ESE 531: Digital Signal Processing

Week 13 Lecture 23: April 11, 2021 Fast Fourier Transform

- Discrete Fourier Transform
 - Linear convolution through circular convolution
 - Overlap and add
 - Overlap and save
 - Circular convolution through DFT
- Today
 - The Fast Fourier Transform

Fast Fourier Transform (FFT)

Penn ESE 531 Spring 2021 - Khanna

Fast Fourier Transform Algorithms

We are interested in efficient computing methods for the DFT and inverse DFT:

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = 0, \dots, N-1$$
$$x[n] = \sum_{k=0}^{N-1} X[k] W_N^{-kn}, \quad n = 0, \dots, N-1$$

$$W_N = e^{-j\left(\frac{2\pi}{N}\right)}.$$

Reminder: Inverse DFT via DFT

Recall that we can use the DFT to compute the inverse DFT:

$$\mathcal{DFT}^{-1}\{X[k]\} = \frac{1}{N} \left(\mathcal{DFT}\{X^*[k]\}\right)^*$$

Hence, we can just focus on efficient computation of the DFT.

 Straightforward computation of an N-point DFT (or inverse DFT) requires N² complex multiplications.

- Fast Fourier transform algorithms enable computation of an N-point DFT (or inverse DFT) with the order of just N · log₂ N complex multiplications.
 - This can represent a huge reduction in computational load, especially for large N.

Ν	N ²	$N \cdot \log_2 N$	$\frac{N^2}{N \cdot \log_2 N}$
16	256	64	4.0
128	16,384	896	18.3
1,024	1,048,576	10,240	102.4
8,192	67,108,864	106,496	630.2

- Fast Fourier transform algorithms enable computation of an N-point DFT (or inverse DFT) with the order of just N · log₂ N complex multiplications.
 - This can represent a huge reduction in computational load, especially for large N.

Ν	N ²	$N \cdot \log_2 N$	$\frac{N^2}{N \cdot \log_2 N}$
16	256	64	4.0
128	16,384	896	18.3
1,024	1,048,576	10,240	102.4
8,192	67,108,864	106,496	630.2
$6 imes 10^6$	$36 imes 10^{12}$	$135 imes 10^6$	$2.67 imes 10^{5}$

Eigenfunction Properties

- Most FFT algorithms exploit the following properties of W_N^{kn}:
 - Conjugate Symmetry

$$W_N^{k(N-n)} = W_N^{-kn} = (W_N^{kn})^*$$

Periodicity in n and k

$$W_N^{kn} = W_N^{k(n+N)} = W_N^{(k+N)n}$$

Power

$$W_N^2 = W_{N/2}$$

FFT Algorithms via Decimation

- Most FFT algorithms decompose the computation of a DFT into successively smaller DFT computations.
 - Decimation-in-time algorithms decompose x[n] into successively smaller subsequences.
 - Decimation-in-frequency algorithms decompose X[k] into successively smaller subsequences.
- Note: Assume length of x[n] is power of 2 (N = 2^v). If not, zero-pad to closest power of 2.

• We start with the DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = 0, \dots, N-1$$

• We start with the DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = 0, \dots, N-1$$

• Separate the sum into even and odd terms:

$$X[k] = \sum_{n \text{ even}} x[n] W_N^{kn} + \sum_{n \text{ odd}} x[n] W_N^{kn}$$

• We start with the DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = 0, \dots, N-1$$

• Separate the sum into even and odd terms:

$$X[k] = \sum_{n \text{ even}} x[n] W_N^{kn} + \sum_{n \text{ odd}} x[n] W_N^{kn}$$

These are two DFTs, each with half the number of samples (N/2)

$$X[k] = \sum_{n \text{ even}} x[n] W_N^{kn} + \sum_{n \text{ odd}} x[n] W_N^{kn}$$

$$X[k] = \sum_{n \text{ even}} x[n] W_N^{kn} + \sum_{n \text{ odd}} x[n] W_N^{kn}$$

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r] W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1] W_N^{(2r+1)k}$$

$$X[k] = \sum_{n \text{ even}} x[n] W_N^{kn} + \sum_{n \text{ odd}} x[n] W_N^{kn}$$

