof||®e eo|||® |||

e[l [Te ol 1 e ol L Te ol [Te 2l1][Te

-15 -10 -5 0 5 10 15 20
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Causal Signals

A signal z[n| is causal if z[n| =0 for all n < 0.

DEFINITION

:ga£““““““‘ITTTTITTTTLT???L

-10 -5 0
n

0 A signal x[n] is anti-causal if x[n] =0 foralln = 0

:§°§rf7rTTTTITTT[,,,,,,,,,,,,,,,,

-10 - 0 5 10 15
n

0 A signal x[n] i1s acausal if it is not causal
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Even Signals

A real signal z[n] is even if z[—n| = z[n|

DEFINITION

0 Even signals are symmetrical around the pointn = 0
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Odd Signals

5
A real signal z[n] is odd if z[—n] = —z[n]
a
= MQ????TTTTTTT
5 llll£6*“
_0_5115“1 10 Tol é 110 1‘5

0 Odd signals are anti-symmetrical around the pointn = 0
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Signal Decomposition

0 Useful fact: Every signal x[n] can be decomposed into the sum of its even part
and its odd part

Even part:  e[n] = 5 (z[n] + z[—n]) (easy to verify that e[n] is even)
Odd part:  o[n] = 3 (z[n] — z[—n]) (easy to verify that o[n] is odd)

Decomposition z([n| = e[n]| + o[n]

Penn ESE 531 Spring 2021 - Khanna
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Signal Decomposition

0 Useful fact: Every signal x[n] can be decomposed into the sum of its even part
and its odd part

Even part:  e[n] = 5 (z[n] + z[—n]) (easy to verify that e[n] is even)
Odd part:  o[n] = 3 (z[n] — z[—n)) (easy to verify that o[n] is odd)
Decomposition z[n| = e[n| + o[n]

Verify the decomposition:

eln] +oln] = 3 (zln] +al-n]) +  (aln]  al-n]
= 2 (el +z[~n] + aln] - af-n]
= - (Qaln]) =aln] v
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: Decomposition Example

——————



: Decomposition Example

X[n] :i_.mTTTTmHmmHHHHH

-15 -5

e [T e

c-

% [u]



: Decomposition Example

______

= g

i R i

(LD - I, ) ot

-3 )
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: Decomposition Example

X[n] X[-n] =e[n]
(Lo + Q) = S
=o+[n]

%(-:L.,,ITnnnﬁ%’ﬁnmmm - mmmmﬂmimm) - et

5 0
v
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: Decomposition Example

A[n] X[-n] =e[n]=e[-n]
%(-1,.,,3,mmﬁﬁhmnmnu o I, ) - S,
=o[n]:-o[-n]

o] ol

Lo IITITATATAT
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Discrete-Time Sinusoids

0 Discrete-time sinusoids gj(wn+¢) have two counterintuitive properties

0 Both involve the frequency w

0 Property #1: Aliasing

0 Property #2: Aperiodicity

Penn ESE 531 Spring 2021 - Khanna
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Property #1: Aliasing of Sinusoids

0 Consider two sinusoids with two different frequencies

w = z[n] =/t

w+ 2w = T2 [TL] — e.j((w+2:)n+c>)

0 But note that

(wH2m)n+¢) _ 6j(wn+¢)+j27rn — 6j(wn+c5) ej'Z'rr'n — 6j(wn+¢)) — $1[TL]

zo[n] = &’
0 The signals x; and x, have different frequencies but are identical!

0 We say that x; and x, are aliases; this phenomenon is called aliasing

0 Note: Any integer multiple of 2 will do; try with  z3[n] = el((w+2rmin+é) m ¢ 7,

Penn ESE 531 Spring 2021 - Khanna

42



Aliasing Example

ﬁn)

%TTTTT, Rl TR AL
SNC )P C MG 3 U MO

15 ~10 -5 0 5 10 15
T

z1[n] = cos (

Za[n] = cos (£2%n) = cos (( + 2m)n)

47TTT?, R TR AL
T I

15 ~10 -5 0 5 10 15
T
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Aliasing Example

z1[n] = cos (£n)
| N\

B Hmwﬂﬂ 1711 \ﬁmnnnw n

T/ \

Ly
S

& & & b
e
V\
T
U\

u | 000 J\ﬁ\U/J APEREENE \j\w/h/t

za[n] = cos (£=n) = cos ((§ + 2m)n)
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Alias-Free Frequencies

O Since

IE'}['N,] — ej(w+27rm)'u+cb) — 6j(wn—+-¢’) — 1171[7?/] VYm e Z

0 the only frequencies that lead to unique (distinct) sinusoids lie in an interval of
length 27

0 Two intervals are typically used in the signal processing literature (and in this
course)

O0<w< 2

T< W

Penn ESE 531 Spring 2021 - Khanna
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Which 1s higher in frequency?

a cos(nn) or cos(3n/2n) ?

