
ESE 531: Digital Signal Processing

Week 13
Lecture 23: April 11, 2021
Fast Fourier Transform

Penn ESE 531 Spring 2021 – Khanna
Adapted from M. Lustig, EECS Berkeley



Last Time

! Discrete Fourier Transform 
" Linear convolution through circular convolution 

" Overlap and add 
" Overlap and save 

" Circular convolution through DFT 

! Today 
" The Fast Fourier Transform
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Fast Fourier Transform (FFT)
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Fast Fourier Transform Algorithms

! We are interested in efficient computing methods 
for the DFT and inverse DFT:
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Reminder: Inverse DFT via DFT

! Recall that we can use the DFT to compute the 
inverse DFT:

" Hence, we can just focus on efficient computation of the 
DFT. 

! Straightforward computation of an N-point DFT 
(or inverse DFT) requires N2 complex 
multiplications.
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Computation Order

! Fast Fourier transform algorithms enable computation of 
an N-point DFT (or inverse DFT) with the order of 
just N· log2 N complex multiplications. 
" This can represent a huge reduction in computational 

load, especially for large N.
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Computation Order

! Fast Fourier transform algorithms enable computation of 
an N-point DFT (or inverse DFT) with the order of 
just N· log2 N complex multiplications. 
" This can represent a huge reduction in computational 

load, especially for large N.
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Eigenfunction Properties

! Most FFT algorithms exploit the following 
properties of WN

kn:
" Conjugate Symmetry

" Periodicity in n and k

" Power
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FFT Algorithms via Decimation

! Most FFT algorithms decompose the computation of a DFT 
into successively smaller DFT computations. 
" Decimation-in-time algorithms decompose x[n] into successively 

smaller subsequences. 
" Decimation-in-frequency algorithms decompose X[k] into 

successively smaller subsequences. 

! Note: Assume length of x[n] is power of 2 (N = 2v). If not, 
zero-pad to closest power of 2.

9
Penn ESE 531 Spring 2021 – Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

! We start with the DFT
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Decimation-in-Time FFT

! We start with the DFT

! Separate the sum into even and odd terms:
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Decimation-in-Time FFT

! We start with the DFT

! Separate the sum into even and odd terms:

" These are two DFTs, each with half the number of 
samples (N/2)

12
Penn ESE 531 Spring 2021 – Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

13
Penn ESE 531 Spring 2021 – Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT
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Decimation-in-Time FFT
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Decimation-in-Time FFT
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Decimation-in-Time FFT
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Decimation-in-Time FFT
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Decimation-in-Time FFT
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samples

samples
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Decimation-in-Time FFT
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Decimation-in-Time FFT
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X[0]=G[0]+WN0H[0]



Decimation-in-Time FFT
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X[4]=G[4]+WN4H[4]

??



Decimation-in-Time FFT
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Decimation-in-Time FFT
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Decimation-in-Time FFT

25
Penn ESE 531 Spring 2021 – Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT
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=1



Decimation-in-Time FFT

! So,

! The periodicity of G[k] and H[k] allows us to 
further simplify. For the first N/2 points we 
calculate G[k] and WN

kH[k], and then compute the 
sum
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Decimation-in-Time FFT
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First N/2 DFTs
0 ≤ k < N/2



Decimation-in-Time FFT
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Decimation-in-Time FFT
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Decimation-in-Time FFT
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! We previously calculated G[k] and WN
kH[k]. 

! Now we only have to compute their difference to 
obtain the second half of the spectrum. No 
additional multiplies are required.

Penn ESE 531 Spring 2021 – Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT
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= -WN0

= -WN1

= -WN2

= -WN3



Decimation-in-Time FFT
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Decimation-in-Time FFT
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! Note that the inputs have been reordered so that the 
outputs come out in their proper sequence. 
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Decimation-in-Time FFT
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! Note that the inputs have been reordered so that the 
outputs come out in their proper sequence. 

! We can define a butterfly operation, e.g., the 
computation of X[0] and X[4] from G[0] and H[0]:
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Decimation-in-Time FFT
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! Note that the inputs have been reordered so that the 
outputs come out in their proper sequence. 