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r] W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1] W_N^{(2r+1)k}$$
$$= \sum_{r=0}^{(N/2)-1} x[2r] W_N^{2rk} + W_N^k \sum_{r=0}^{(N/2)-1} x[2r+1] W_N^{2rk}$$

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r] W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1] W_N^{(2r+1)k}$$
$$= \sum_{r=0}^{(N/2)-1} x[2r] W_N^{2rk} + W_N^k \sum_{r=0}^{(N/2)-1} x[2r+1] W_N^{2rk}$$

Note that:

$$W_N^{2rk} = e^{-j\left(\frac{2\pi}{N}\right)(2rk)} = e^{-j\left(\frac{2\pi}{N/2}\right)rk} = W_{N/2}^{rk}$$

Remember this trick, it will turn up often.

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r] W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1] W_N^{(2r+1)k}$$
$$= \sum_{r=0}^{(N/2)-1} x[2r] W_N^{2rk} + W_N^k \sum_{r=0}^{(N/2)-1} x[2r+1] W_N^{2rk}$$

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk} + W_N^k \sum_{r=0}^{(N/2)-1} x[2r+1] W_{N/2}^{rk}$$

Decimation-in-Time FFT
Let
$$n = 2r$$
 (n even) and $X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = 0, ..., N-1$
 $X[k] = \sum_{r=0}^{(N/2)-1} x[2r] W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1] W_N^{(2r+1)k}$
 $= \sum_{r=0}^{(N/2)-1} x[2r] W_N^{2rk} + W_N^k \sum_{r=0}^{(N/2)-1} x[2r+1] W_N^{2rk}$

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk} + W_N^k \sum_{r=0}^{(N/2)-1} x[2r+1] W_{N/2}^{rk}$$

Hence:

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk} + W_N^k \sum_{r=0}^{(N/2)-1} x[2r+1] W_{N/2}^{rk}$$
$$\triangleq G[k] + W_N^k H[k], \quad k = 0, \dots, N-1$$

where we have defined:

$$G[k] \triangleq \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk} \Rightarrow \text{DFT of even samples}$$

$$H[k] \triangleq \sum_{r=0}^{(N/2)-1} x[2r+1] W_{N/2}^{rk} \Rightarrow \text{DFT of odd samples}$$

Both G[k] and H[k] are periodic, with period N/2. For example

$$G[k] \triangleq \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk}$$

Both G[k] and H[k] are periodic, with period N/2. For example

$$G[k] \triangleq \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk}$$

$$G[k+N/2] = \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{r(k+N/2)}$$

Decimation-in-Time FFT

Both G[k] and H[k] are periodic, with period N/2. For example

$$G[k] \triangleq \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk}$$

$$G[k + N/2] = \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{r(k+N/2)}$$

$$= \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk} W_{N/2}^{r(N/2)}$$

Decimation-in-Time FFT

(

Both G[k] and H[k] are periodic, with period N/2. For example

$$G[k] \triangleq \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk}$$

$$G[k + N/2] = \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{r(k+N/2)}$$

$$= \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk} W_{N/2}^{r(N/2)} = 1$$

$$= \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk}$$

$$= G[k]$$

□ So,

$$G[k + (N/2)] = G[k]$$

 $H[k + (N/2)] = H[k]$

The periodicity of G[k] and H[k] allows us to further simplify. For the first N/2 points we calculate G[k] and W_N^kH[k], and then compute the sum

$$X[k] = G[k] + W_N^k H[k] \qquad \forall \{k : 0 \le k < \frac{N}{2}\}.$$

How does periodicity help for $\frac{N}{2} \leq k < N$?

$$X[k] = G[k] + W_N^k H[k] \qquad \forall \{k : 0 \le k < \frac{N}{2}\}.$$

for $\frac{N}{2} \leq k < N$:

$$W_N^{k+(N/2)} = ?$$

X[k + (N/2)] = ?

$$X[k] = G[k] + W_N^k H[k] \qquad \forall \{k : 0 \le k < \frac{N}{2}\}.$$

for $\frac{N}{2} \le k < N$:
$$W_N^{k+N/2} = \left(e^{-j\frac{2\pi}{N}}\right)^{k+N/2}$$
$$= \left(e^{-j\frac{2\pi}{N}k}\right) \left(e^{-j\frac{2\pi}{N} \times \frac{N}{2}}\right)$$
$$X[k + (N/2)] = ? \qquad = \left(e^{-j\frac{2\pi}{N}k}\right) \left(e^{-j\pi}\right) = -W_N^k$$

X[k + (N/2)] = ?

