ESE 531: Digital Signal Processing

Week 11
Lecture 20: March 24, 2021
Optimal Filter Design
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Optimal Filter Design

2 Window method
= Design Filters heuristically using windowed sinc functions
s Choose order and window type

s Check DTFT to see if filter specs are met
a0 Optimal design
s Design a filter h[n] with H(e)

s Approximate Hy(e’®) with some optimality criteria - or
satisfies specs.
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Mathematical Optimization

(mathematical) optimization problem

minimize  fo(z)
subject to  fi(z) <b;, i=1,...,m

e xr = (x1,...,%,): optimization variables
e fo: R"™ — R: objective function
e fi:R" >R, i=1,...,m: constraint functions

optimal solution z* has smallest value of f; among all vectors that
satisfy the constraints
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Solving Optimization Problems

general optimization problem

e very difficult to solve

e methods involve some compromise, e.g., very long computation time, or
not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

e |east-squares problems
e linear programming problems

e convex optimization problems
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Least-Squares Optimization

minimize ||Az — b3

solving least-squares problems

e analytical solution: z* = (AT A)~1ATb

e reliable and efficient algorithms and software

e computation time proportional to n?k (A € ka"’); less if structured

e a mature technology

using least-squares

e |least-squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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Linear Programming

minimize c¢lz

subject to alz <b;, i=1,...,m
solving linear programs
e no analytical formula for solution
e reliable and efficient algorithms and software

e computation time proportional to n?m if m > n; less with structure

e a mature technology

using linear programming
e not as easy to recognize as least-squares problems

e a few standard tricks used to convert problems into linear programs
(e.g., problems involving #1- or £..-norms, piecewise-linear functions)
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Convex Optimization

minimize  fo()
subject to f;(x) <b;, i=1,...,m

e objective and constraint functions are convex:

filax + By) < afi(z) + Bfi(y)
fa+8=1a>0 08>0

e includes least-squares problems and linear programs as special cases
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Optimality — Least Squares

A Hd(ejw)

W W T

0 Least Squares:
minimize / |H(e?) — Hy(e?¥)|*dw
wEcare

0 Variation: Weighted Least Squares:

(9
minimize W (w)|H (e?) — Hyg(e’)|?dw
—T
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Design Through Optimization

0 Idea: Sample/discretize the frequency response
H(e?“) = H(e“F)

0 Sample points are fixed — w;, = k;r_)

< w < <wp <

a0 M+1 is the filter order
a P>>M + 1 (rule of thumb P=15M)

0 Yields a (good) approximation of the original
problem
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Example: Least Squares

a Target: Design M+1= 2N+1 filter

0 First design non-causal H (ej “)and hence hn]
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Example: Least Squares

0 Target: Design M+1= 2N+1 filter

0 First design non-causal H (e’¥)and hence h[n]
0 Then, shift to make causal

hin] = hin — M/2]

H(e)=e™ ﬁ(ej‘*’)
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Example: Least Squares

h= [ﬁ[_N], h[—N +1],- - ,B[N]]T

b= [Ha(e), -, Ha( ")

A=

i e_jwl(_N)

e_jwf;(_N)

]T
e—Jwi(+N)

e_ij (+N)

argmin; || Ah — b||?
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Least-Squares

argmin; ||Ah — b||?

Solution:

h=(A*A)"1A%b

0 Result will generally be non-symmetric and complex
valued.

0 However, if f (e7%) is teal, j[p] should have
symmetry!
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Design of Linear-Phase L.P Filter

QO Suppose:
= H (&%) is real-symmetric
= Miseven (M+1 length)
a Then:
= h[n] is real-symmetric around midpoint

a So:

H(e’) = h[0] + h[1]e™7 + h[-1]e*7
+h[2e % 4 h[—2]eTI%. ..
= h[0] + 2 cos(w)h[1] 4+ 2 cos(2w)h[2] + - - -
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Least-Squares Linear Phase Filter
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Capital P
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Least-Squares Linear Phase Filter

Given M, wp, ws find the best LS filter:

= [0, -+ B |7 = (A%4) A%

-

j&+ n]
h[—n]

n >0
n <0

h[n] = hjn — M/2]
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Extension:

0 LS has no preference for pass band or stop band

0 Use weighting of LS to change ratio

want to solve the discrete version of:

minimize W (w)|H(e?%) — Hy(e’)|*dw

where W(w) is dp in the pass band and s in stop band

Similarly: W(w) is 1 in the pass band and dp/ds in stop band
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Weighted Least-Squares

argmin;, (Ahy — b)*W?(Ah, — b)
Solution:
hy = (A*W2A)71W2A4%b

-1 0 -

S
||
S

0

S
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Optimality — min-max

0 Chebychev Design (min-max)
minimize,ccare max |H(e?¥) — Hy(e?*)

s Parks-McClellan algorithm - equiripple
= Also known as Remez exchange algorithms (signal.remez)

= Can also use convex optimization

Penn ESE 531 Spring 2021 — Khanna
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Parks-McClellan

a Allows for multiple pass- and stop-bands.

a Is an equi-ripple design in the pass- and stop-bands,

but allows independent weighting of the ripple in
each band.

