ESE 531: Digital Signal Processing

Week 15

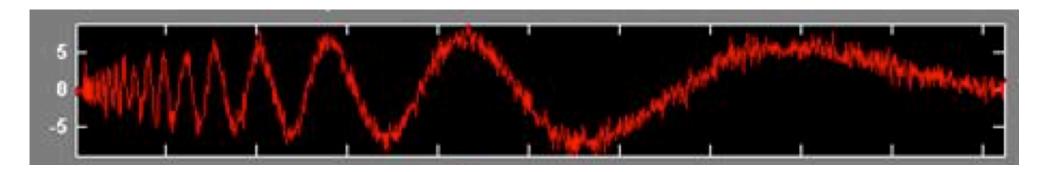
Lecture 27: April 25, 2021

Wavelet Transform

Wavelet Transform

Motivation

□ Some signals obviously have spectral characteristics that vary with time



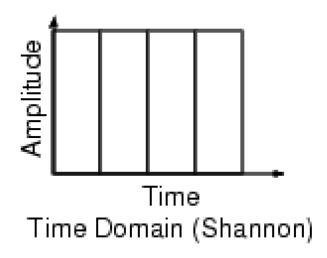
Criticism of Fourier Spectrum

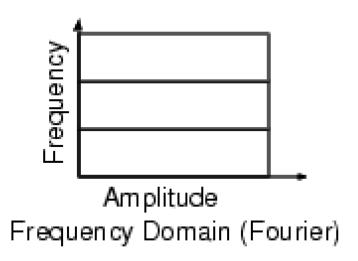
□ It's giving you the spectrum of the 'whole time-series'

■ Which is OK if the time-series is stationary. But what if its not?

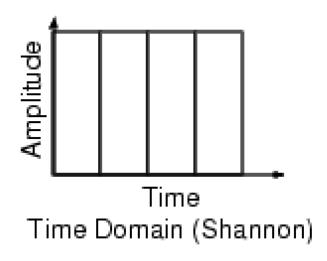
- We need a technique that can "march along" a time series and that is capable of:
 - Analyzing spectral content in different places
 - Detecting sharp changes in spectral character

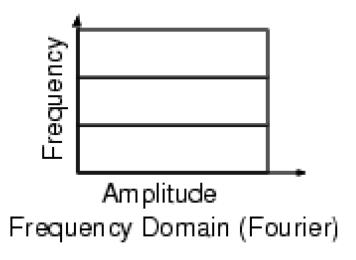
Transform Comparison

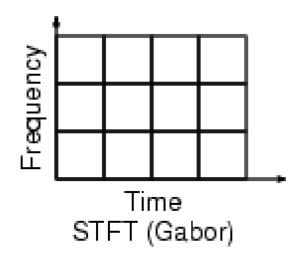


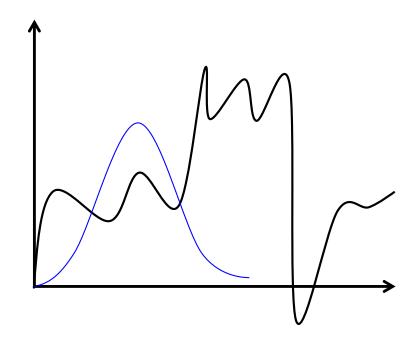


Transform Comparison



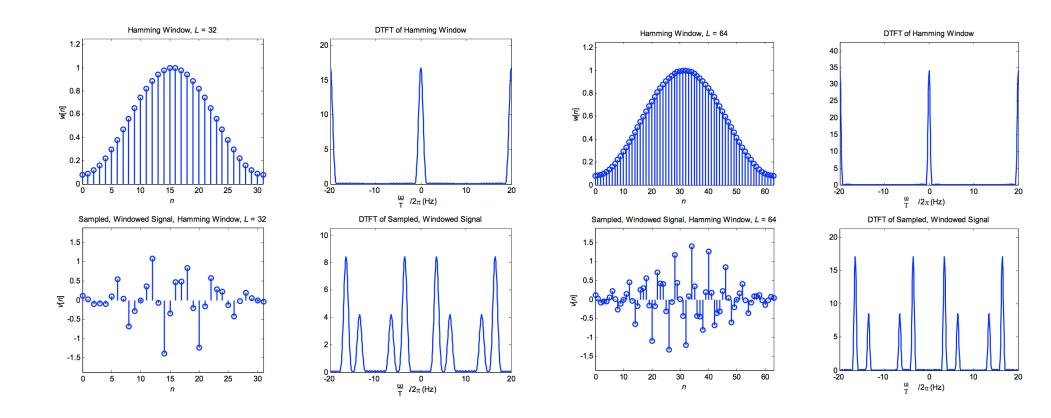




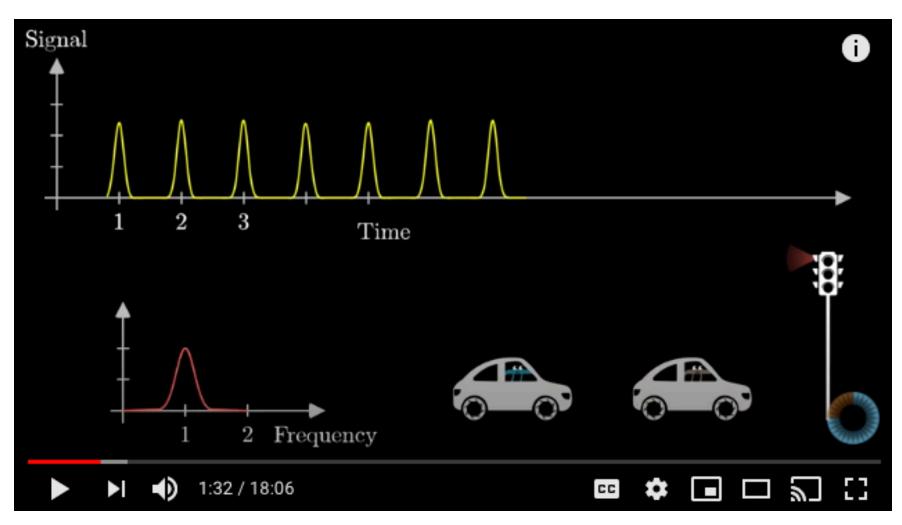


Windowed Sampled CT Signal Example

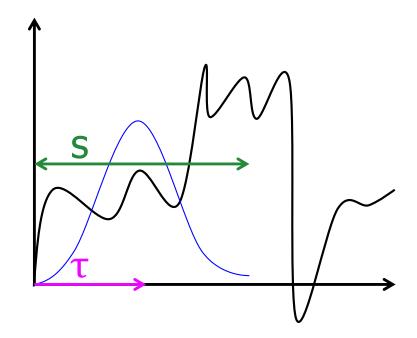
- As before, the sampling rate is $\Omega s/2\pi = 1/T = 20Hz$
- □ Hamming Window, L = 32 vs. L = 64

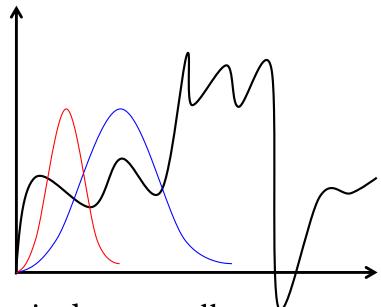


Uncertainty Principle

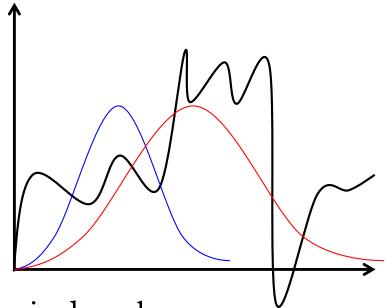


https://youtu.be/MBnnXbOM5S4?t=49

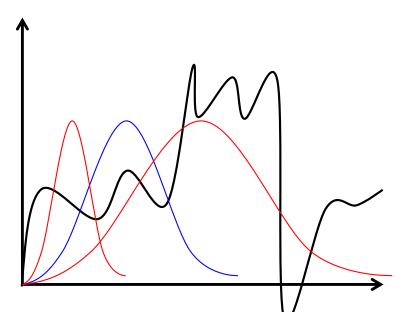




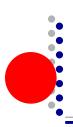
- Make the window smaller
 - Better localization
 - Less spectral resolution