Penn ESE 531 Spring 2021 – Khanna Adapted from M. Lustig, EECS Berkeley A /

$X[k + (N/2)] = G[k] - W_N^k H[k]$

• We previously calculated G[k] and $W_N^kH[k]$.

 Now we only have to compute their difference to obtain the second half of the spectrum. No additional multiplies are required.

The *N*-point DFT has been reduced two N/2-point DFTs, plus N/2 complex multiplications. The 8 sample DFT is then:

Note that the inputs have been reordered so that the outputs come out in their proper sequence.

Decimation-in-Time FFT

- Note that the inputs have been reordered so that the outputs come out in their proper sequence.
- We can define a *butterfly operation*, e.g., the computation of X[0] and X[4] from G[0] and H[0]:

Decimation-in-Time FFT

- Note that the inputs have been reordered so that the outputs come out in their proper sequence.
- We can define a *butterfly operation*, e.g., the computation of X[k] and X[k+N/2] from G[k] and H[k]:

• Still $O(N^2)$ operations.... What should we do?

We can use the same approach for each of the N/2 point DFT's. For the N = 8 case, the N/2 DFTs look like

*Note that the inputs have been reordered again.

$$W_{N/4} = W_{8/4} = W_2 = e^{-j\pi} = -1$$

$$W_{N/4} = W_{8/4} = W_2 = e^{-j\pi} = -1$$
$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$
$$= \sum_{n=0}^{1} x[n] W_2^{kn}$$
$$= x[0] W_2^{k\cdot 0} + x[1] W_2^{k\cdot 1}$$
$$= x[0] + x[1] W_2^k$$

$$W_{N/4} = W_{8/4} = W_2 = e^{-j\pi} = -1$$

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$

$$= \sum_{n=0}^{1} x[n] W_2^{kn}$$

$$= x[0] W_2^{k \cdot 0} + x[1] W_2^{k \cdot 1}$$

$$= x[0] + x[1] W_2^k$$

$$W_{N/4} = W_{8/4} = W_2 = e^{-j\pi} = -1$$

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$

$$= \sum_{n=0}^{1} x[n] W_2^{kn}$$

$$= x[0] W_2^{k\cdot 0} + x[1] W_2^{k\cdot 1}$$

$$= x[0] + x[1] W_2^k$$

Penn ESE 531 Spring 2021 – Khanna Adapted from M. Lustig, EECS Berkeley |− x[1]

$$W_{\mathsf{N}/4} = W_{\mathsf{8}/4} = W_2 = e^{-j\pi} = -1$$

The diagram of this stage is then

Replace N/2-point DFT with 2-point DFT and butterfly operations

Combining all these stages, the diagram for the 8 sample DFT is:

Combining all these stages, the diagram for the 8 sample DFT is:

• $3 = \log_2(N) = \log_2(8)$ stages

- 4=N/2=8/2 multiplications in each stage
 - 1st stage has trivial multiplication

Decimation-in-Time FFT

- □ In general, there are log_2N stages of decimation-in-time.
- Each stage requires N/2 complex multiplications, some of which are trivial.
- The total number of complex multiplications is (N/2) log₂N, or is O(N log₂N)

Decimation-in-Time FFT

- □ In general, there are log_2N stages of decimation-in-time.
- Each stage requires N/2 complex multiplications, some of which are trivial.
- The total number of complex multiplications is (N/2) log₂N, or is O(N log₂N)
- The order of the input to the decimation-in-time FFT algorithm must be permuted.
 - Net effect is reversing the bit order of indexes

This is illustrated in the following table for N = 8.

Decimal	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

This is illustrated in the following table for N = 8.

