ESE 531: Digital Signal Processing

Week 12

Lecture 22: Apr 4, 2021

Discrete Fourier Transform, Pt 2

Today

- □ Review:
 - Discrete Fourier Transform (DFT)
 - Circular Convolution
- Fast Convolution Methods
- Discrete Cosine Transform

The DFT

$$W_N \triangleq e^{-j2\pi/N}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}$$

Inverse DFT, synthesis

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$
 DFT, analysis

□ It is understood that,

$$x[n] = 0$$
 outside $0 \le n \le N-1$
 $X[k] = 0$ outside $0 \le k \le N-1$

DTFT Vs. DFT

DTFT:

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

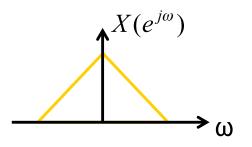
DFT:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}$$

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn}$$

Transform

Frequency

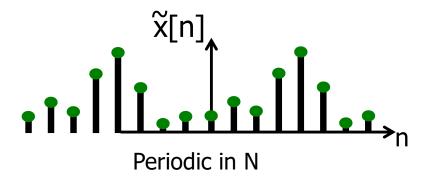


Time

x[n]

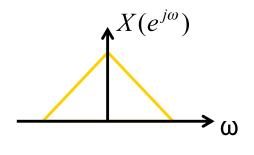
Transform

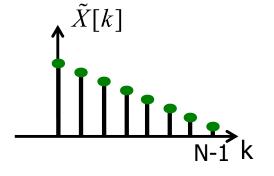
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$



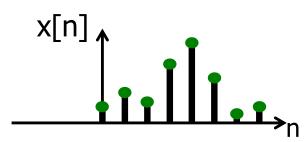
$$\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] W_N^{-kn}$$

Frequency



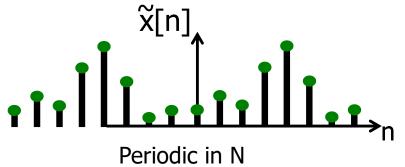


Time



Transform

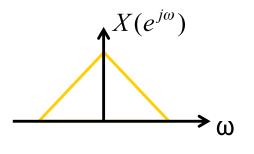
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

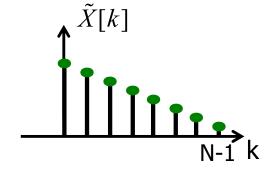


$$\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] W_N^{-kn}$$

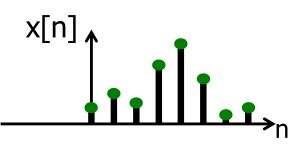
$$W_N = e^{-j\frac{2\pi}{N}}$$

Frequency

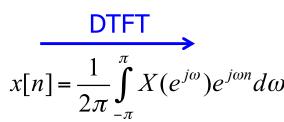


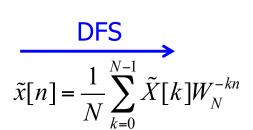


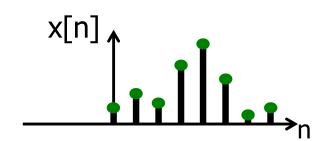
Time



Transform

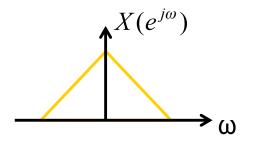


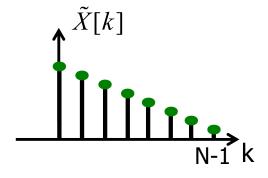


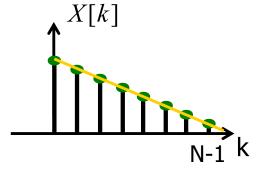


$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}$$

Frequency



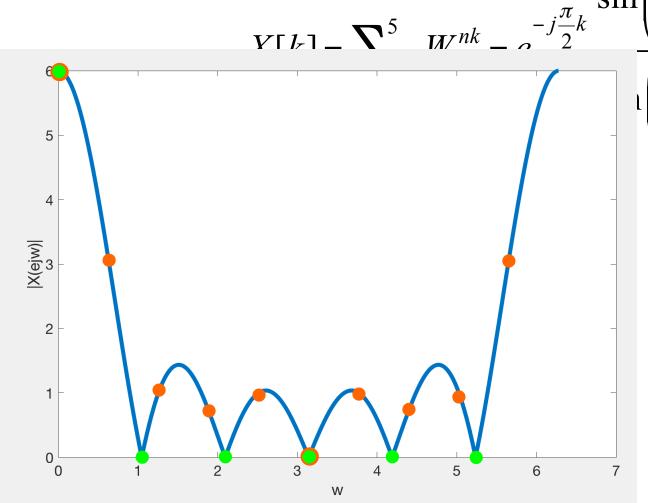




Periodic in N

DFT vs DTFT

Back to example



Penn ESE 531 Spring 2020 – Khanna Adapted from M. Lustig, EECS Berkeley "6-point" DFT
"10-point" DFT