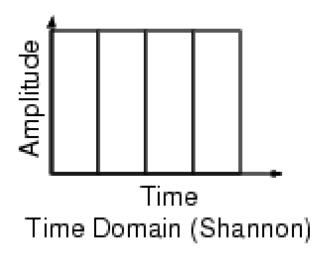
- Make the window larger
 - Worse localization
 - More spectral resolution



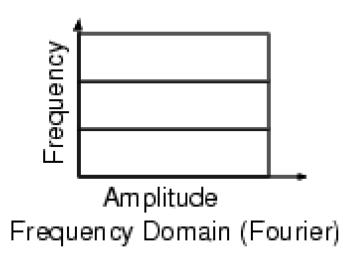
- Use a big window for low frequency content that is not localized in time
- Use a small window for high frequency content that is localized in time

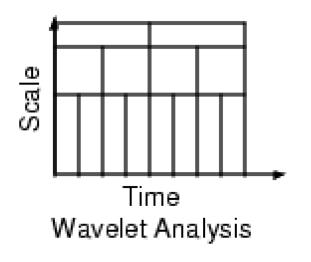


Transform Comparison



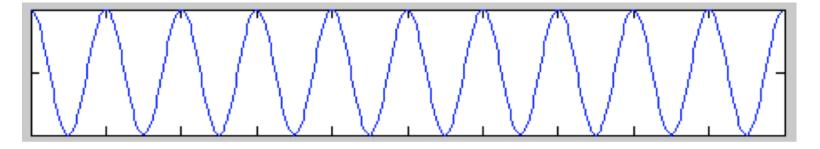




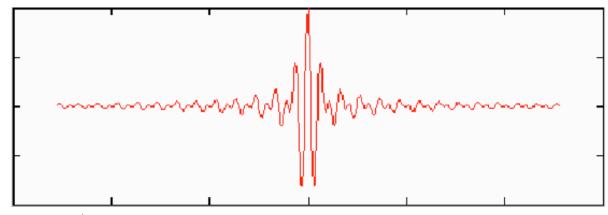


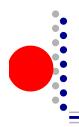
Fourier vs. Wavelet

■ Fourier Analysis is based on an indefinitely long cosine wave of a specific frequency



■ Wavelet Analysis is based on an short duration wavelet of a specific center frequency



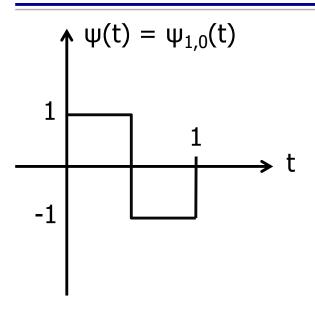


Wavelet Transform

■ All wavelets derived from *mother* wavelet

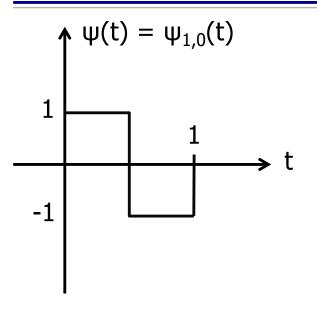
$$\Psi_{s,\tau}(t) = \frac{1}{\sqrt{s}} \Psi \left(\frac{t - \tau}{s} \right)$$

Example: Haar Wavelet



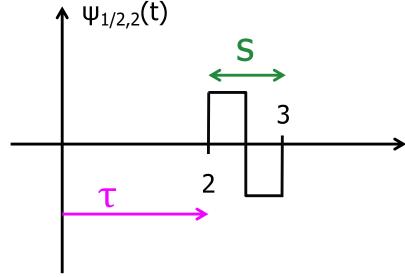
$$\Psi_{s,\tau}(t) = \frac{1}{\sqrt{s}} \Psi\left(\frac{t-\tau}{s}\right)$$

