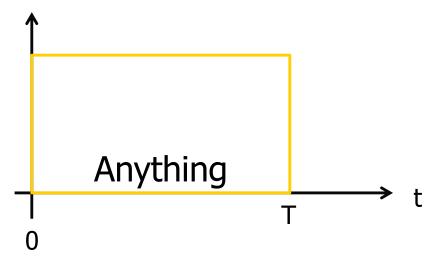
ESE 531: Digital Signal Processing

Week 15

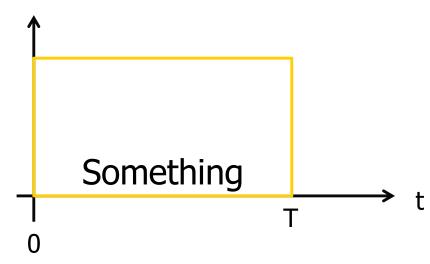
Lecture 28: April 25, 2021

Compressive Sensing

Compressive Sampling/Sensing

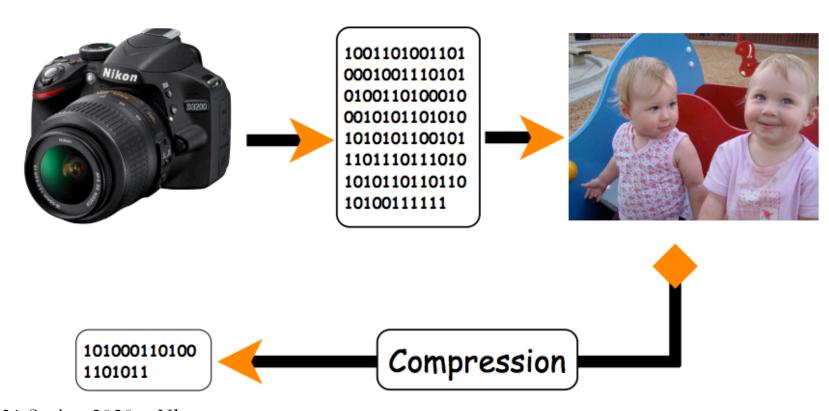


- □ What is the rate you need to sample at?
 - At least Nyquist



- What is the rate you need to sample at?
 - Maybe less than Nyquist...

- Standard approach
 - First collect, then compress
 - Throw away unnecessary data



- Examples
 - Audio 10x
 - Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
 - MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec
 - Images -22x
 - Raw image (RGB): 24bit/pixel
 - JPEG: 1280x960, normal = 1.09bit/pixel
 - Videos -75x
 - Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz x 16b x 2 = 98,578 Kbit/s
 - MPEG4: 1300 Kbit/s

- Almost all compression algorithm use transform coding
 - mp3: DCT
 - JPEG: DCT
 - JPEG2000: Wavelet
 - MPEG: DCT & time-difference

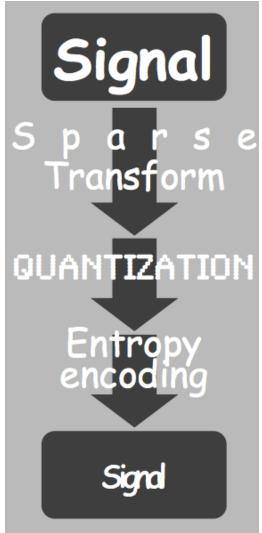
Almost all compression algorithm use transform coding