Use fftshift to center around dc

Circular Convolution

Circular Convolution:

For two signals of length N

Note: Circular convolution is commutative

$$x_2[n] \otimes x_1[n] = x_1[n] \otimes x_2[n]$$

Linear Convolution

- □ Next....
 - Using DFT, circular convolution is easy
 - Matrix multiplication
 - But, linear convolution is useful, not circular
 - So, show how to perform linear convolution with circular convolution
 - Use DFT to do linear convolution (via circular convolution)

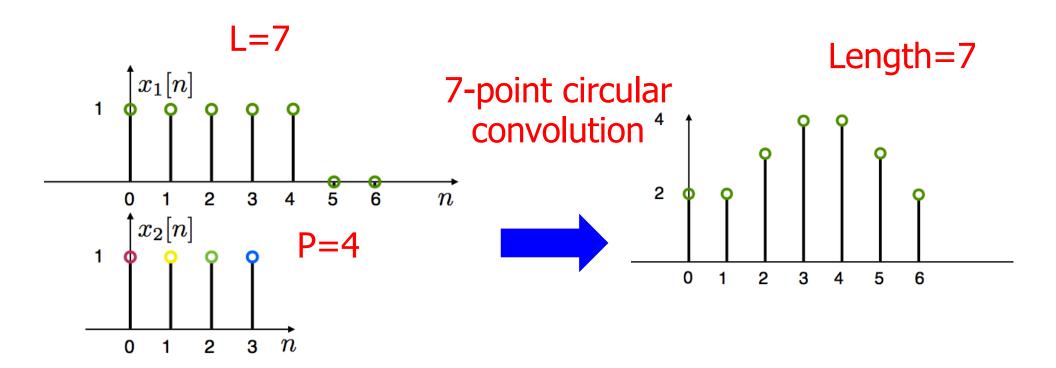
Linear Convolution

■ We start with two non-periodic sequences:

$$x[n]$$
 $0 \le n \le L-1$
 $h[n]$ $0 \le n \le P-1$

• E.g. x[n] is a signal and h[n] a filter's impulse response

Compute Circular Convolution Sum



$$x_1[n] \otimes x_2[n] \stackrel{\Delta}{=} \sum_{m=0}^{N-1} x_1[m] x_2[((n-m))_N]$$

Linear Convolution

■ We start with two non-periodic sequences:

$$x[n]$$
 $0 \le n \le L-1$
 $h[n]$ $0 \le n \le P-1$

- E.g. x[n] is a signal and h[n] a filter's impulse response
- We want to compute the linear convolution:

$$y[n] = x[n] * h[n] = \sum_{m=0}^{L-1} x[m]h[n-m]$$

• y[n] is nonzero for $0 \le n \le L+P-2$ (ie. length M=L+P-1)

Requires L*P multiplications

Linear Convolution via Circular Convolution

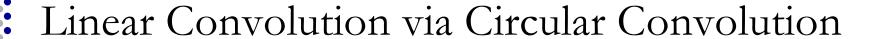
Zero-pad x[n] by P-1 zeros

$$x_{\mathbf{zp}}[n] = \begin{cases} x[n] & 0 \le n \le L - 1 \\ 0 & L \le n \le L + P - 2 \end{cases}$$

Zero-pad h[n] by L-1 zeros

$$h_{\mathbf{zp}}[n] = \begin{cases} h[n] & 0 \le n \le P - 1\\ 0 & P \le n \le L + P - 2 \end{cases}$$

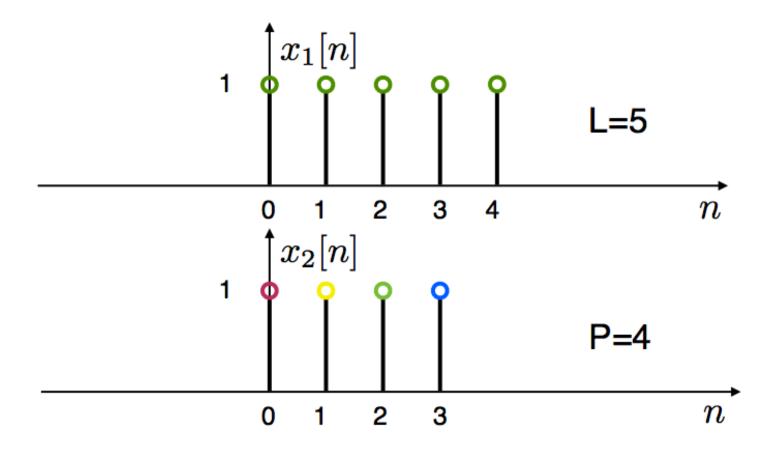
□ Now, both sequences are length M=L+P-1