Example: Haar Wavelet

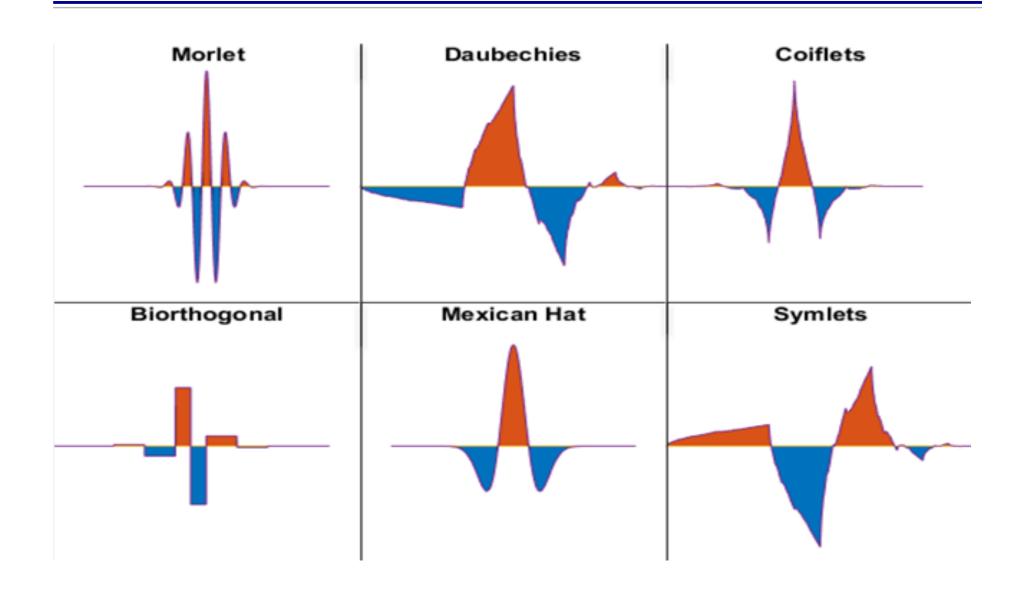


$$\Psi_{s,\tau}(t) = \frac{1}{\sqrt{s}} \Psi \left(\frac{t - \tau}{s} \right)$$

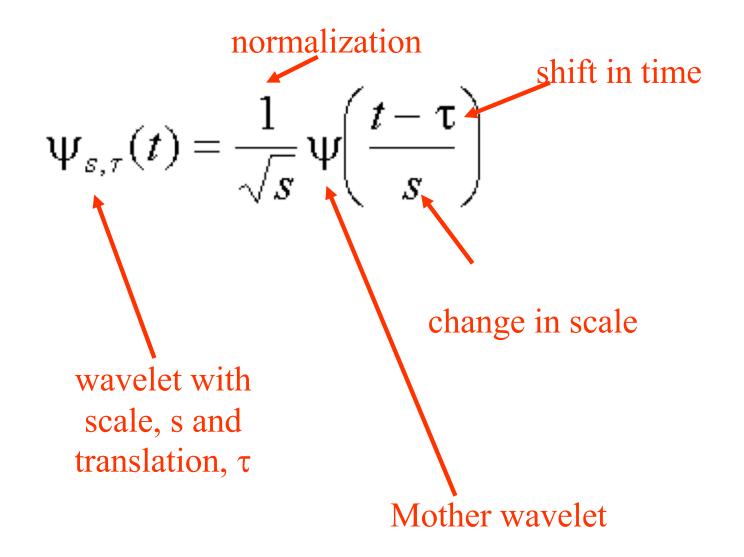
$$s=1/2, \tau=2$$

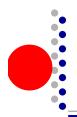


Examples of Wavelets

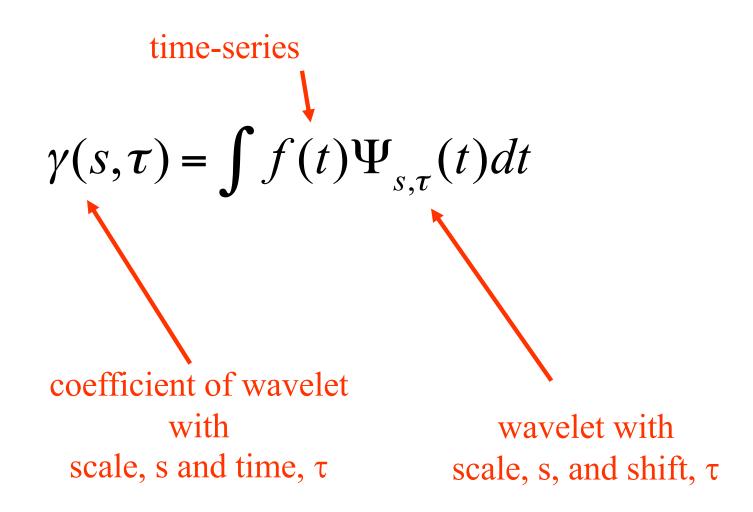


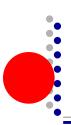
Wavelet – Scaled and Shifted



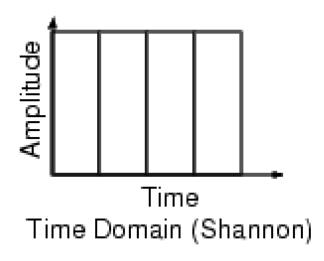


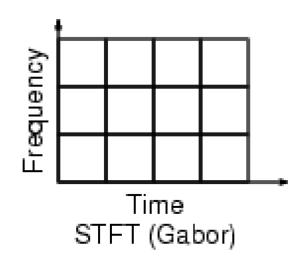
Continuous Wavelet Transform

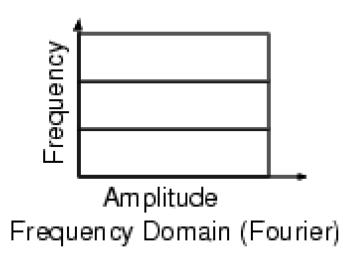


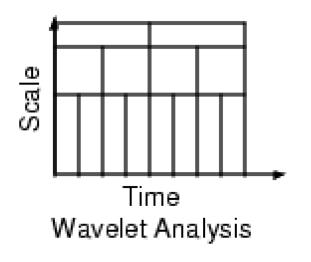


Transform Comparison

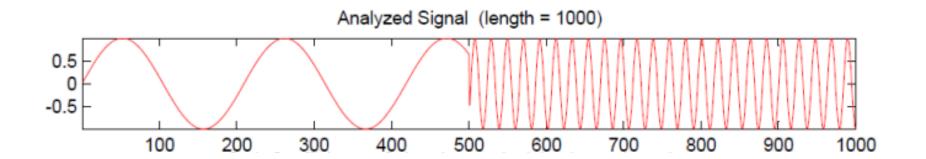




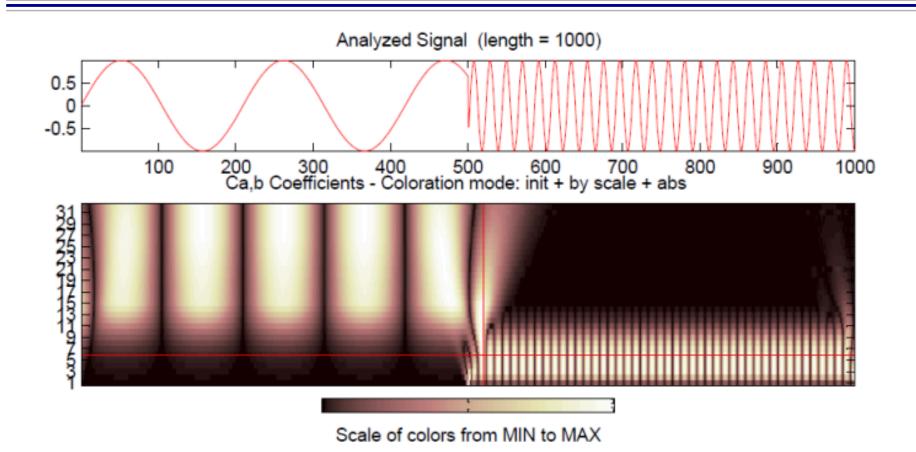




Wave Demo

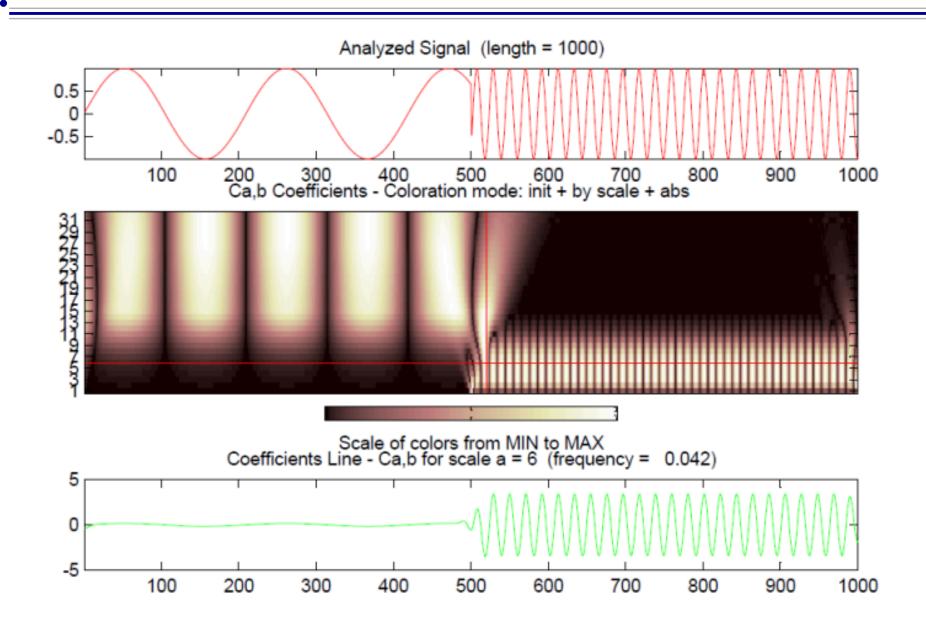


Wave Demo



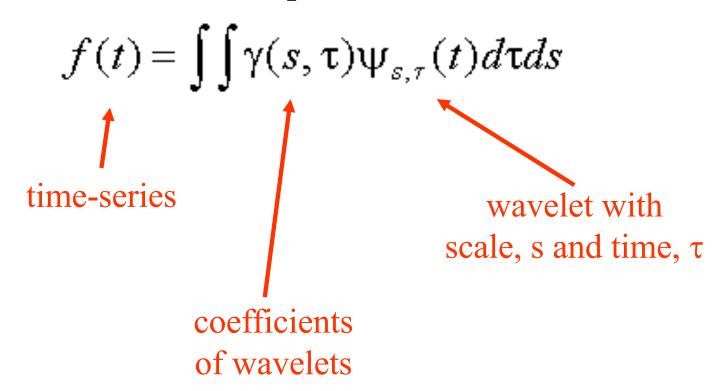
Penn ESE 531 Spring 2020 - Khanna

Wave Demo



Inverse Wavelet Transform

 Build up a time-series as sum of wavelets of different scales, s, and positions, t