Decimal	Binary	Bit-Reversed Binary
0	000	000
1	001	100
2	010	010
3	011	110
4	100	001
5	101	101
6	110	011
7	111	111

This is illustrated in the following table for N = 8.

Decimal	Binary	Bit-Reversed Binary	Bit-Reversed Decimal
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Combining all these stages, the diagram for the 8 sample DFT is:

The DFT is

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk}$$

The DFT is

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk}$$

If we only look at the even samples of X[k], we can write k = 2r,

$$X[2r] = \sum_{n=0}^{N-1} x[n] W_N^{n(2r)}$$

The DFT is

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk}$$

If we only look at the even samples of X[k], we can write k = 2r,

$$X[2r] = \sum_{n=0}^{N-1} x[n] W_N^{n(2r)}$$

We split this into two sums, one over the first N/2 samples, and the second of the last N/2 samples.

$$X[2r] = \sum_{n=0}^{(N/2)-1} x[n] W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2] W_N^{2r(n+N/2)}$$

Decimation-in-Frequency FFT

But
$$W_N^{2r(n+N/2)} = W_N^{2rn} W_N^{rN} = W_N^{2rn} = W_{N/2}^{rn}$$
.
We can then write

$$X[2r] = \sum_{n=0}^{(N/2)-1} x[n] W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2] W_N^{2r(n+N/2)}$$
$$= \sum_{n=0}^{(N/2)-1} x[n] W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2] W_N^{2rn}$$

Penn ESE 531 Spring 2021 – Khanna Adapted from M. Lustig, EECS Berkeley

Decimation-in-Frequency FFT

But
$$W_N^{2r(n+N/2)} = W_N^{2rn} W_N^{rN} = W_N^{2rn} = W_{N/2}^{rn}$$
.
We can then write

$$X[2r] = \sum_{n=0}^{(N/2)-1} x[n] W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2] W_N^{2r(n+N/2)}$$

=
$$\sum_{n=0}^{(N/2)-1} x[n] W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2] W_N^{2rn}$$

=
$$\sum_{n=0}^{(N/2)-1} (x[n] + x[n+N/2]) W_{N/2}^{rn}$$

This is the N/2-length DFT of first and second half of x[n] summed.

Penn ESE 531 Spring 2021 – Khanna Adapted from M. Lustig, EECS Berkeley

$$X[2r] = \mathsf{DFT}_{\frac{N}{2}} \{ (x[n] + x[n + N/2]) \}$$

$$X[2r+1] = \mathsf{DFT}_{\frac{N}{2}} \{ (x[n] - x[n + N/2]) W_N^n \}$$

(By a similar argument that gives the odd samples)

$$X[2r] = \mathsf{DFT}_{\frac{N}{2}} \{ (x[n] + x[n + N/2]) \}$$

$$X[2r+1] = \mathsf{DFT}_{\frac{N}{2}} \{ (x[n] - x[n + N/2]) W_N^n \}$$

(By a similar argument that gives the odd samples)

 Continue the same approach on the N/2 DFTs, and N/4 DFTs until we reach the 2-point DFT, which is a simple butterfly operation

The diagram for and 8-point decimation-in-frequency DFT is as follows

This is just the decimation-in-time algorithm reversed! The inputs are in normal order, and the outputs are bit reversed.

Combining all these stages, the diagram for the 8 sample DFT is:

• $3 = \log_2(N) = \log_2(8)$ stages

- 4=N/2=8/2 multiplications in each stage
 - 1st stage has trivial multiplication

- A similar argument applies for any length DFT, where the length N is a composite number
- For example, if N=6, with decimation-in-frequency you could compute three 2-point DFTs followed by two 3-point DFTs

$$X[2r] = \mathsf{DFT}_{\frac{N}{2}} \{ (x[n] + x[n + N/2]) \}$$

$$X[2r+1] = \mathsf{DFT}_{\frac{N}{2}} \{ (x[n] - x[n + N/2]) W_N^n \}$$

(By a similar argument that gives the odd samples)

$$X[2r] = \mathsf{DFT}_{\frac{N}{2}} \{ (x[n] + x[n + N/2]) \}$$

$$X[2r+1] = \mathsf{DFT}_{\frac{N}{2}} \{ (x[n] - x[n + N/2]) W_N^n \}$$

(By a similar argument that gives the odd samples)