! We can define a butterfly operation, e.g., the 
computation of X[k] and X[k+N/2] from G[k] and 
H[k]:
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G[k]

H[k]

WNk

X[k] = G[k]+WNkH[k]

X[k+N/2] = G[k]-WNkH[k]



Decimation-in-Time FFT
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! Still O(N2) operations…. What should we do?
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Decimation-in-Time FFT
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! We can use the same approach for each of the N/2 
point DFT’s. For the N = 8 case, the N/2 DFTs 
look like
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Decimation-in-Time FFT

! At this point for the 8 sample DFT, we can replace 
the N/4 = 2 sample DFT’s with a single butterfly. 
The fundamental eigenfunction is:
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Decimation-in-Time FFT

! At this point for the 8 sample DFT, we can replace 
the N/4 = 2 sample DFT’s with a single butterfly. 
The fundamental eigenfunction is:
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X [k]= x[n]WN
kn

n=0

N−1

∑

= x[n]W2
kn

n=0

1

∑

= x[0]W2
k⋅0 + x[1]W2

k⋅1

= x[0]+ x[1]W2
k



Decimation-in-Time FFT

! At this point for the 8 sample DFT, we can replace 
the N/4 = 2 sample DFT’s with a single butterfly. 
The fundamental eigenfunction is:
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X [k]= x[n]WN
kn

n=0

N−1

∑

= x[n]W2
kn

n=0

1

∑

= x[0]W2
k⋅0 + x[1]W2

k⋅1

= x[0]+ x[1]W2
k

X[0]=x[0]+x[1]
X[1]=x[0]+x[1]W21



Decimation-in-Time FFT

! At this point for the 8 sample DFT, we can replace 
the N/4 = 2 sample DFT’s with a single butterfly. 
The fundamental eigenfunction is:

42
Penn ESE 531 Spring 2021 – Khanna
Adapted from M. Lustig, EECS Berkeley

X [k]= x[n]WN
kn

n=0

N−1

∑

= x[n]W2
kn

n=0

1

∑

= x[0]W2
k⋅0 + x[1]W2

k⋅1

= x[0]+ x[1]W2
k

X[0]=x[0] + x[1]
X[1]=x[0] – x[1]



Decimation-in-Time FFT

! At this point for the 8 sample DFT, we can replace 
the N/4 = 2 sample DFT’s with a single butterfly. 
The fundamental eigenfunction is:
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Decimation-in-Time FFT
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! Replace N/2-point DFT with 2-point DFT and butterfly 
operations
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Decimation-in-Time FFT
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1

1

1

1

8pt DFT2 4pt DFTs4 2pt DFTs



Decimation-in-Time FFT
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• 3=log2(N)=log2(8)  stages
• 4=N/2=8/2 multiplications in each stage

• 1st stage has trivial multiplication



Decimation-in-Time FFT
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! In general, there are log2N stages of decimation-in-time. 
! Each stage requires N/2 complex multiplications, some of 

which are trivial. 
! The total number of complex multiplications is (N/2) log2N, 

or is O(N log2N)
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Decimation-in-Time FFT
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! In general, there are log2N stages of decimation-in-time. 
! Each stage requires N/2 complex multiplications, some of 

which are trivial. 
! The total number of complex multiplications is (N/2) log2N, 

or is O(N log2N)

! The order of the input to the decimation-in-time FFT 
algorithm must be permuted. 
" Net effect is reversing the bit order of indexes
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Decimation-in-Time FFT
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Decimation-in-Time FFT
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Decimation-in-Time FFT
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Decimation-in-Time FFT
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Decimation-in-Frequency FFT
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Decimation-in-Frequency FFT
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Decimation-in-Frequency FFT
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Decimation-in-Frequency FFT
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rN



Decimation-in-Frequency FFT
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rN



Decimation-in-Frequency FFT
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Decimation-in-Frequency FFT
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! Continue the same approach on the N/2 DFTs, and N/4 
DFTs until we reach the 2-point DFT, which is a simple 
butterfly operation



Decimation-in-Frequency FFT

60
Penn ESE 531 Spring 2021 – Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT
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• 3=log2(N)=log2(8)  stages
• 4=N/2=8/2 multiplications in each stage

• 1st stage has trivial multiplication



Non-Power-of-2 FFTs
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! A similar argument applies for any length DFT, where the 
length N is a composite number

! For example, if  N=6, with decimation-in-frequency you 
could compute three 2-point DFTs followed by two 3-point 
DFTs