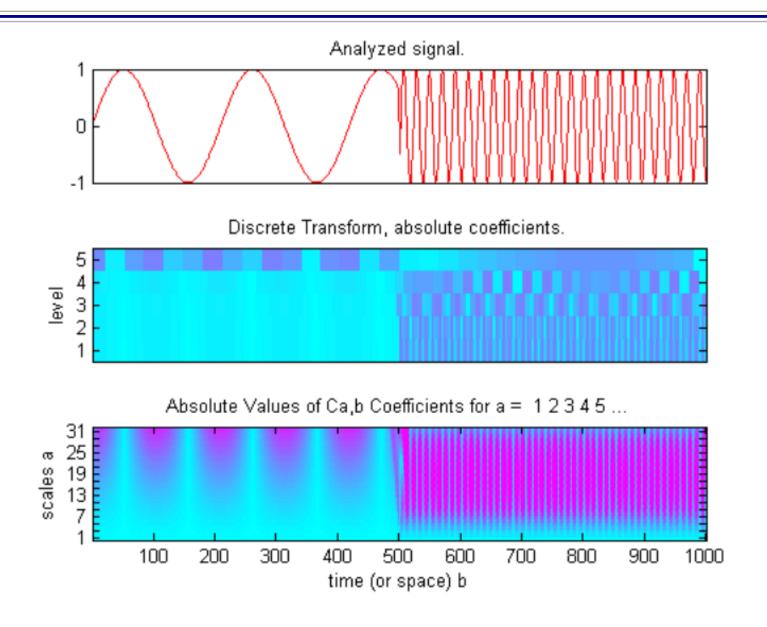


Discrete wavelets:

- □ Scale wavelets only by integer powers of 2
 - $s_j = 2^j$
- □ And shifting by integer multiples of s_j for each successive scale
- □ Then $\gamma(s_j, \tau_{j,k}) = \gamma_{jk}$
 - where j = 1, 2, ..., k = ... -2, -1, 0, 1, 2, ...

$$\gamma_{j,k} = \frac{1}{\sqrt{2^j}} \int f(t) \Psi\left(\frac{t - k2^j}{2^j}\right) dt$$

DWT vs CWT



Wavelet Transform

■ Determining the wavelet coefficients for a fixed scale, *s*, can be thought of as a filtering operation

$$\gamma(s,\tau) = \int f(t)\Psi_{s,\tau}(t)dt$$

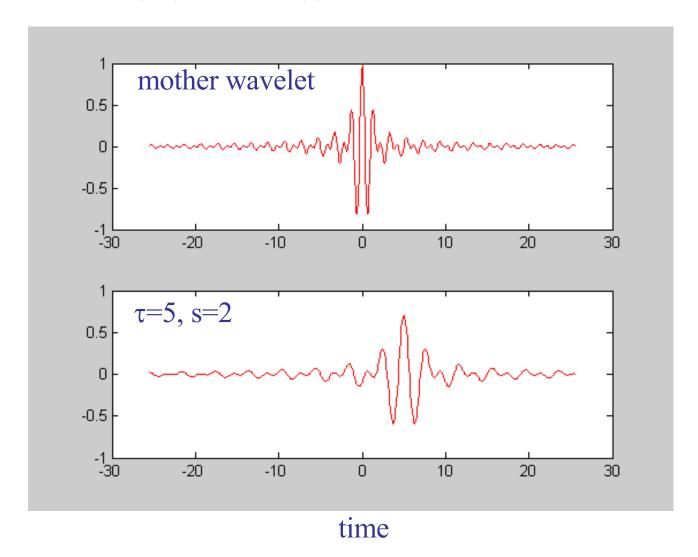
$$\gamma_s(t) = \int f(t)\Psi_s(t)dt = f(t) * \Psi_s(t)$$

where

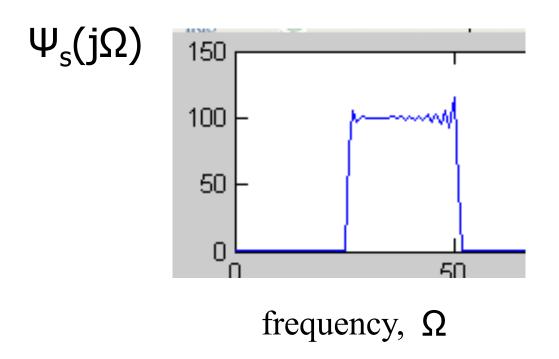
$$\Psi_{s}(t) = \frac{1}{\sqrt{s}} \Psi(\frac{t}{s})$$

Shannon Wavelet

$$\Psi_{s,\tau}(t) = \frac{1}{\sqrt{s}} \Psi \left(\frac{t - \tau}{s} \right) =$$



Fourier spectrum of Shannon Wavelet



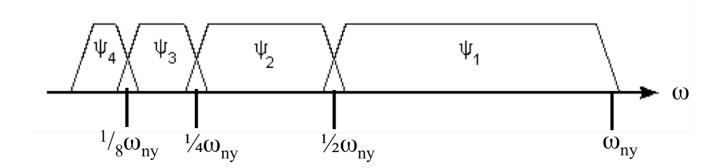
 Wavelet coefficients are a result of bandpass filtering

Discrete Wavelet Transform

- The coefficients of Ψ is just the band-pass filtered time-series, where Ψ is the wavelet, now viewed as the impulse response of a bandpass filter.
 - Discrete wavelet \rightarrow s = 2^j

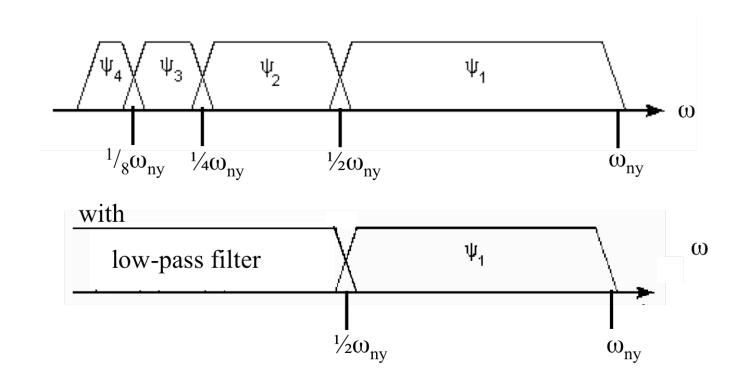
Discrete Wavelet Transform

- The coefficients of Ψ is just the band-pass filtered time-series, where Ψ is the wavelet, now viewed as the impulse response of a bandpass filter.
 - Discrete wavelet \rightarrow s = 2^j



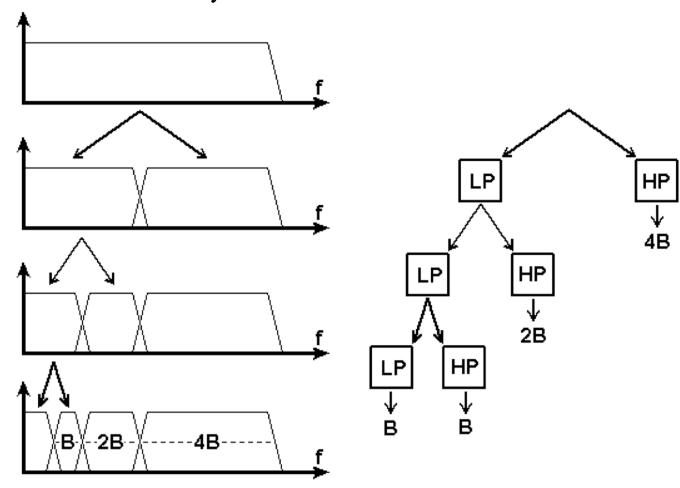
Discrete Wavelet Transform

- The coefficients of Ψ is just the band-pass filtered time-series, where Ψ is the wavelet, now viewed as the impulse response of a bandpass filter.
 - Discrete wavelet \rightarrow s = 2^{j}

