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Fast Fourier Transform
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Last Time

0 Discrete Fourier Transform

= Linear convolution through circular convolution
= Overlap and add

= Overlap and save

= Circular convolution through DEFT

a Today

s The Fast Fourier Transform

Penn ESE 531 Spring 2021 — Khanna
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Fast Fourier Transtorm (FFT)
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Fast Fourter Transform Algorithms

a0 We are interested in efficient computing methods
for the DFT and inverse DFT:

N—-1

X[k] = x[n]Wg",  k=0,...,N—1
n=0
N—-1

x[n] = XKWy, n=0,...,N—1
k=0

Penn ESE 531 Spring 2021 — Khanna
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Reminder: Inverse DFT via DFT

0 Recall that we can use the DFT to compute the
inverse DFT:

DFTHXIK]} = v (DFT{X"[K]})

= Hence, we can just focus on etficient computation of the

DFT.

a Straightforward computation of an N-point DFT
(ot inverse DFT) requires N? complex
multiplications.

Penn ESE 531 Spring 2021 — Khanna
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: Computation Order

Q Fast Fourier transform algorithms enable computation of

an N-point DFT (or inverse DFT) with the order of
just N- log, N complex multiplications.

= This can represent a huge reduction in computational

load, especially for large N.

2
N N2 N-loga N | woy
16 256 64 4.0
128 16,384 896 18.3
1,024 | 1,048,576 | 10,240 102.4
8,192 |67,108,864 | 106,496 | 630.2
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: Computation Order

Q Fast Fourier transform algorithms enable computation of

an N-point DFT (or inverse DFT) with the order of
just N- log, N complex multiplications.

= This can represent a huge reduction in computational

load, especially for large N.

2
N N2 N -log, N N.|2'g2 =
16 256 64 4.0
128 16,384 896 18.3
1,024 | 1,048,576 | 10,240 102.4
8,192 | 67,108,864 | 106,496 630.2
6 x 10 | 36 x 1012 | 135 x 10° | 2.67 x 10°
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Figentunction Properties

0 Most FET algorithms exploit the following
properties of Wk

= Conjugate Symmetry

W/((/(N—n) — W/;kn — (W[(([n)*

= Periodicity in n and k

n k(n+N k+N)n
wikn = Wit — p k)

s Power

W2 = Wh /2

Penn ESE 531 Spring 2021 — Khanna
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FEF'T Algorithms via Decimation

0 Most FFT algorithms decompose the computation of a DFT
into successively smaller DFT computations.

= Decimation-in-time algorithms decompose x[n] into successively
smaller subsequences.

= Decimation-in-frequency algorithms decompose X[k] into
successtvely smaller subsequences.

0 Note: Assume length of x|n] is power of 2 (N = 2%). If not,
zero-pad to closest power of 2.

Penn ESE 531 Spring 2021 — Khanna
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Decimation-in-Time FFT

a0 We start with the DFT

N—1

X[kl =) x[nWg", k

n=0

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

a0 We start with the DFT

N—-1
X[kl =) x[nW§', k=0,...,N—1
n=0

0 Separate the sum into even and odd terms:

X[kl = > x[nWx"+ ) x[n]Wy

n even n odd

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

a0 We start with the DFT

N—-1
X[kl =) x[nW§', k=0,...,N—1
n=0

0 Separate the sum into even and odd terms:

X[kl = > x[nWx"+ ) x[n]Wy

n even n odd

s These are two DFTSs, each with half the number of
samples (N/2)

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

X[kl = > x[Wx"+ > x[n]Wy"

n even n odd

Let n = 2r (n even) and n =2r + 1 (n odd):

Penn ESE 531 Spring 2021 — Khanna

Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

X[kl = > x[Wx"+ > x[n]Wy"

n even n odd

Let n = 2r (n even) and n =2r + 1 (n odd):

(N/2)—1 (N/2)—1
Xkl = Y xprAwgc+ 3 xer+ 1wy
r=0 r=0

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

X[kl = > x[Wx"+ > x[n]Wy"

n even n odd

Let n =2r (n even) and n =2r + 1 (n odd):

(N/2)—1 (N/2)—1
Xkl = Y xAwgc+ 3 xer+ 1wy
r=0 r=0
(N/2)-1 (N/2)-1
= Z x[2r]WE™ + WS Z x[2r + 1)|W3'*
r=0 r=0

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Let n =2r (n even) and n =2r + 1 (n odd):

(N/2)-1 (N/2)-1
X[k] = Z x[2r] W3 + Z x[2r + 1] W,$,2r+1)k
r=0 r=0
(N/2)-1 (N/2)-1
= Z x[2r] W3  + WS Z x[2r + 1]W3
r=0 r=0
Note that:
Wik = e=iC)em) = &3 (37)% = wik,

Remember this trick, it will turn up often.