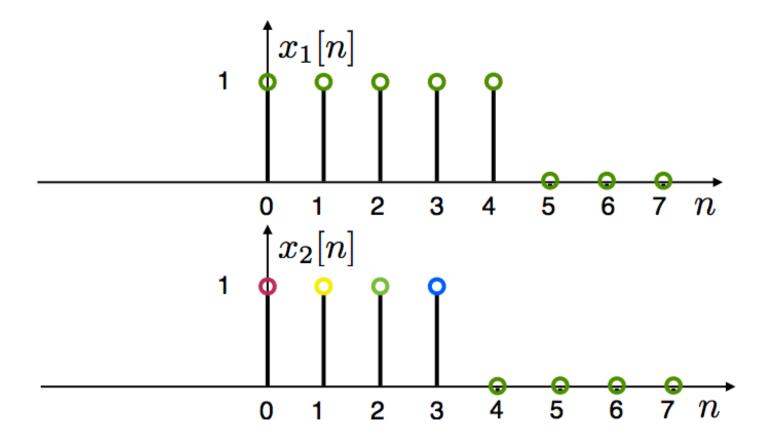
- Now, both sequences are length M=L+P-1
- We can now compute the linear convolution using a circular one with length M=L+P-1

Linear convolution via circular

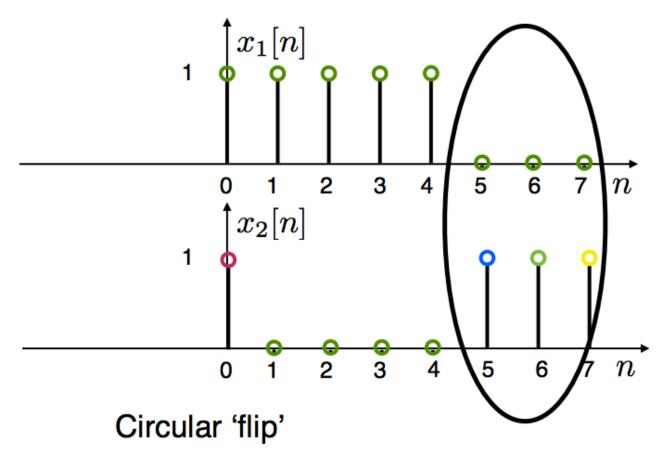
$$y[n] = x[n] * y[n] = \begin{cases} x_{zp}[n] \textcircled{n} h_{zp}[n] & 0 \le n \le M - 1 \\ 0 & \text{otherwise} \end{cases}$$



$$M = L + P - 1 = 8$$



$$M = L + P - 1 = 8$$



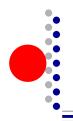
$$M = L + P - 1 = 8$$

$$y[n] = x_1[n]$$
 (8) $x_2[n] = x_1[n] * x_2[n]$

Linear Convolution with DFT

■ In practice we can implement a circular convolution using the DFT property:

$$\begin{split} x[n]*h[n] &= x_{\mathrm{zp}}[n] \textcircled{n} \ h_{\mathrm{zp}}[n] \\ &= \mathcal{DFT}^{-1} \left\{ \mathcal{DFT} \left\{ x_{\mathrm{zp}}[n] \right\} \cdot \mathcal{DFT} \left\{ h_{\mathrm{zp}}[n] \right\} \right\} \\ \text{for 0 } \leq n \leq \text{M-1, M=L+P-1} \end{split}$$



Linear Convolution with DFT

■ In practice we can implement a circular convolution using the DFT property:

$$\begin{split} x[n]*h[n] &= x_{\mathrm{zp}}[n] \textcircled{n} \ h_{\mathrm{zp}}[n] \\ &= \mathcal{DFT}^{-1} \left\{ \mathcal{DFT} \left\{ x_{\mathrm{zp}}[n] \right\} \cdot \mathcal{DFT} \left\{ h_{\mathrm{zp}}[n] \right\} \right\} \\ \text{for 0 } \leq n \leq \text{M-1, M=L+P-1} \end{split}$$

■ Advantage: DFT can be computed with Nlog₂N complexity (FFT algorithm later!)