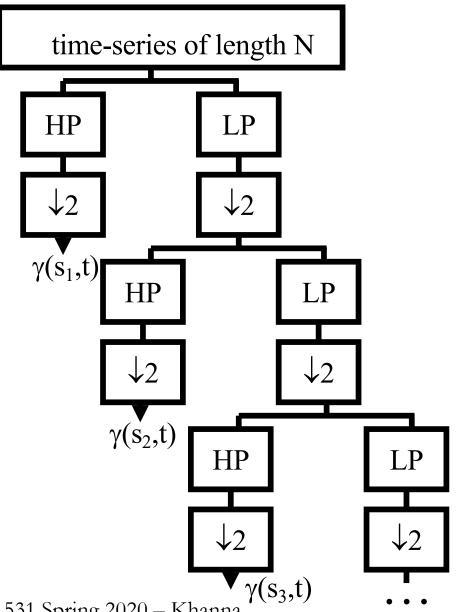


Digital Wavelet as Multirate Filter Bank

□ Repeat recursively!



Digital Wavelet as Multirate Filter Bank



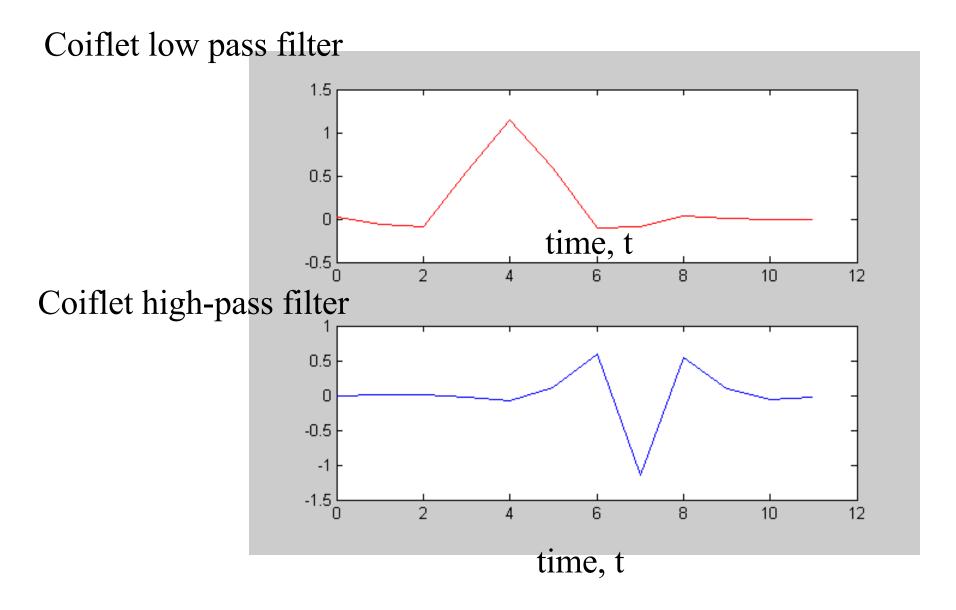
 $\gamma(s_1,t)$: N/2 coefficients

 $\gamma(s_2,t)$: N/4 coefficients

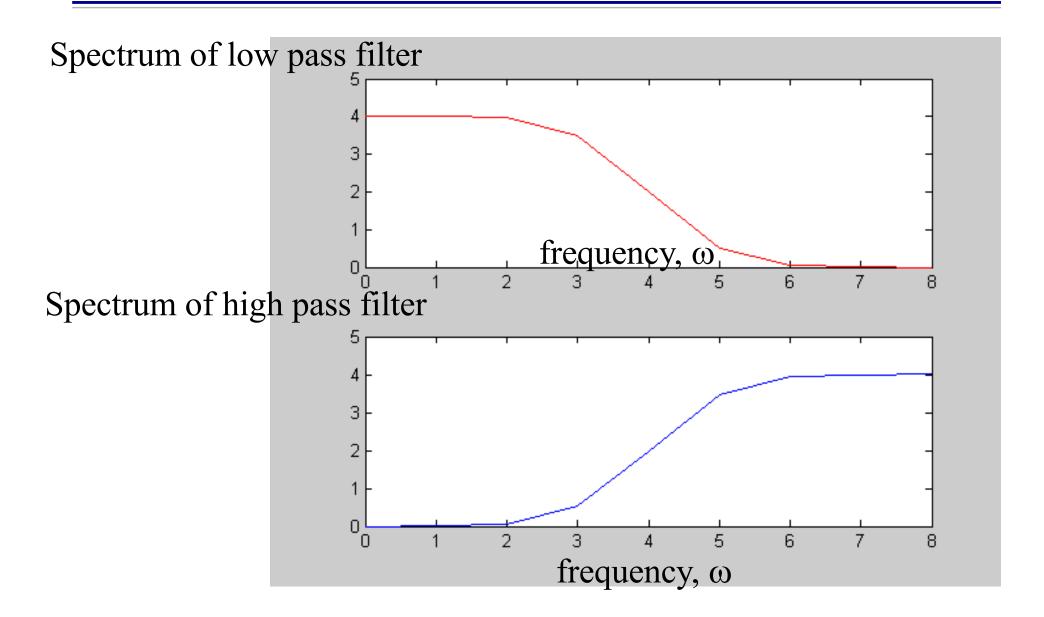
 $\gamma(s_2,t)$: N/8 coefficients

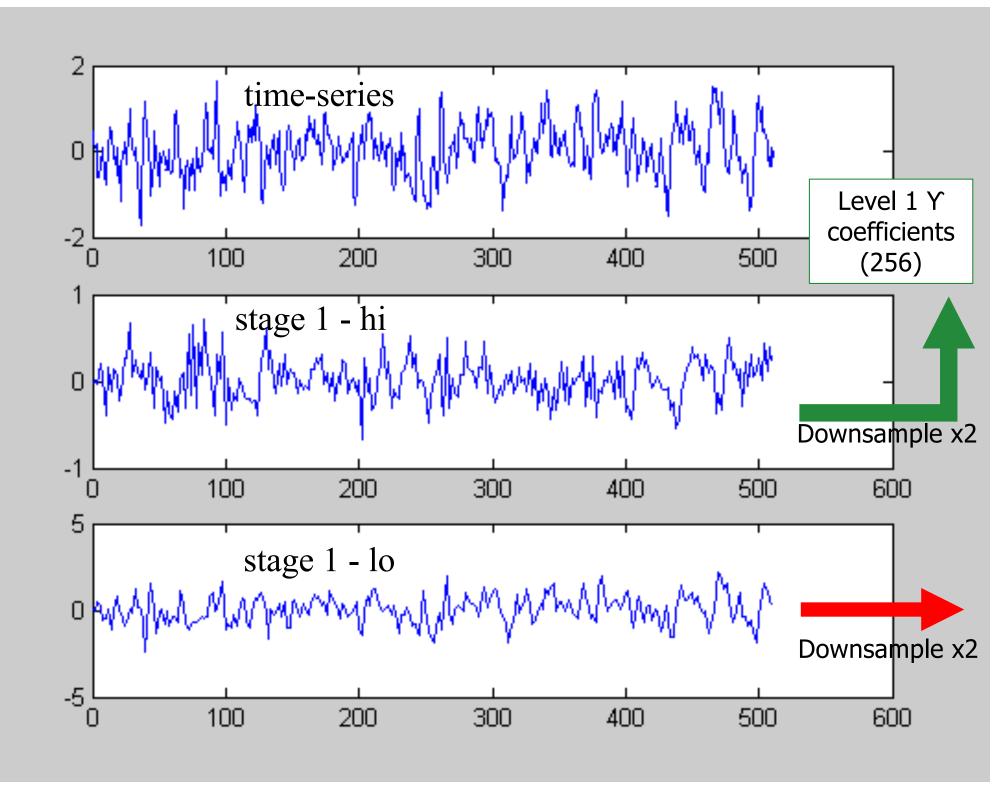
Total: N coefficients

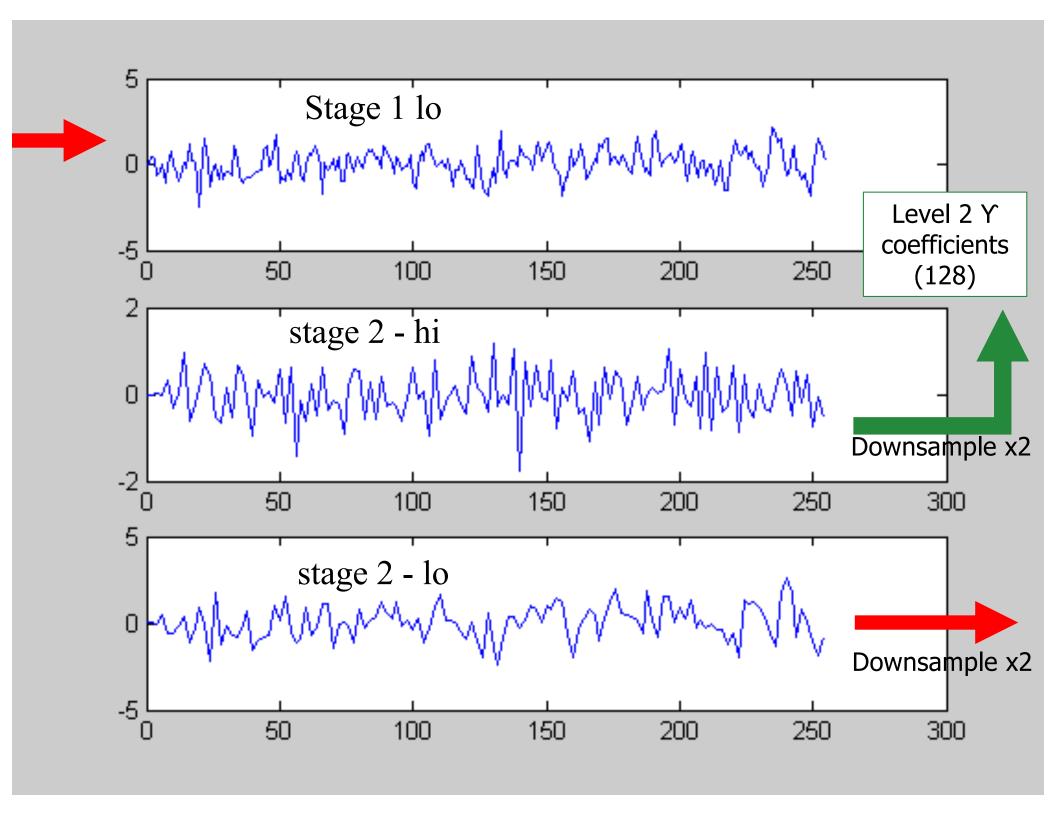