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Let n =2r (n even) and n =2r + 1 (n odd):

(N/2)-1 (N/2)-1
Xkl = Y xRAWE + N x[2r+ 1w
r=0 r=0
(N/2)-1 (N/2)-1
= Z x[2r] W3  + WS Z x[2r + 1]W3
r=0 r=0
(N/2)-1 (N/2)-1
X[kl = ) xrWg,+ W5 > x[2r+ W,
r=0 r=0

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

N—1
X[k] = Wk, k=0,...,N—1
Let n = 2r (n even) and 1 [A] ;x["] N 0,...,
(N/2)-1 (N/2)—1
X[k] — Z X[2r] W,%fk + Z X[2r+ 1] Wlsle_l)k
r=0 r=>0
(N/2)-1 (N/2)-1
= > xPRAWFF WY Y xer+ 1wt
r=0 r=0
(N/2)—-1 (N/2)-1
XK = Y xRAW,+wh Y x[2r+ 1wk,
r=0 r=>0

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Hence:
(N/2)-1 (N/2)-1
X[kl = ) xrWg,+ W5 > x[2r+ W,
r=0 r=0
2 Glk]+ WEH[K], k=0,...,N—1
where we have defined:
(N/2)-1
Glk] £ ) x[rw, = DFT of even samples
r=0
(N/2)-1
Hik 2 Y x[2r+1Wg, = DFT of odd samples
r=0

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as X[k] = G[k] + W,{‘,H[k]

G[0]

x[0] o—] o 7° X0
@ Gﬁx Wn /
B. fe! ‘ ot
S o N/2 - Point ° Al
% DFT
c X4] o/ X[2]
Q
) - — X[3]

X[1] o—f X[4]
%)
5
% X311 ny2 - Point X9
D x5 o—— DFT X[6]
©
S

X[7] o— X[7]

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley 20



Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as X[k] = G[k] + W/,\;H[k]

x[0]
X[2]
X[4]
x[6]
X[1]

Even Samples

x[3]
X[5]
x[7]

Odd Samples

o—

o T—

o—

Oo—

G[0]

o - X[0]
G[ 1]\ Wy
o X[1]

| N/2 - Point

1 O
6;2]\ "’//
DFT 14 -
G[3]
o X[3]
)
X[4]
H[1]
' N/2 - Point - 5 ° Xp
DFT H[2] N

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley

/ " \O o

LA

o > o X[7]
wy”

X[0]=G[0]+W\°H[0]

21



Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as X[k] = G[k] + Wll\;H[k]

x[0]
x[2]
x[4]
x[6]
x[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

o—

o

o—

Oo—

G[0]
o 70 X0
G;IN WN /
| N/2 - Point - ° X
DFT L XP2]
G[3]
o X[3]
T HJo] ? ?
X[4]
H[1]
o o o . o  X[5]
N/ZD ,fTomt HI2] N \
> o X[6]

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley

Q 5
H{aj/ Wi \
— - o X [7 ]

X[4]=G[4]+W\*H[4]
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Decimation-in-Time FFT

Both G[k] and H[k]| are periodic, with period N /2. For
example

(N/2)-1
Glk] £ > x[rwg,
r=0

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Both G[k] and H[k]| are periodic, with period N /2. For

example
R (N/2)—1
Glk] £ > x[rwg,
r=0
(N/2)-1
Glk+N/2 = > xrqwys?
r=0

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Both G[k] and H[k]| are periodic, with period N /2. For

example
. (N/2-1
Glkl = ) x[riwg,
r=0
(N/2)—1
Glk+N/2 = > xrqwys™?
r=0
(N/2)—1
r r(N/2
= Z x[2r]WNk/2WN(/2/ )
r=0

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Both G[k] and H[k]| are periodic, with period N /2. For

example
. (N/2)—1
Glk] = ) x[rwg,
r=0
(N/2)-1
Glk+N/2 = > xrqwys?

r=0
(N/2)-1 _

- Y W)
r=>0
(N/2)—1

= Z X[Q’]W/(/k/z
r=0

= G|

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 So,

Glk+(N/2)] = Glk
Hlk +(N/2)] = HIk]

0 The pertodicity of Glk] and H[k] allows us to
further simplify. For the first N/2 points we
calculate G[k] and W *H[k], and then compute the

Sum

X[k] = G[k] + WSHIK] V{k:0< k < g}.