Linear Convolution with DFT

□ In practice we can implement a circular convolution using the DFT property:

$$\begin{split} x[n]*h[n] &= x_{\mathrm{zp}}[n] \textcircled{n} \ h_{\mathrm{zp}}[n] \\ &= \mathcal{DFT}^{-1} \left\{ \mathcal{DFT} \left\{ x_{\mathrm{zp}}[n] \right\} \cdot \mathcal{DFT} \left\{ h_{\mathrm{zp}}[n] \right\} \right\} \\ \text{for 0 } \leq n \leq \text{M-1, M=L+P-1} \end{split}$$

- Advantage: DFT can be computed with Nlog₂N complexity (FFT algorithm later!)
- □ Drawback: Must wait for all the samples -- huge delay -- incompatible with real-time filtering

Block Convolution

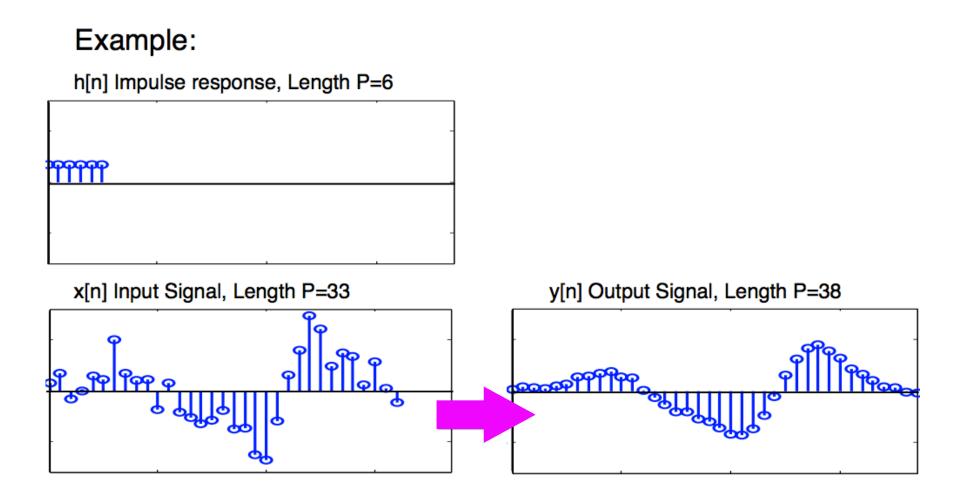
• Problem:

- An input signal x[n], has very long length (could be considered infinite)
- An impulse response h[n] has length P
- We want to take advantage of DFT/FFT and compute convolutions in blocks that are shorter than the signal

Approach:

- Break the signal into small blocks
- Compute convolutions (via DFT)
- Combine the results
 - Overlap-add
 - Overlap-save

Block Convolution

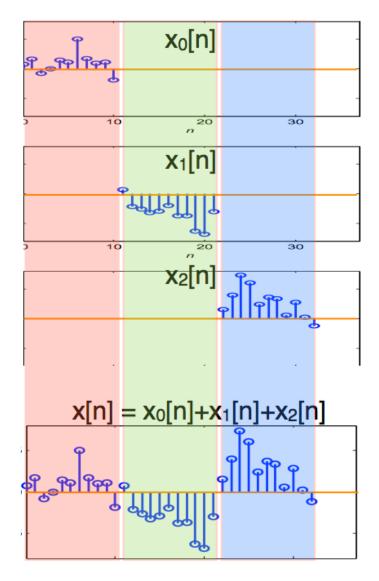


Decompose into non-overlapping segments

$$x_r[n] = \begin{cases} x[n] & rL \le n < (r+1)L \\ 0 & \text{otherwise} \end{cases}$$

□ The input signal is the sum of segments

$$x[n] = \sum_{r=0}^{\infty} x_r[n]$$



Penn ESE 531 Spring 2021 – Khanna Adapted from M. Lustig, EECS Berkeley

$$x[n] = \sum_{r=0}^{\infty} x_r[n]$$

The output is:

$$y[n] = x[n] * h[n] = \sum_{r=0}^{\infty} x_r[n] * h[n]$$

- Each output segment $x_r[n]*h[n]$ is length M=L+P-1
 - h[n] has length P
 - $x_r[n]$ has length L

- We can compute $x_r[n]*h[n]$ using circular convolution with the DFT
- Using the DFT:
 - Zero-pad $x_r[n]$ to length M
 - Zero-pad h[n] to length M and compute DFT_M{h_{zp}[n]}
 - Only need to do once!