Impulse Responses

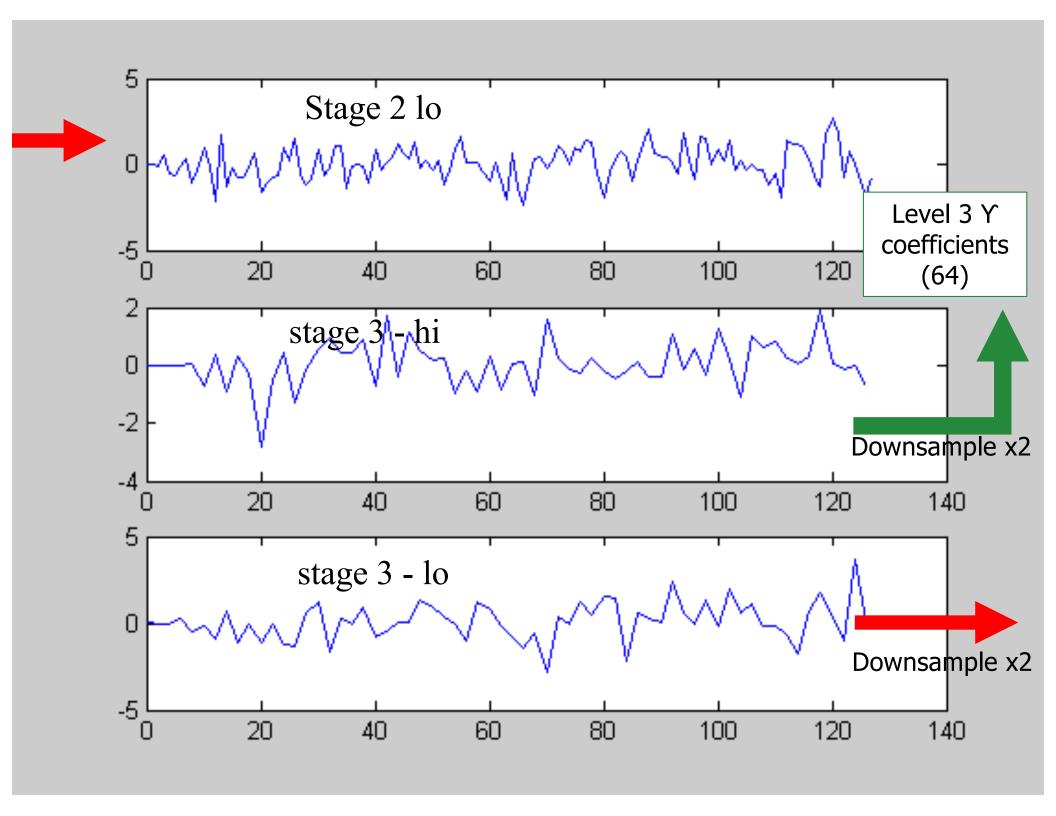


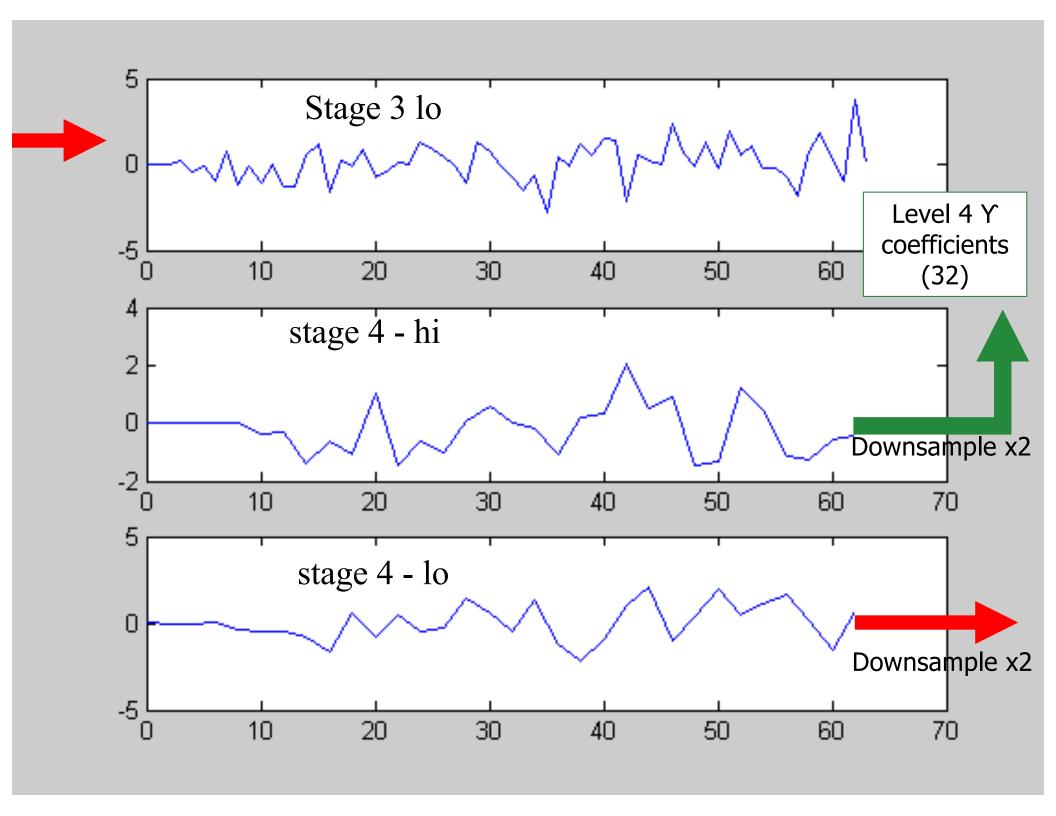
Filter Responses

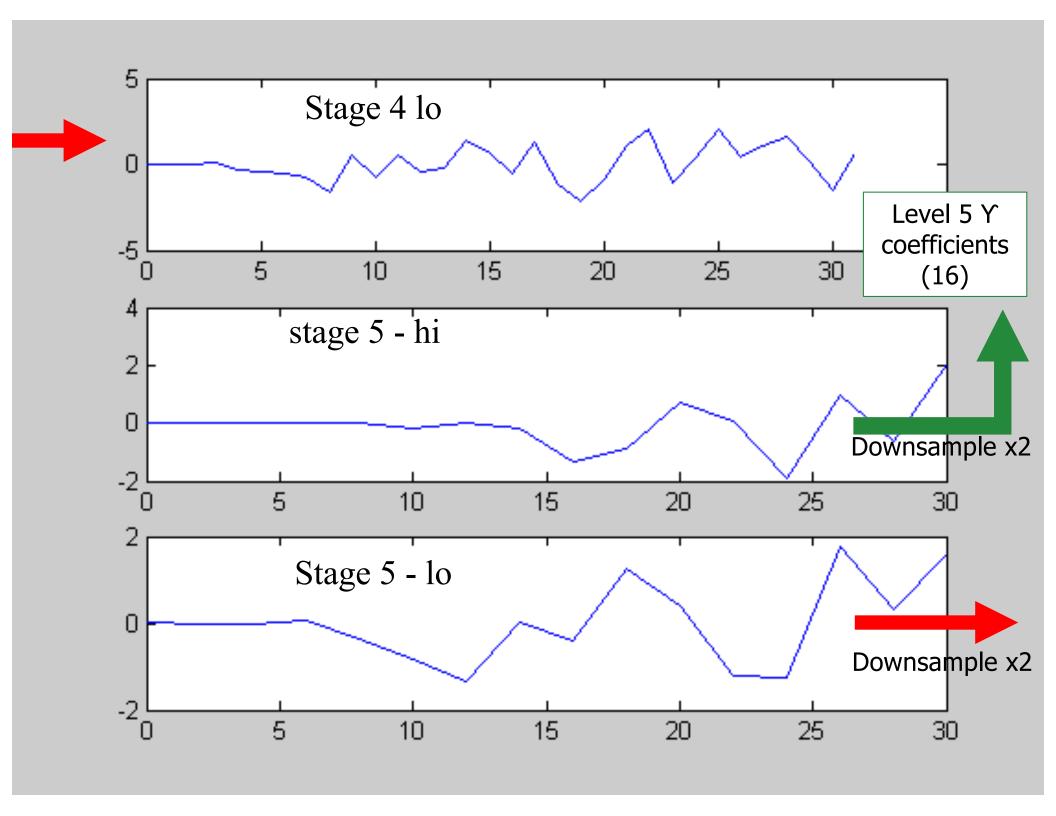


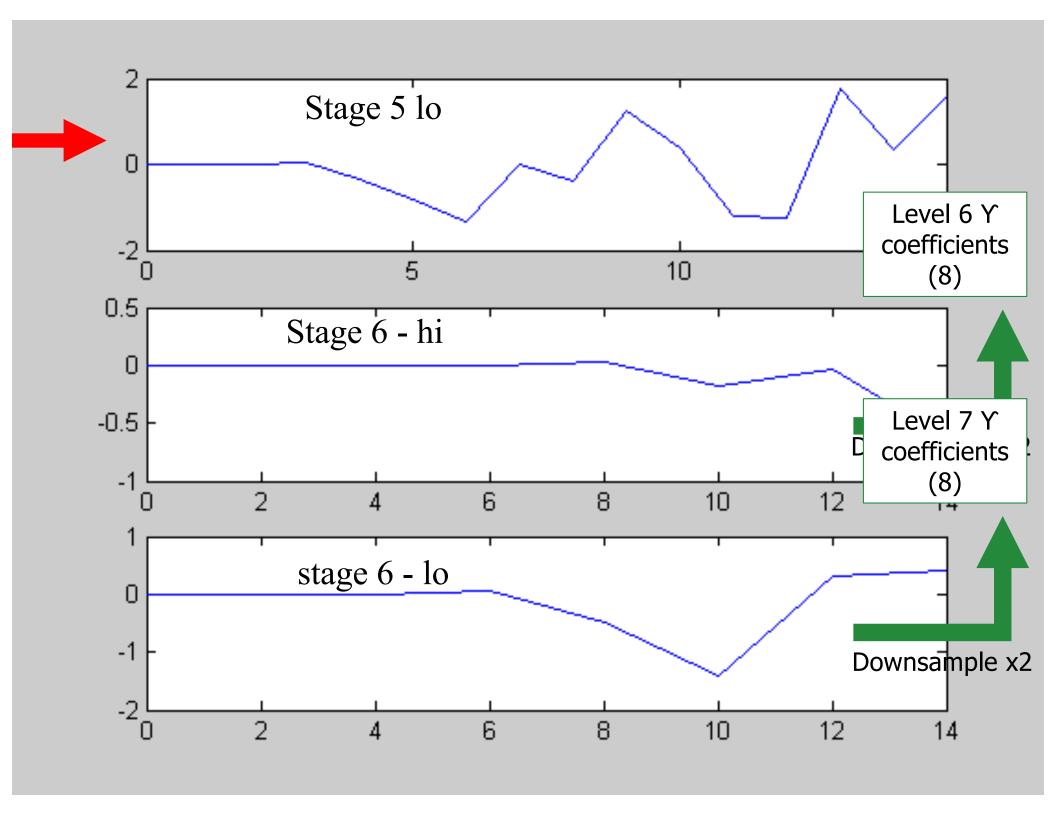


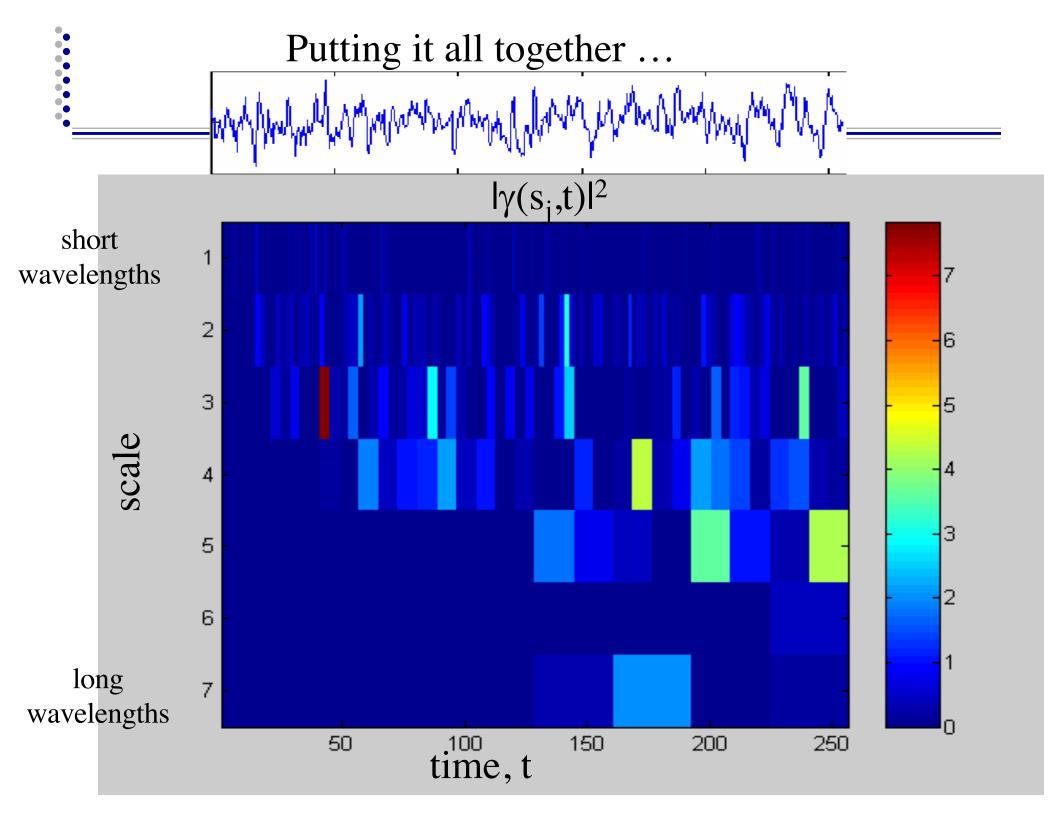




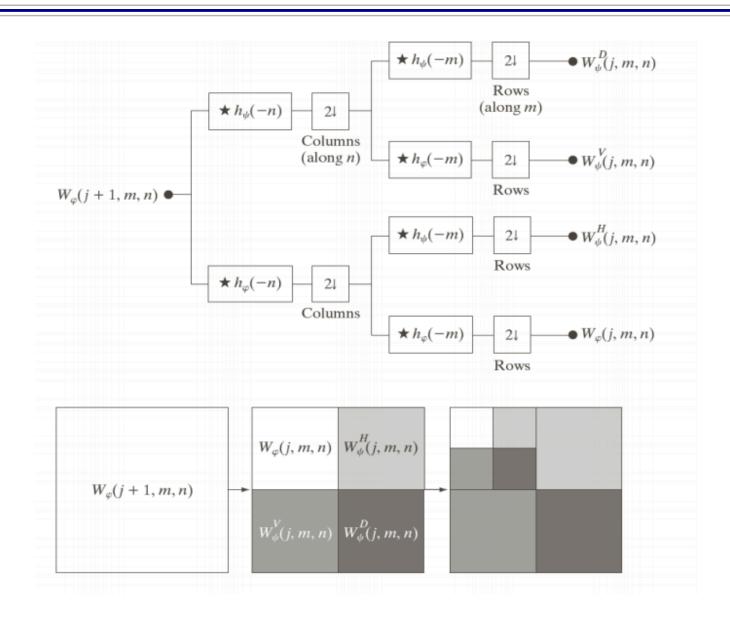








Expanding to Two Dimensions



Expanding to Two Dimensions

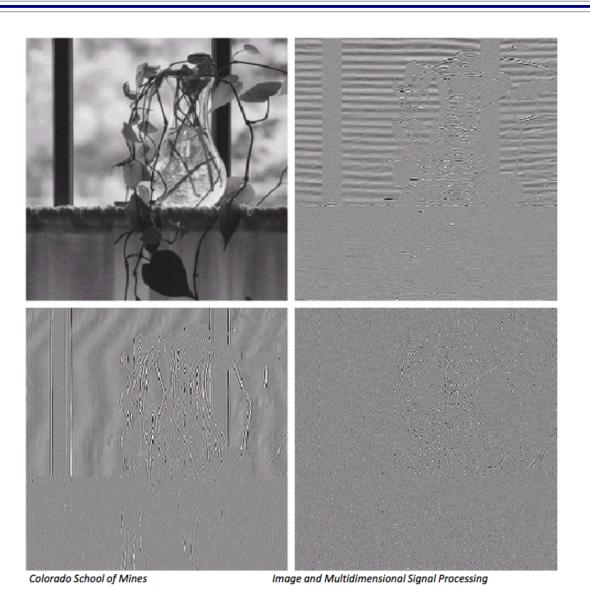