How does periodicity help for g’ < k < N?

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as X[k] = G[k] + W/,\;H[k]

x[0] o—

X[2] o——

Even Samples

x[6] o—

x[4] ©—

G[0]

G;1]\

| N/2 - Point
DFT

x[1] o——

X[3] O

Odd Samples

x[5] o—j

| N/2 - Point
DFT

x[7] o—

Penn ESE 531 Spring 2021 — Khanna

Adapted from M. Lustig, EECS Berkeley

First N/2 DFTs
0 <k<N/2

28



Decimation-in-Time FFT

X[k] = G[k] + Wy HI[K] V{k:0< k < g}.

for%§k<N:

W/(‘/"‘(N/z) —7

X[k + (N/2)] =7

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

X[k] = G[k] + Wy HI[K] V{k:0< k < g}.
for % < k < N: (o kN /2
W]\I?N/Z —|e N)
\
k+(N/2 [ 2n 2
WiHN/2) ) eijk\(eijxZ)
\ )
(27, )
]Nk -jm k
X[k + (N/2)] =? =le N |(em) =y

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

X[k 4+ (N/2)] = G[k] — WRHIK]
0 We previously calculated G[k] and W *H[k].

0 Now we only have to compute their difference to
obtain the second half of the spectrum. No
additional multiplies are required.

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley 31



Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as

Even Samples

Odd Samples

S
—

X[2]
X[4]
X[6]
X[1]
X[3]
X[5]
x[7]

G[0]

G[k] + WSHIK]

& 0
G;U\ Wy
| N/2 - Point - P
- Foin
G;2]\ /KN
o | DFT ' /2/ o
G[3] N
O__‘
T H[o) N
o— o
H[1] NX = S)Y
| N/2 - Point - 5 9
- Foin =
OET H[AZ/ 1 W
— - LN
i, S
N

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]
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Decimation-in-Time FFT

The N-point DFT has been reduced two N/2-point DFTs,

plus N /2 complex multiplications. The 8 sample DFT is then:

x[0]
X[2]
x[4]

Even Samples

x[6]
x[1]
x[3]
x[5]
x[7]

Odd Samples

o -

(@ —

GlK]

N/2 - Point
DFT

N/2 - Point
DFT

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]
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Decimation-in-Time FFT

0 Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

0 We can define a butterfly operation, e.g., the
computation of X[0] and X[4] from G[0] and H[O]:

G[O] X[0] =G[o] + Wy,? H[o]

X141 =G[o] - Wy° H[o]

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

0 We can define a butterfly operation, e.g., the
computation of X[k] and X[k+N/2] from GJk] and

HI[K]:
X[k] = GIk]+WikH[K]
Glk] GIO] X[0] =G[o] + W H[o]
Xk+N/2] = Glk]-WitH[K]
H[k] HIO] X141 =G[o] - Wy° H[o]

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

o Still O(N?) operations.... What should we do?

x[0] o——

Even Samples

x[6] O——

x[1] o——

x[2] o——

x[4] O——

G[K]

S~

N/2 - Point
DFT

DN
DX X

%]
(b}
—— O'_'
8 X3 N/2 - Point
m DFT
L x5 o——
©
o
x[7] o

Penn ESE 531 Spring 2021 — Khanna

Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]
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Decimation-in-Time FFT

a0 We can use the same approach for each of the N/2

point DFT’s. For the N = 8 case, the N/2 DFT's

look like

x[0] o——

X[4] o——

x[2] o—

O O
N/4 - Point G[o]
DFT
o ° G[1]
e o
N/4 - Point - - Gl2l
DFT Wiz
——O —> ©  G[3]

x[6] ©

-1

*Note that the inputs have been reordered again.