Penn ESE 531 Spring 2021 - Khanna
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Low and High Frequencies

0 Low frequencies: w close to 0 or 2n radians

| ,?TTTTTTT?, .
TSN Ca— P

-15 -10 -5 0 5 10 15
n

0 High frequencies: w close to n or —n radians

Ex: cos (%n)

Ex: cos (%n)

;{TTTT.,TTT,.rTTr,
e le® ol 0] ®

5 10 15

15 ~10 -5 0
T
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Property #2: Periodicity of Sinusoids

m Consider z;[n] = €/(“"+9) with frequency w = 2%, k, N € Z (harmonic frequency)

Penn ESE 531 Spring 2021 - Khanna
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Property #2: Periodicity of Sinusoids

m Consider z;[n] = e/“"*%) with frequency w = @ k, N € Z (harmonic frequency)

m It is easy to show that z; is periodic with period N, since

a:l[n + N] — ej(w(n-}-N)+¢) _ ej(wn-:»-wN-'f-(;',) _ ej(wn+q’)) ej(wN) _ ej(w.n—i.»-qb) ey(%T*N) _ 1121[?’1,] v

m Ex: z1[n] = cos(¥2n), N =16
; Jr e, ol Jt
B RS LS RS |

-15 -10 -5

AT
LRI

5 10 15

0
n

m Note: z; is periodic with the (smaller) period of & when £ is an integer
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Aperiodicity of Sinusoids

= Consider z[n] = ¢/(“") with frequency w # 2Z&,

Penn ESE 531 Spring 2021 - Khanna

k, N € Z (not harmonic frequency)
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Aperiodicity of Sinusoids

= Consider z5[n] = ¢/ (") with frequency w # 2%, k, N € Z (not harmonic frequency)

m s x5 periodic?

(EQ[TL + N] — ej(w(-n—f-N)-i-Cf’) — 6.’i(w'n—+-wN+¢5) — ej(wn—f—c')) ej(wN) ;é 11!1[7’2,] NO!
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51



Aperiodicity of Sinusoids

= Consider z5[n] = /(") with frequency w # 2%, k, N € Z (not harmonic frequency)

m s x5 periodic?

1172[7?, + N] — ej(w(n—+—N)+¢’) — ej(wn+w1\"+05) — 6j(wn—+-(z'>) ej(wN) ;é xl[n] NO!

m Ex: z3[n] = cos(1.16n)

%l RE 2 A SR C N A S 2 P
PSS s O I

-15 ~10 -5 5 10

0
n

m If its frequency w is not harmonic, then a sinusoid oscillates but is not periodic!
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Harmonic Sinusoids

oJ (wn+9)

m Semi-amazing fact: The only periodic discrete-time sinusoids are those with

harmonic frequencies

2k
=—, kNe€eZ
W N €

m Which means that

e Most discrete-time sinusoids are not periodic!

e The harmonic sinusoids are somehow magical (they play a starring role later in the DFT)

Penn ESE 531 Spring 2021 - Khanna
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Periodic or not?

a cos(5/7nn)

0 cos(n/5n)

0 What are N and k? (I.e How many samples is one
period?
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Periodic or not?

a cos(5/7nn)

= N=14, k=5

» cos(5/14*2nn)

= Repeats every N=14 samples
0 cos(n/5n)

= N=10, k=1

s cos(1/10*2nn)

= Repeats every N=10 samples
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Periodic or not?

a cos(5/7nn)

= N=14, k=5

» cos(5/14*2nn)

= Repeats every N=14 samples
0 cos(n/5n)

= N=10, k=1

s cos(1/10*2nn)

= Repeats every N=10 samples

a cos(5/7nn)+cos(n/5n) ?
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Periodic or not?