figure 7.7 A four-band split of the vase in Fig. 7.1 using the subband coding system of Fig. 7.5.

a d^v

 \mathbf{d}^{H} \mathbf{d}^{D}

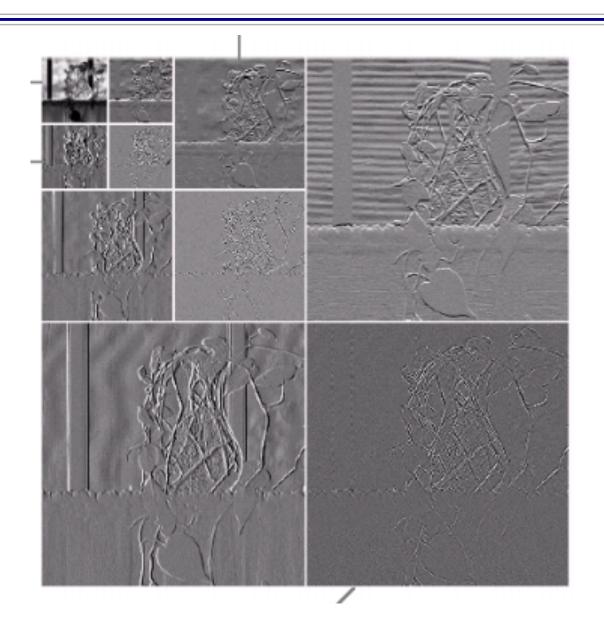
a(m,n): approximation

d^v(m,n): detail in vertical

d^H(m,n): detail in horizontal

d^D(m,n): detail in diagonal

Expanding to Two Dimensions



Big Ideas

- Wavelet transform
 - Capture temporal data with fewer coefficients than STFT
 - Use scaling and translation to get different resolution at different levels

Admin

- Project 2
 - Due 4/30
- □ Final Exam -5/5
 - In Canvas
 - 2 hr window within a 12 hr time block
 - Open course notes and textbook, but cannot communicate with anyone about the exam
 - Students will have randomized and different questions
 - Reminder, it is not in your best interest to share the exam
 - Old exams posted on old course websites
 - Covers lec 1-24*
 - Doesn't include lecture 13