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The tfundamental eigenfunction is:

Wiyja = Waje = W = /7 = —1

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The tfundamental eigenfunction is:

Wija = Wajs = Wa = €797 = -1

= X[, + x[1],"
= x[0]+x[1]W}

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The tfundamental eigenfunction is:

Wija = Wajs = Wa = €797 = -1

X[k]= _ x[nw
=0 X[0]=x[0]+x[1]
1 = 1
= x[n]Wzkn ALHSATRAHR:
n=0
_ x[O]WZkO +x[1]W2k'l
= x[0]+ x[1]¥

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The tfundamental eigenfunction is:

Wiyja = Waje = W = /7 = —1

X[k]= _ x[nw
ri X[0]=x[0] + Xx[1]
= N [ X[1]=x[0] = X{1]
n=0
= [0 + x[1 !
= x[0]+ x[1]¥

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The tfundamental eigenfunction is:

Wivja = Wajs = Wo = €77 = -1

The diagram of this stage is then
x[0] Q x[0] + x[4]

x[4] >4 —> x[0] - x[4]

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 Replace N/2-point DFT with 2-point DFT and butterfly

operations

>
~
=

w
QO
S X2 o——
4y ]
D x4] o——
z

x[6] O——

x[1] o——

G[K]

S~

N/2 - Point
DFT

DN
XX

w
QO
—— O'—
8 X9 N/2 - Point
® DFT
o x[5] o——
©
o
x[7] o

Penn ESE 531 Spring 2021 — Khanna

Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]
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Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

O

x[0]

. AN
DX X

4 2pt DFTs 2 4pt DFTs 8pt DFT

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]
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Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] \ / X[0]
x[4] '\\ / / X[1]
x[6] O o  X[3]
x[1] 8 — o X[4]
/N v <D
5] o—= 0 A 0 o X[5
- T wy? vv Wy X \ i
x[3] o—— 1 A A, : _.7 o X[6]
Eg Wi ) Wn / \
x[7] o—— % o X[7]

o —>
-1 -1 1

« 3=log,(N)=log,(8) stages
« 4=N/2=8/2 multiplications in each stage

Penn ESE 531 Spring 2021 — Khanna » 1st stage has trivial multiplication

Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

0 In general, there are log,N stages of decimation-in-time.

0 Fach stage requires N/2 complex multiplications, some of
which are trivial.

0 The total number of complex multiplications is (N/2) log,N,
or 1s O(N log,N)

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 In general, there are log,N stages of decimation-in-time.

0 Fach stage requires N/2 complex multiplications, some of
which are trivial.

0 The total number of complex multiplications is (N/2) log,N,
or 1s O(N log,N)

0 The order of the input to the decimation-in-time FFT
algorithm must be permuted.

= Net effect is reversing the bit order of indexes

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley 48



Decimation-in-Time FFT

This is illustrated in the following table for N = 8.

Decimal | Binary

0 000
001
010
011
100
101
110
111

N[OOI W N

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

This is illustrated in the following table for N = 8.

Decimal | Binary | Bit-Reversed Binary
0 000 000
1 001 100
2 010 010
3 011 110
4 100 001
5 101 101
6 110 011
7 111 111

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

This is illustrated in the following table for N = 8.

Decimal | Binary | Bit-Reversed Binary | Bit-Reversed Decimal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Penn ESE 531 Spring 2021 — Khanna

Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] \e

x[4]

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]
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Decimation-in-Frequency FFT

The DFT is
N-1

X[kl =) x[n]Wgk

n=0

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

The DFT is
N-1

X[kl = x[n]Wgk

n=0

If we only look at the even samples of X[k|, we can write k = 2r,

N—-1

X[2r] = 3 x[nwy?"
n=0

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

The DFT is
N—1

X[kl = x[n]Wgk

n=0

If we only look at the even samples of X[k|, we can write k = 2r,

N—-1

X[2r] = 3 x[nwy %"
n=0

We split this into two sums, one over the first N/2 samples, and
the second of the last N/2 samples.

(N/2)—1 (N/2)—1
X[2r] = Z x[n] W™ + Z x[n+ N/2] W,s,r("+N/2)
n=0 n=0

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

But Wy "N/D) = WRmwWi = W = Wi,
We can then write

(N/2)-1 (N/2)-1
Xler] = > Wi+ S xln+ N/2wy TN
n=0 n=0
(N/2)-1 (N/2)—1
= Y AaAWir+ Y X+ N/2AWR
n=0 n=0

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

But Wy "N/D) = WRmwWi = W = Wi,
We can then write

(N/2)-1 (N/2)-1
Xl = Y xnwWEm+ S xin+ n/2wiy NP
n=0 n=0
(N/2)-1 (N/2)-1
= ) x[AW§"+ D> xn+ N/2QWR"
n=0 n=0
(N/2)-1
= Y (x[n] +x[n+ N/2]) W[,
n=0
This is the N/2-length DFT of first and second half of x[n]
summed.