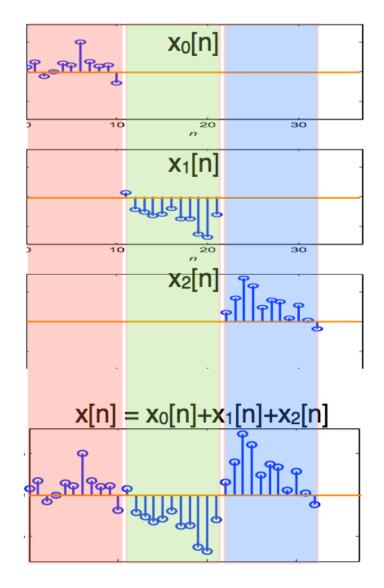
- We can compute $x_r[n]*h[n]$ using circular convolution with the DFT
- Using the DFT:
 - Zero-pad $x_r[n]$ to length M
 - Zero-pad h[n] to length M and compute $DFT_N\{h_{zp}[n]\}$
 - Only need to do once!
 - Compute:

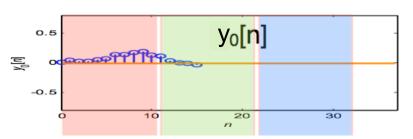
$$x_r[n] * h[n] = DFT^{-1} \{DFT\{x_{r,zp}[n]\} \cdot DFT\{h_{zp}[n]\}\}$$

- Results are of length M=L+P-1
 - Neighboring results overlap by P-1
 - Add overlaps to get final sequence

Example of Overlap-Add

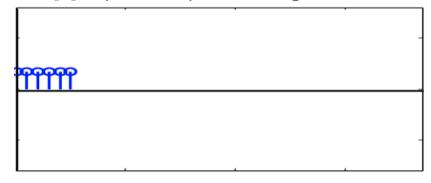
L+P-1=16

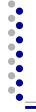




Example:

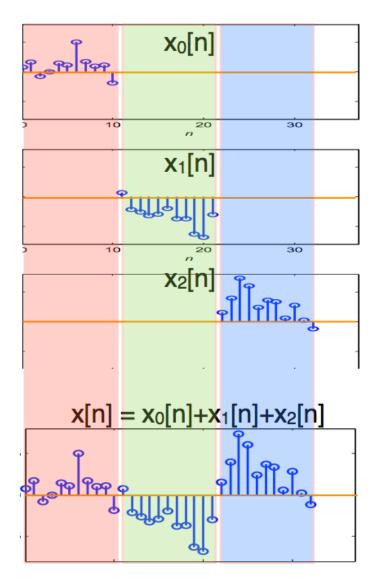
h[n] Impulse response, Length P=6

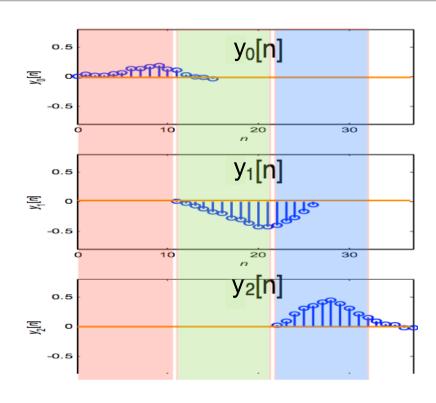




Example of Overlap-Add

L+P-1=16

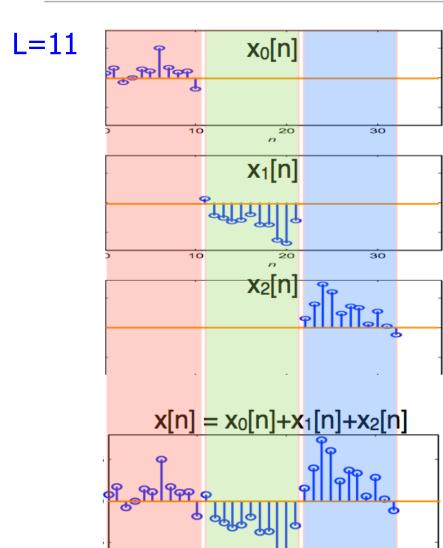


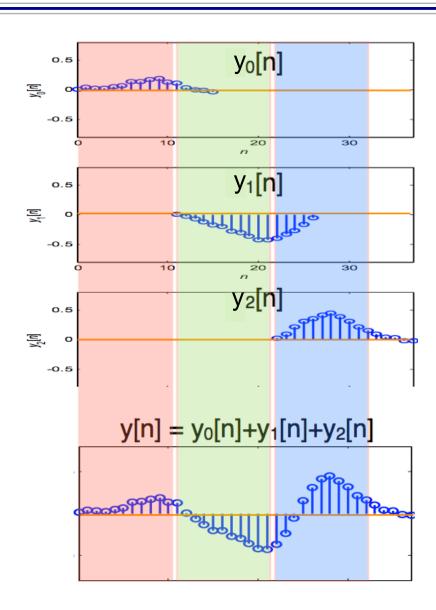


Penn ESE 531 Spring 2021 – Khanna Adapted from M. Lustig, EECS Berkeley

Example of Overlap-Add

L+P-1=16





Penn ESE 531 Spring 2021 – Khanna Adapted from M. Lustig, EECS Berkeley

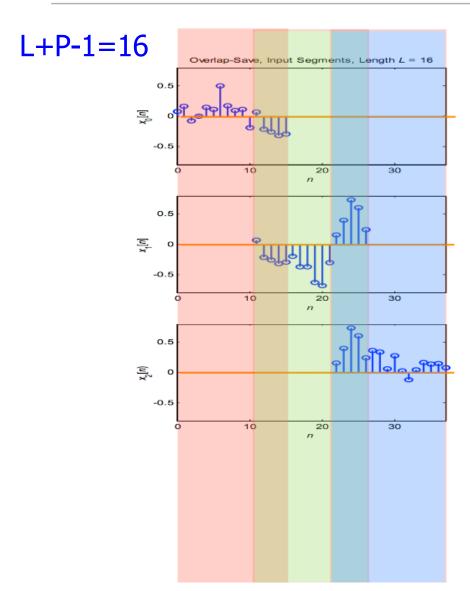
Overlap-Save Method

- □ Basic idea:
- □ Split input into overlapping segments with length L+P-1
 - P-1 sample overlap

$$x_r[n] = \begin{cases} x[n] & rL \le n < (r+1)L + P \\ 0 & \text{otherwise} \end{cases}$$

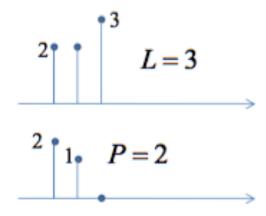
■ Perform circular convolution in each segment, and keep the L sample portion which is a valid linear convolution

Example of Overlap-Save



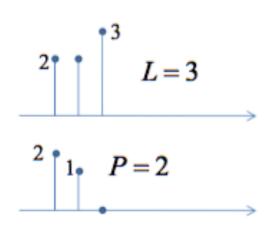
Circular to Linear Convolution

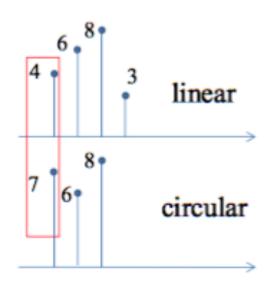
- An *L*-point sequence circularly convolved with a *P*-point sequence
 - with L P zeros padded, P < L
- gives an L-point result with
 - the first *P* 1 values *incorrect* and
 - the next L P + 1 the *correct* linear convolution result



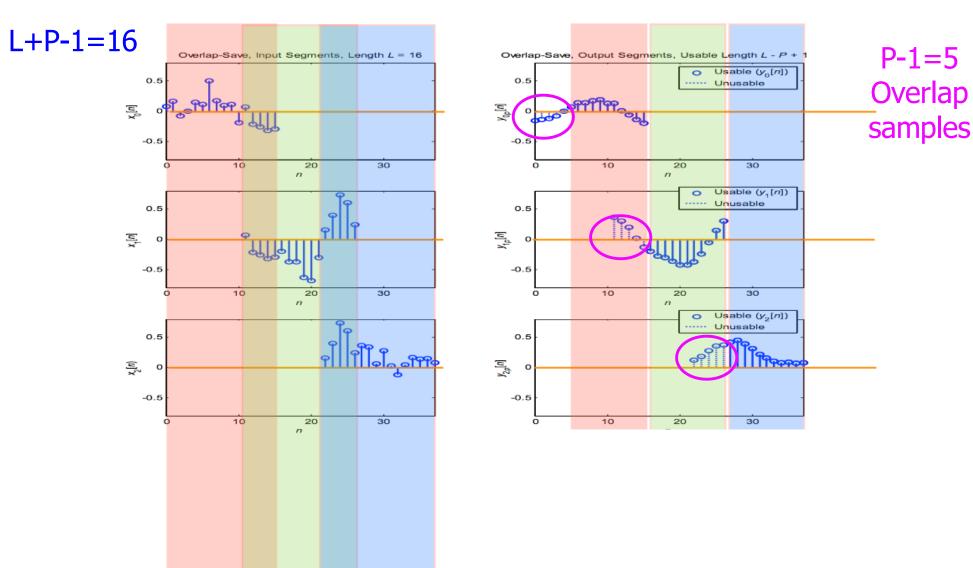
Circular to Linear Convolution

- An *L*-point sequence circularly convolved with a *P*-point sequence
 - with L P zeros padded, P < L
- gives an L-point result with
 - the first *P* 1 values *incorrect* and
 - the next L P + 1 the *correct* linear convolution result