Penn ESE 531 Spring 2021 - Khanna

Non-Power-of-2 FFTs

- Good component DFTs are available for lengths up to 20(ish). Many of these exploit the structure for that specific length
 - For example, a factor of

$$W_N^{N/4} = e^{-j\frac{2\pi}{N}(N/4)} = e^{-j\frac{\pi}{2}} = -j$$

Just swaps the real and imaginary components of a complex number. Hence a DFT of length 4 doesn't require any complex multiples.

- Half of the multiples of an 8-point DFT also don't require multiplication
- Composite length FFTs can be very efficient for any length that factors into terms of this order

• For example N = 693 factors into

• N = (7)(9)(11)

- each of which can be implemented efficiently. We would perform
 - 9 x 11 DFTs of length 7
 - 7 x 11 DFTs of length 9, and
 - 7 x 9 DFTs of length 11
Non-Power-of-2 FFTs

- Historically, the power-of-two FFTs were much faster (better written and implemented).
- For non-power-of-two length, it was faster to zero pad to power of two.
- Recently this has changed. The free FFTW package implements very efficient algorithms for almost any filter length. Matlab has used FFTW since version 6

FFT Computation FLOPS

FFT Computation Time

• W_N is fully populated $\rightarrow N^2$ entries

$$\begin{pmatrix} X[0] \\ \vdots \\ X[k] \\ \vdots \\ X[N-1] \end{pmatrix} = \begin{pmatrix} W_N^{00} & \cdots & W_N^{0n} & \cdots & W_N^{0(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ W_N^{k0} & \cdots & W_N^{kn} & \cdots & W_N^{k(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ W_N^{(N-1)0} & \cdots & W_N^{(N-1)n} & \cdots & W_N^{(N-1)(N-1)} \end{pmatrix} \begin{pmatrix} x[0] \\ \vdots \\ x[n] \\ \vdots \\ x[N-1] \end{pmatrix}$$

- W_N is fully populated $\rightarrow N^2$ entries
- FFT is a decomposition of W_N into a more sparse form:

$$F_{N} = \begin{bmatrix} I_{N/2} & D_{N/2} \\ I_{N/2} & -D_{N/2} \end{bmatrix} \begin{bmatrix} W_{N/2} & 0 \\ 0 & W_{N/2} \end{bmatrix} \begin{bmatrix} \text{Even-Odd Perm.} \\ \text{Matrix} \end{bmatrix}$$

□ $I_{N/2}$ is an identity matrix. $D_{N/2}$ is a diagonal matrix with entries 1, W_N , ..., $W_N^{N/2-1}$

$$F_{N} = \begin{bmatrix} I_{N/2} & D_{N/2} \\ I_{N/2} & -D_{N/2} \end{bmatrix} \begin{bmatrix} W_{N/2} & 0 \\ 0 & W_{N/2} \end{bmatrix} \begin{bmatrix} \text{Even-Odd Perm.} \\ \text{Matrix} \end{bmatrix}$$

Example: N = 4

$$F_{4} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & W_{4} \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -W_{4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- □ What if the signal x[n] has a k sparse frequency
 - A. Gilbert et. al, "Near-optimal sparse Fourier representations via sampling
 - H. Hassanieh et. al, "Nearly Optimal Sparse Fourier Transform"
 - Others...
 - O(K Log N) instead of O(N Log N)

From: http://groups.csail.mit.edu/netmit/sFFT/paper.html

- Fast Fourier Transform
 - Enable computation of an N-point DFT (or DFT⁻¹) with the order of just N · log₂ N complex multiplications.
 - Most FFT algorithms decompose the computation of a DFT into successively smaller DFT computations.
 - Decimation-in-time algorithms
 - Decimation-in-frequency
 - Historically, power-of-2 DFTs had highest efficiency
 - Modern computing has led to non-power-of-2 FFTs with high efficiency
 - Sparsity leads to reduced computation on order K · logN

HW 7 due 4/12 HW 8 due 4/19