0 cos(5/7nn)+cos(n/5n) ?
« N=SCM{10,14}=70
s cos(5/7*nn)+cos(n/5n)
= n=N=702>cos(5/7*70m)+cos(n/5*¥70)=cos(25*2n)+cos(7*2x)
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Discrete-Time Systems
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Discrete Time Systems

A discrete-time system 7 is a transformation (a rule or formula) that maps a
discrete-time input signal z into a discrete-time output signal y

y = H{z}

DEFINITION

0 Systems manipulate the information in signals

0 Examples:
= A speech recognition system converts acoustic waves of speech into text
= A radar system transforms the received radar pulse to estimate the position and velocity of targets
= A fMRI system transforms measurements of electron spin into voxel-by-voxel estimates of brain
activity

= A 30 day moving average smooths out the day-to-day variability in a stock price
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Signal Length and Systems

0 Recall that there are two kinds of signals: infinite-length and finite-length

a0 Accordingly, we will consider two kinds of systems:
= Systems that transform an infinite-length signal x into an infinite-length signal y

= Systems that transform a length-N signal x into a length-N signal y

0 For generality, we will assume that the input and output signals are
complex valued
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System Examples

|dentity

Scaling

Offset

Square signal

Shift

Decimate

Square time
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yln] = z[n] Vn
yln] = 2z[n] Vn
yln] =z[n]+2 Vn
yln] = (z[n])* Vn
yln] =z[n+2] Vn
yln] = z[2n] Vn

y[n] = z[n?] Vn
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System Examples

z[n]

4,,,4,;3o9??TTTTTTTTTTTT?,
. . Y

-15 -10 -5

a  Shift system (m € Z fixed)
yln) =z[n—m] Vn

0 Moving average (combines shift, sum, scale)
1
y[n] = Q(m[n] +zn—-1]) Vn
0 Recursive average

y[n| =z[n|+ayn—1 Vn

Penn ESE 531 Spring 2021 - Khanna
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System Properties

Memoryless

Linearity

Causality

0
0

0 Time Invariance
0

a BIBO Stability
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Memoryless

Tr — ’H —— Y

0 y[n] depends only on x|n]

0 Examples:

0 Ideal delay system (or shift system):

= y[n]=x[n-m] memorylesss

0 Square system:

n y[n]=(x[n])*> memoryless?

Penn ESE 531 Spring 2021 - Khanna
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Linear Systems

H{az} =aH{z} VaecC

If y =H{z1} and y, = H{zy} then

Y

G

— H

H{z1+z2} =v1 + 2

K Scaling
7 . H -
5 L
% B Additivity
8
T — H —
T+ Ty

n

L2

 —

-

— H

Y1+ Y2

A system 7 is (zero-state) linear if it satisfies the following two properties:

ay

Y2
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Proving Linearity

0 A system that is not linear is called nonlinear

0 To prove that a system is linear, you must prove rigorously that it has both the
scaling and additive properties for arbitrary input signals

0 To prove that a system 1s nonlinear, it is sufficient to exhibit a counterexample

Penn ESE 531 Spring 2021 - Khanna
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Linearity Example: Moving Average

zln] — #H [ yln] = 5(zln] + 2 - 1))

0 Scaling: (Strategy to prove — Scale input x by «, compute output y via the formula
at top and verify that 1s scaled as well)

(] Let

z'ln] = azn], a€C
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Linearity Example: Moving Average

zln] — #H [ yln] = 5(zln] + 2 - 1))

0 Scaling: (Strategy to prove — Scale input x by «, compute output y via the formula
at top and verify that 1s scaled as well)

(] Let

z'ln] = azn], a€C

= Lety denote the output when x’ is input

m Then

y'[n] = %(m'[n]—k:z:'[n—l]) = %(aw[n]+a:r,[n—1]) = a(%(z[n]+x[n—1])> = ayln] v
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Linearity Example: Moving Average

zn] — H | yln] = 3(z[n] +2n - 1))

0 Additive: (Strategy to prove — Input two signals into the system and verify the
output equals the sum of the respective outputs

= Let
z'[n] = z1[n] + z2[n]
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Linearity Example: Moving Average

zn] — H | yln] = 3(z[n] +2n - 1))