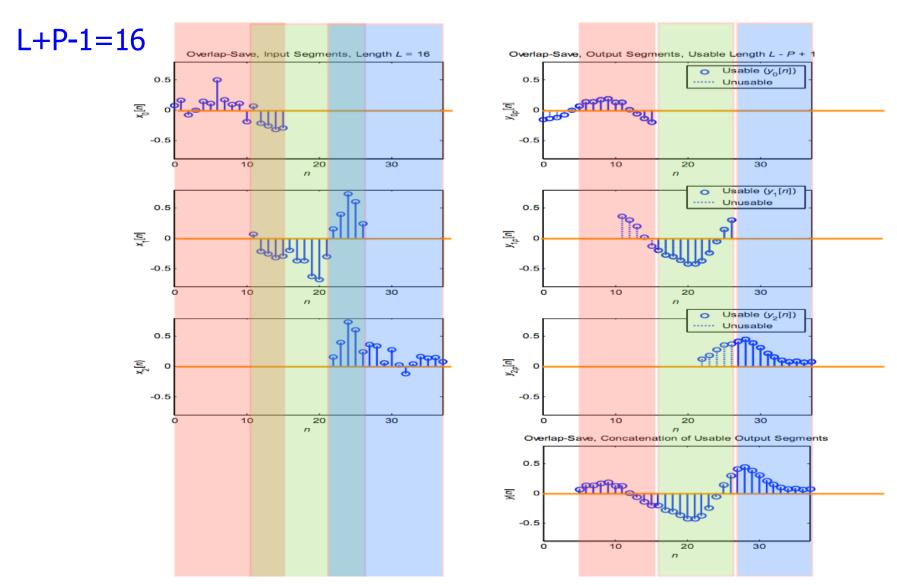




Example of Overlap-Save



Example of Overlap-Save



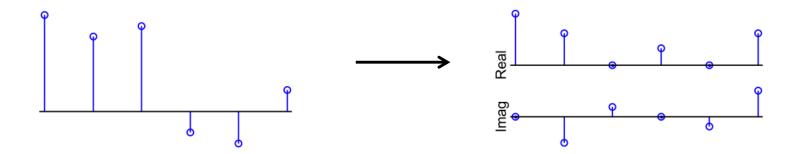
Penn ESE 531 Spring 2021 – Khanna Adapted from M. Lustig, EECS Berkeley

Discrete Cosine Transform

- Similar to the discrete Fourier transform (DFT), but using only real numbers
- Widely used in lossy compression applications (eg. Mp3, JPEG)
- □ Why use it?

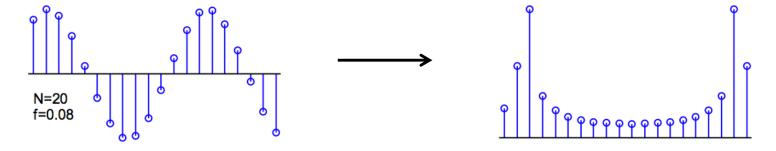
DFT Problems

- □ For processing 1-D or 2-D signals (especially coding), a common method is to divide the signal into "frames" and then apply an invertible transform to each frame that compresses the information into few coefficients.
- □ The DFT has some problems when used for this purpose:
 - $N \text{ real } x[n] \leftrightarrow N \text{ complex } X[k] : 2 \text{ real, } N/2 1 \text{ conjugate pairs}$
 - DFT is of the periodic signal formed by replicating x[n]



DFT Problems

- □ For processing 1-D or 2-D signals (especially coding), a common method is to divide the signal into "frames" and then apply an invertible transform to each frame that compresses the information into few coefficients.
- □ The DFT has some problems when used for this purpose:
 - $N \text{ real } x[n] \leftrightarrow N \text{ complex } X[k] : 2 \text{ real, } N/2 1 \text{ conjugate pairs}$
 - DFT is of the periodic signal formed by replicating x[n]
 - ⇒ Spurious frequency components from boundary discontinuity



The Discrete Cosine Transform (DCT) overcomes these problems.