Example: Non-Power-of-2 FFTs
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6-pt DFT

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]



Decimation-in-Frequency FFT
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Example: Non-Power-of-2 FFTs
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3-pt 
DFT

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

X[0]
X[2]
X[4]

X[1]

X[3]
X[5]

3-pt 
DFT



Decimation-in-Frequency FFT
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Example: Non-Power-of-2 FFTs
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3-pt 
DFT

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

X[0]
X[2]
X[4]

X[1]

X[3]
X[5]

3-pt 
DFT

W60

W61

W62

-1

-1

-1



Example: Non-Power-of-2 FFTs
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3-pt 
DFT

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

X[0]
X[2]
X[4]

X[1]

X[3]
X[5]

3-pt 
DFT

W60

W61

W62

-1

-1

-1



Example: Non-Power-of-2 FFTs
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3-pt 
DFT

x[0]

x[3]

X[1]

X[4]

X[2]

x[5]

X[0]
X[2]
X[4]

X[1]

X[3]
X[5]

3-pt 
DFT

2-pt 
DFT

2-pt 
DFT

2-pt 
DFT



Example: Non-Power-of-2 FFTs

70Penn ESE 531 Spring 2021 - Khanna

3-pt 
DFT

x[0]

x[3]

X[1]

X[4]

X[2]

x[5]

X[0]
X[2]
X[4]

X[1]

X[3]
X[5]

3-pt 
DFT

W60

W61

W62

2-pt 
DFT

2-pt 
DFT

2-pt 
DFT



Non-Power-of-2 FFTs
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! Good component DFTs are available for lengths up to 
20(ish).  Many of  these exploit the structure for that specific 
length
" For example, a factor of  

Just swaps the real and imaginary components of  a complex number.  
Hence a DFT of  length 4 doesn’t require any complex multiples.

" Half  of  the multiples of  an 8-point DFT also don’t require 
multiplication

" Composite length FFTs can be very efficient for any length that 
factors into terms of  this order



Non-Power-of-2 FFTs

! For example N = 693 factors into 
" N = (7)(9)(11) 

! each of which can be implemented efficiently. We 
would perform 
" 9 x 11 DFTs of length 7 
" 7 x 11 DFTs of length 9, and 
" 7 x 9 DFTs of length 11
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Non-Power-of-2 FFTs

! Historically, the power-of-two FFTs were much 
faster (better written and implemented). 

! For non-power-of-two length, it was faster to zero 
pad to power of two. 

! Recently this has changed. The free FFTW package 
implements very efficient algorithms for almost any 
filter length. Matlab has used FFTW since version 6

73
Penn ESE 531 Spring 2021 – Khanna
Adapted from M. Lustig, EECS Berkeley



FFT Computation FLOPS
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FFT Computation Time
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FFT as Matrix Operation

! WN is fully populated # N2 entries

76
Penn ESE 531 Spring 2021 – Khanna
Adapted from M. Lustig, EECS Berkeley



FFT as Matrix Operation

! WN is fully populated # N2 entries
! FFT is a decomposition of WN into a more sparse form: 

! IN/2 is an identity matrix. DN/2 is a diagonal matrix with 
entries 1, WN, ··· , WN

N/2-1
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FFT as Matrix Operation
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Beyond NlogN

! What if the signal x[n] has a k sparse frequency 
" A. Gilbert et. al, “Near-optimal sparse Fourier representations via 

sampling 
" H. Hassanieh et. al, “Nearly Optimal Sparse Fourier Transform” 
" Others…
" O(K Log N) instead of O(N Log N)

79From: http://groups.csail.mit.edu/netmit/sFFT/paper.html



Big Ideas

! Fast Fourier Transform
" Enable computation of an N-point DFT (or DFT-1) with 

the order of just N· log2 N complex multiplications. 
" Most FFT algorithms decompose the computation of a DFT into 

successively smaller DFT computations. 
" Decimation-in-time algorithms 
" Decimation-in-frequency 

" Historically, power-of-2 DFTs had highest efficiency
" Modern computing has led to non-power-of-2 FFTs with 

high efficiency
" Sparsity leads to reduced computation on order K· logN
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Admin

! HW 7 due 4/12
! HW 8 due 4/19
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