0 Additive: (Strategy to prove — Input two signals into the system and verify the
output equals the sum of the respective outputs

m  Let
z'[n] = z1[n] +z2n]

= Lety’/yy/y, denote the output when x’/x;/x, is input

m Then

y'ln] = S@[n+2'n-1]) = %({wx[nl+wz[nl}+{$1[n— 1] +z2[n —1]})

[Nl el R

(:vl[n]+:1:1[n—1])+%(:z:g[n]—i-:vg[n—l]) = wiln] +y2ln] v
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Example: Squaring

zln] — H

— y[n] = (z[n])’
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Example: Squaring 1s Nonlinear

zln] — H [ yln] = (z[n])’

0 Additive: Input two signals into the system and see what happens

s Let
yiln] = (@1[n))*,  y2[n] = (22[n])”
= Set
z'[n] = z1[n] + z2[n]
= Then
y[n] = (&))" = (@n]+om)? = (@1[n)® + 21 [n)zaln] + (22[0))* # yiln] + yeln]
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Time-Invariant Systems

A system # processing infinite-length signals is time-invariant (shift-invariant) if
a time shift of the input signal creates a corresponding time shift in the output
signal

8
=
=
r
(@]

zn] — H [— yln

zn—q] — H — yln—gdq

0 Intuition: A time-invariant system behaves the same no matter when the input is
applied

0 A system that is not time-invariant is called time-varying
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Example: Moving Average

zln] — H [ yln]

3 (z[n] + z[n — 1])

o lLet
2l =slh—q, geZ

0 Lety denote the output when x’ 1s input
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Example: Moving Average

zln] — H | yln] = 5(z[n] + z[n — 1))

o lLet
] =zln—q), g€z

0 Lety denote the output when x’ 1s input

o Then

VInl = 3@k +eln-1) = j@h-d+aln-g-1) = yh—q v
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Example: Decimation

— y[n] = z[2n]
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Example: Decimation

zn] — H

—— y[n] = z[2n]

m This system is time-varying; demonstrate with a counter-example

m Let

z'[n] = z[n — 1]

m Let y’ denote the output when 2’ is input (that is, ¥/ = H{z'})

m [hen

y[n] = /2] = of2n—1] # o[2(n—1)]
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Causal Systems

A system H is causal if the output y[n] at time n depends only the input z[m] for
times m < n. In words, causal systems do not look into the future

8
E
Z
T
i
o

a Forward difference system:

= y[n]=x[n+1]-x[n] causal’

a Backward difference system:

= y[n]=x[n]-x[n-1] causal’
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Stability

0 BIBO Stability

= Bounded-input bounded-output Stability

An LTI system is bounded-input bounded-output (BIBO) stable if a bounded
input = always produces a bounded output y

DEFINITION

bounded z

o

h

—  bounded y

m Bounded input and output means ||z/|. < o0 and ||yl < oo,
or that there exist constants A,C < oo such that |z[n]| < A and |y[n]| < C for all n

444443139???TTTTTTTTTTTT?’
| A 01

15 10 5 0 B 10
n
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System Properties - Summary

a0 Causality
= y[n] only depends on x[m]| for m<=n
0 Linearity

= Scaled sum of arbitrary inputs results in output that 1s a scaled sum of
corresponding outputs

= Axy[n]+Bxy[n] > Ay,[n]+By;[n]
a Memoryless
= y[n] depends only on x|n]
0 Time Invariance
= Shifted input results in shifted output
= x[n-q] 2 y[n-q]
o BIBO Stability

= A bounded input results in a bounded output (te. max signal value
exists for output 1f max )
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Big Ideas

0 Discrete Time Signals

= Unit impulse, unit step, exponential, sinusoids, complex
sinusoids

= Can be finite length, infinite length

= Properties
= Even, odd, causal
= Periodicity and aliasing

Discrete frequency bounded!

0 Discrete Time Systems

= Transform one signal to another

= Properties

= Linear, Time-invariance, memoryless, causality, BIBO stability
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Admin

0 Regular office hours and recitation start this week

a0 New TA
s Enri Kina — Office hours TBD

0 Enroll in Piazza site:

= piazza.com/upenn/spring2021/ese531
a0 Complete Diagnostic Quiz by Sunday 1/31

= Solutions posted after due date

o HW 0: Brush up on background and Matlab tutorial
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