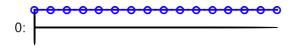
Discrete Cosine Transform

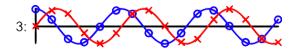
Forward DCT:
$$X_C[k] = \sum_{n=0}^{N-1} x[n] \cos \frac{2\pi (2n+1)k}{4N}$$
 for $k = 0: N-1$

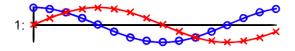
Inverse DCT:
$$x[n] = \frac{1}{N}X[0] + \frac{2}{N}\sum_{k=1}^{N-1}X[k]\cos\frac{2\pi(2n+1)k}{4N}$$

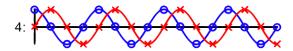
Basis Functions

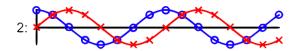
DFT basis functions: $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{kn}{N}}$

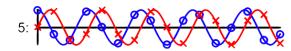




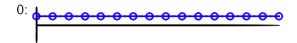


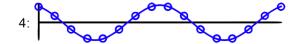


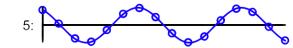




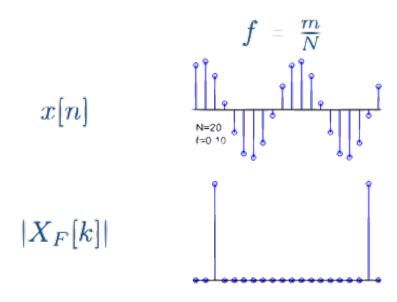
DCT basis functions: $x[n] = \frac{1}{N}X[0] + \frac{2}{N}\sum_{k=1}^{N-1}X[k]\cos\frac{2\pi(2n+1)k}{4N}$



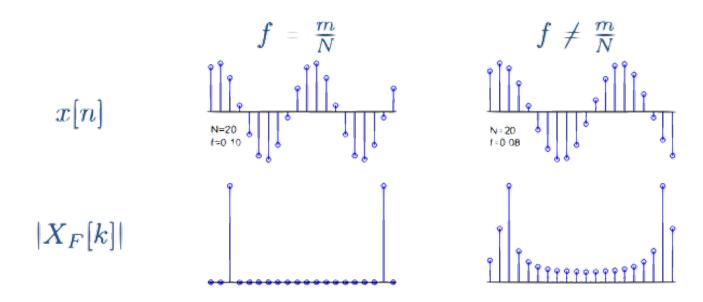




DFT of Sine Wave

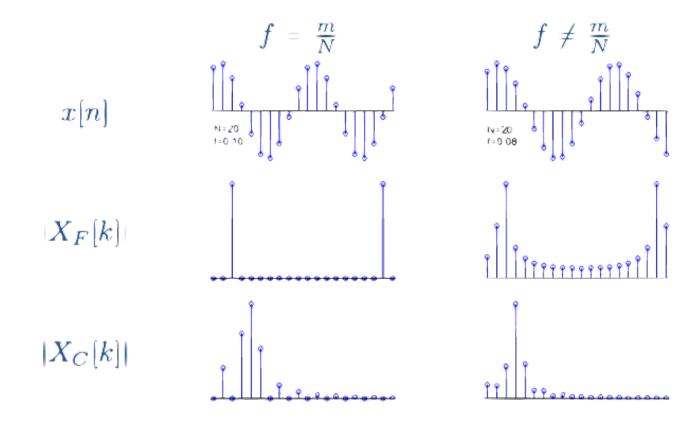


DFT of Sine Wave



DFT: Real
$$\to$$
 Complex; Freq range $[0,1]$; Poorly localized unless $f=\frac{m}{N}; |X_F[k]| \propto k^{-1}$ for $Nf < k \ll \frac{N}{2}$

DCT of Sine Wave



DFT: Real \rightarrow Complex; Freq range [0, 1]; Poorly localized unless

 $f = \frac{m}{N}$; $|X_F[k]| \propto k^{-1}$ for $Nf < k \ll \frac{N}{2}$

DCT: Real \rightarrow Real; Freq range [0, 0.5]; Well localized $\forall f$;

 $|X_C[k]| \propto k^{-2}$ for 2Nf < k < N

Big Ideas

- Discrete Fourier Transform (DFT)
 - For finite signals assumed to be zero outside of defined length
 - N-point DFT is sampled DTFT at N points
 - DFT properties inherited from DFS, but circular operations!
- Fast Convolution Methods
 - Use circular convolution (i.e DFT) to perform fast linear convolution
 - Overlap-Add, Overlap-Save
- □ DCT useful for frame rate compression of large signals

Admin

- Project 1
 - Due Monday 4/5 (can turn in by 4/9 with no penalty)
- HW 7 out now