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

X[2r] = DFTg {(x[n] + x[n+ N/2])}
X[2r+1] = DFTg {(x[n] — x[n+ N/2]) Wy}

(By a similar argument that gives the odd samples)

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

X[2r] = DFTg {(x[n] + x[n+ N/2])}
X[2r+1] = DFTg {(x[n] — x[n+ N/2]) Wy}

(By a similar argument that gives the odd samples)

0 Continue the same approach on the N/2 DFTs, and N/4
DFTs until we reach the 2-point DFT, which is a simple
butterfly operation

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

The diagram for and 8-point decimation-in-frequency DFT is as
follows

x[0] X[0]

x[1] X[M4]

x[2]
xX[3]

X[2]

X[6]

x[4]

x[5] X[5]

x[6] X[3]

:XZ
:XZ

This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] \ / X[0]
x[4] '\\ / / X[1]
x[6] O o  X[3]
x[1] 8 — o X[4]
/N v <D
5] o—= 0 A 0 o X[5
- T wy? vv Wy X \ i
x[3] o—— 1 A A, : _.7 o X[6]
Eg Wi ) Wn / \
x[7] o—— % o X[7]

o —>
-1 -1 1

« 3=log,(N)=log,(8) stages
« 4=N/2=8/2 multiplications in each stage

Penn ESE 531 Spring 2021 — Khanna » 1st stage has trivial multiplication

Adapted from M. Lustig, EECS Berkeley



Non-Power-of-2 FFT's

0 A similar argument applies for any length DFT, where the
length N is a composite number

0 For example, if N=06, with decimation-in-frequency you
could compute three 2-point DFTs followed by two 3-point

DFTs

X[0] 9| 2.point [° ° ©  X[o]
DFT 3-Point

x[3] © oo Xz

X[1] 9 2_point ____° XM
DFT

x4] o o X1]

X[2] 9 2.point e X
DFT

x[5] © o X5]

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley



Example: Non-Power-of-2 FFT's

X X X X X X
lml IAI lwl INI IHI lol

Penn ESE 531 Spring 2021 - Khanna

6-pt DFT

IXI IXI IXI IXI IXI IXI
Iml IAI le INI IHI IOI
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Decimation-in-Frequency FFT

X[2r] = DFTg {(x[n] + x[n+ N/2])}
X[2r+1] = DFT% {(x[n] — x[n+ N/2]) Wy}

(By a similar argument that gives the odd samples)

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Example: Non-Power-of-2 FFT's

X[5] ’

Penn ESE 531 Spring 2021 - Khanna



Decimation-in-Frequency FFT

X[2r] = DFTg {(x[n] + x[n+ N/2])}
X[2r+1] = DFT% {(x[n] — x[n+ N/2]) Wy}

(By a similar argument that gives the odd samples)

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Example: Non-Power-of-2 FFT's

e \ / X[0]

3-pt B}
<A / OFT | 4
x[2] X[4]

X[3]

Sies oFT | X
x[5]..4 \_,, X,

Penn ESE 531 Spring 2021 - Khanna
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Example: Non-Power-of-2 FFT's

X[0] / X[0:

x(1] 2P X2

X[2] \y / X4
W0

X[3] M X[1

x[4] We' o 3-pt | 3]

-1 DFT X:5:
W2
(5] 4 : >

Penn ESE 531 Spring 2021 - Khanna




Example: Non-Power-of-2 FFT's

x[0]
x[3]
X[1]
X[4]
X[2]

X[5]

2_pt [ _ ]
DFT 3-pt
/ DFT
2-pt
DFT
3-pt
2-pt DFT
DFT

Penn ESE 531 Spring 2021 - Khanna
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Example: Non-Power-of-2 FFT's

x[0]
x[3]
X[1]
X[4]
X[2]

X[5]

2_pt [ L J
DFT 4 .0 3-pt

° DFT
2-pt
DFT {We

3-pt

2-pt 1 DFT
DFT +—>—o

Penn ESE 531 Spring 2021 - Khanna
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Non-Power-of-2 FFT's

0 Good component DFTs are available for lengths up to
20(1sh). Many of these exploit the structure for that specific
length

= For example, a factor of

WN/4 = e—_]%(N/4) = e_j% pr—

N —J

Just swaps the real and imaginary components of a complex number.