0 Allows specification of the band edges.

Penn ESE 531 Spring 2021 - Khanna
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Parks-McClellan: L.P Filter

1+0;

1-0'1

equi-ripple transition
pass-band stop-band
/ equi-ripple
_________________ ——— ¥
> w
D Dy z

0 For the low-pass filter shown above the specifications are

1-6, < H(e¥) < 146
—0y < H(C‘lw) < 09

Penn ESE 531 Spring 2021 - Khanna

in the pass-band 0 < w < w,
in the stop-band w, < w < 7.
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Parks-McClellan: L.P Filter

0 Need to determine M+1 (length of the filter) and
the filter coefficients {h_}

Penn ESE 531 Spring 2021 - Khanna
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Parks-McClellan: L.P Filter

0 Need to determine M+1 (length of the filter) and
the filter coefficients {h_}

a If we assume M even and even symmetry FIR filter

(Type I), then

L
A, (e!?) = h,[0] + Z 2h,[n]cos(wn).

n=1

H(eja)) _ Ae(ejw)e—jwM/Z.

Penn ESE 531 Spring 2021 - Khanna
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Parks-McClellan: L.P Filter

0 Reformulate

L
A, (e/?) = h,[0] + Zzhe [n] cos(wn).

n=1

0 To fitting a polynomial
L

Ac?) =) ar(cosw)".

k=0

L

] k
Ao (e?”) = P(X)|x=cos w-: P(x) = Zakx '

k=0

Penn ESE 531 Spring 2021 - Khanna
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Parks-McClellan: L.P Filter

0 Define approximation error function

E(w) = W(w)[Hy(e’”) — A.(e!)],

d2/01 in the pass-band
W(e“) =<1 in the stop-band

0 in the transition band.

Penn ESE 531 Spring 2021 - Khanna
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Parks-McClellan: L.P Filter

0 Define approximation error function

E(w) = W(w)[Hg(e’”) — A.(e!)],

a0 Apply min-max or Chebyshev criteria

min (max|E(w)|).
th,|n]:0<n<L} \ weF

Penn ESE 531 Spring 2021 - Khanna
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Min-Max Filter Design

0 Constraints:

= min-max pass-band ripple

1 =6, <[H (™) <146,

= min-max stop-band ripple

H(e?)] < 45,

Penn ESE 531 Spring 2021 — Khanna
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Min-Max Ripple Design

~

o Given 0, g, M, find o, hy

1+c§s
1 —
f=9

minimize ) \ 6\

Subject to : J
1 -0 <HE) <146 0<wp <wp
—6 < H(e?“*) < 6 ws <wp <
0>0

0 Formulation is a linear program with solution 8, A n

a0 A well studied class of problems with good solvers
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Min-Max Ripple via LP

minimize 0
subject to :
1—6=<Ayhy <1496
5= Ahy <6
0> 0

ll 2cos(wy) - 2COS(‘¥I<-U1)‘|

1 2cos(wp) -+ 2cos(Hw,)

1 2cos(ws) -+ 2cos(Yws) .
A, = : capital P
1 2cos(wp) --- 2008(%&)1”)
Penn ESE 531 Spring 2021 — Khanna
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Parks-McClellan

0 The method 1s based on reformulating the problem
as one in polynomial approximation, using

Chebyshev polynomials
| L
A, (e!?) = Z ax (cos w)*,
k=0
L
A.(e’”) = P(X)|x=cos - P(x) = Zakxk-
k=0

Penn ESE 531 Spring 2021 - Khanna
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Parks-McClellan — Alternation Theorem

0 The algorithm uses Chebyshev’s alternation theorem
to recognize the optimal solution.

Define the error F(z) as above, namely
E(e*) =W(e¥) (Ha(e*) — H(e¥))
and the maximum error as
IE(e“)]lo0 = argmax,ecq |E()]
A necessary and sufficient condition that H(e'“) is the unique Lth-order
polynomial minimizing |E(e'“)||« is that E(e'“) exhibit at least L + 2
extremal frequencies, or “alternations”, that is there must exist at least L+2

values of w, wy € Q, k =1[0,1,..., L+ 1], such that wyp < w1 < ... < wry1,
and such that