Hence a DFT of length 4 doesn’t require any complex multiples.

= Half of the multiples of an 8-point DFT also don’t require
multiplication

= Composite length FIF'Ts can be very etficient for any length that
factors into terms of this order

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Non-Power-of-2 FFT's

0 For example N = 693 factors into
= N=()O)11)
0 each of which can be implemented etficiently. We
would perform
= 9x 11 DFTs of length 7
= 7x 11 DFTs of length 9, and
= 7x9DFTs of length 11

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Non-Power-of-2 FFT's

0 Historically, the power-ot-two FFT's were much
faster (better written and implemented).

0 For non-power-of-two length, it was faster to zero
pad to power of two.

0 Recently this has changed. The free FF'TW package
implements very etficient algorithms for almost any
filter length. Matlab has used FF'T'W since version 6

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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FF'T Computation FLLOPS

X 10° Number of FLOPS for MATLAB FFT Function

Number of FLOPS

0 50 100 150 200 250
Transform length N

Penn ESE 531 Spring 2021 - Khanna
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FF'T Computation Time

FFT computation ime (Matlab FFTW) on MacBookPro
0.015

0.005

run time [ms]

I

M4 256

50 100 150 200 250

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley



FE'T as Matrix Operation

0 Wy is fully populated = N? entries

(X0
X[]
\ X[N-1] /

(o
WO
N.— 0

\ w{V

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley

WI(\JI(N_I) \

K(N—1)
WN

WAIN—]..)(N—I) )

(A
x[.n]
\ x(N—1] /
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FE'T as Matrix Operation

( X[0] \ / WI(\)IO - WI(\]In C e WI(\)I(N_I) \ ( x[0] \
X[K] = W;;,O » W/G" . WI(;("V—U x[n]
k XN —1] / \ WI(VN'—Uo o W’(VN'—l)n N WkN—i)(N—n ) \ x(v—1] /

0 Wy is fully populated = N? entries

o FFT is a decomposition of Wy into a more sparse form:

Fr = IN/2 DN/2 WN/2 0 Even-Odd Perm.
N IN/2 —DN/2 0 WN/z Matrix

0 Iy is an identity matrix. Dy, is a diagonal matrix with
entries 1, Wy, -+, WytV/2!

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley



FE'T as Matrix Operation

Fn = [ Inz2 Dny } [ Whyz 0
In2 —Dny2 0 Why

Example: N =4

10 1 0 1 1 0
|01 0 W 1 -1 0
10 -1 0 0 0 1
01 0 -W,|[0 0 1

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Even-Odd Perm.

Matrix
171 0 0O

0 0 1

0 1 0
11000
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Run Time (sec)

Beyond NlogNN

0o What if the signal x[n] has a k sparse frequency

= A. Gilbert et. al, “Near-optimal sparse Fourier representations via

sampling

= H. Hassanieh et. al, “Nearly Optimal Sparse Fourier Transform”

m Others...

= O(K Log N) instead of O(N Log N)

Run Time vs Signal Size (k=50)

10 ¢
isFFT 3.0 (Exact)
NG S b
! RAFFTIO0 e B e
+ -—"”.
01 & i v el
!"‘
0.01 et
L ¥
"1"‘
0.001 S g
"'- -+
00001 | _ ¥
&
3
1e-05

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Signal Size (n)

10 |

N

e
e

0.01

Run Time (sec)

o
g

Run Time vs Signal Sparsity (N=2%)

sFFT 3.0 (Exact)
FFTW
AAFFT 0.9

1 1 1 1 1 1 1 1

27

210 211 212 213 214 215 216 217 218
Sparsity (K)

2®  2°

From: http://groups.csail.mit.edu/netmit/sFFT/paper.html
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Big Ideas

0 Fast Fourier Transform

Enable computation of an N-point DFT (or DFT!) with
the order of just N- log, N complex multiplications.

Most FFT algorithms decompose the computation of a DFT into
successively smaller DFT computations.
= Decimation-in-time algorithms

= Decimation-in-frequency
Historically, power-of-2 DFT's had highest etficiency

Modern computing has led to non-power-of-2 FFT's with
high ettficiency

Sparsity leads to reduced computation on order K- logN

Penn ESE 531 Spring 2021 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Admin

a0 HW 7 due 4/12
a0 HW 8 due 4/19

Penn ESE 531 Spring 2021 — Khanna
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