E(e) = —E(e“*) = £ (| E(¢")llx) -

Penn ESE 531 Spring 2021 - Khanna
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Parks-McClellan — Alternation Theorem

A H(ejd)| - - M+1=17-> L=8
s _ fansition - Must exhibit at least 10
LXK A points of alternation to be
1-5 7 Vi optimal
pass-band stop-band
i /\/S alternation frequencies
N D S
2 \ / /
0 Dy &)s T > @
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Alternation Theorem Example — 5% order

Py (x)

Penn ESE 531 Spring 2021 - Khanna
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Parks—McClellan algorithm

Penn ESE 531 Spring 2021 - Khanna

Initial guess of
(L + 2) extremal frequencies

Changed

>
>

Y

Calculate the optimum
6 on extremal set

Interpolate through (L + 1)
points to obtain A,(e/”)

Calculate error E(w)
and find local maxima
where |[E(w)l =6

!

More than
(L+2)
extrema?

No

Yes

Retain (L +2)
largest
extrema

<
<

Y

Check whether the
extremal points changed

Unchanged

Best approximation
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MATLAB Parks-McClellan Function

Qb

= firpm(M,F,A,W)

b is the array of filter coetficients (impulse response)

M is the filter order (M+1 is the length of the filter),

F 1s a vector of band edge frequencies in ascending order
A is a set of filter gains at the band edges

W is an optional set of relative weights to be applied to
cach of the bands

Penn ESE 531 Spring 2021 - Khanna
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MATLAB Parks-McClellan Function

A Hy(e’®)
1 pass
pass
0.7
stop stop stop
>m
0 W1 ()] w3 W4 W5 g W7 Wg T
transition transition transition transition
F=1[0 w wy ws wqg ws wg wr wg 1]
A=[001 1 0 0 07 07 0 0]

Ww=1[101 10 1 10]

Penn ESE 531 Spring 2021 - Khanna 36



MATLAB Example

0 Design a 33 length PM band-pass filter and weight the stop-
band ripple 10x more than the pass-band ripple

\ Hy(e’?)

.

10|-———————————————

pass

stop

stop

0 0.2n 0.4n
transition

0.7m
transition

>m
0.857 T

h=firpm(32,[0 0.2 0.4 0.7 0.85 1],[0 0 10 10 O 0],[10 1 101)

freqz(h,1)

Penn ESE 531 Spring 2021 - Khanna
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MATLAB Example

)
)
\
!
I
|
‘

o Des ) ) ) ' op-
50
ban _
g 0 el ™~
o / \m
3
€ L AVAVAYA! IAYAYS
© vV ' ]V V0
=
-100
0.2 0.4 0.6 0.8 1
Normalized Frequency (xm rad/sample)
1000
@ 500
g \I\J\I\I\’
o 0 ~
[4H)
©
:‘,,-; -500 \\
©
& -1000 \\\[\]\]\f\
h=firp 5% 0.2 0.4 0.6 0.8 ;110D
‘_freqz (] Normalized Frequency (xn rad/sample)
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Optimality — Least Squares

A Hd(ejw)

W W
0 Least Squares:

minimize / |H(e?) — Hy(e?¥)|*dw
weEcare

0 Parks-McClellan

min (max |E(a))|),
{he[n]:0<n<L} \ weF
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Example of Complex Filter

a0 Larson et. al, “Multiband Excitation Pulses for Hyperpolarized 13C
Dynamic Chemical Shift Imaging” JMR 2008;194(1):121-127

0 Need to design length 11 filter with following frequency response:

1

| A

).500 0 500

Penn ESE 531 Spring 2021 — Khanna
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Convex Optimization

a0 Many tools and Solvers

0 Tools:
s CVX (Matlab) http://cvxr.com/cvx/
= CVXOPT, CVXMOD (Python)
0 Engines:
= Sedumi (Free)
= MOSEK (commercial)

Penn ESE 531 Spring 2021 — Khanna
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http://cvxr.com/cvx/

Using CVX (in Matlab)

M= 16;

wp = 0.5%pi;

ws = 0.6%pi;

MM = 15*M;

w = linspace(0,pi,MM);

idxp = find(w <=wp);
idxs = find(w >=ws);

Ap = [ones(length(idxp),1) 2*cos(kron(w(idxp)',
[1:M/2])];

As = [ones(length(idxs),1) 2*cos(kron(w(idxs)',
[1:M/2])];

% optimization
cvx_begin
variable hh(M/2+1,1);
variable d(1,1);

minimize(d)
subject to
Ap*hh <=1+d,;
Ap*hh >=1-d;
As*hh < d;
As*hh > -d;
ds>0;
cvx_end
h = [hh(end:-1:1) ; hh(2:end)];
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Admin

a Projectl out now
s Due Monday 4/5
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