■ mp3: DCT

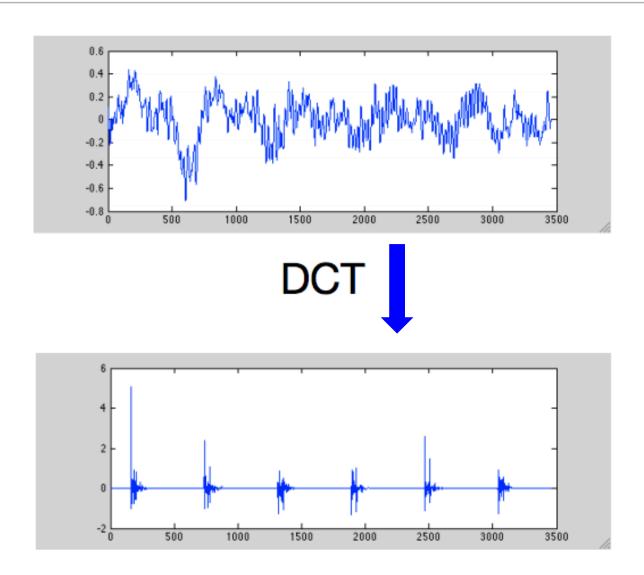
JPEG: DCT

■ JPEG2000: Wavelet

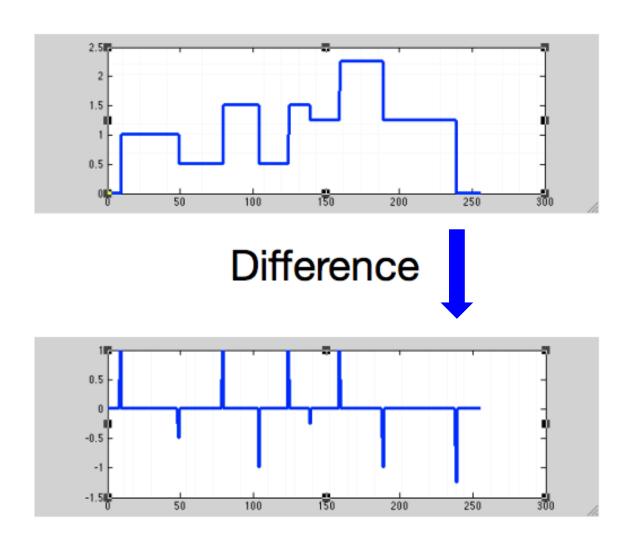
MPEG: DCT & time-difference



Sparse Transform



Sparse Transform

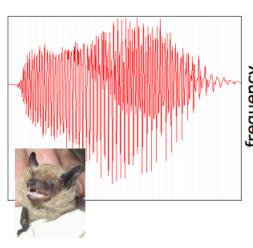


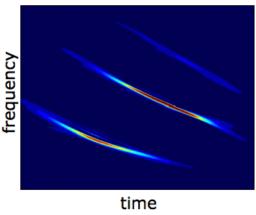
 $N \ {
m pixels}$

 $K \ll N$ large wavelet coefficients

(blue = 0)

N wideband signal samples





 $K \ll N$ large Gabor (TF) coefficients

Signal Processing Trends

□ Traditional DSP → sample first, ask questions later

Signal Processing Trends

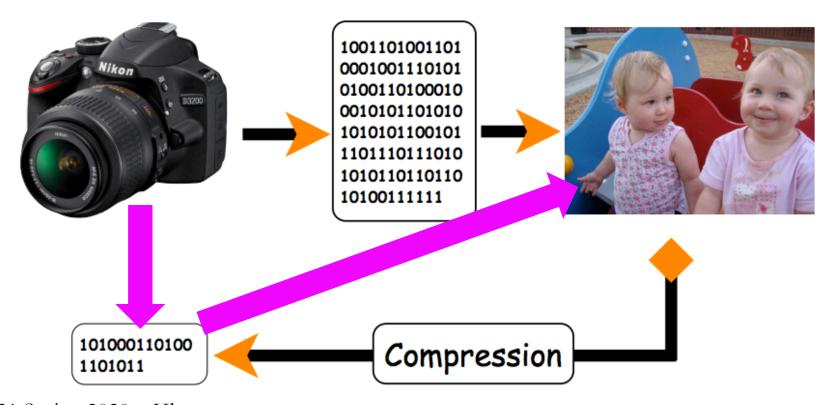
- \square Traditional DSP \rightarrow sample first, ask questions later
- Explosion in sensor technology/ubiquity has caused two trends:
 - Physical capabilities of hardware are being stressed, increasing speed/resolution becoming expensive
 - gigahertz+ analog-to-digital conversion
 - accelerated MRI
 - industrial imaging
 - Deluge of data
 - camera arrays and networks, multi-view target databases, streaming video...

Signal Processing Trends

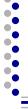
- \square Traditional DSP \rightarrow sample first, ask questions later
- Explosion in sensor technology/ubiquity has caused two trends:
 - Physical capabilities of hardware are being stressed, increasing speed/resolution becoming expensive
 - gigahertz+ analog-to-digital conversion
 - accelerated MRI
 - industrial imaging
 - Deluge of data
 - camera arrays and networks, multi-view target databases, streaming video...
- □ Compressive Sensing → sample smarter, not faster

Compressive Sensing/Sampling

- Standard approach
 - First collect, then compress
 - Throw away unnecessary data



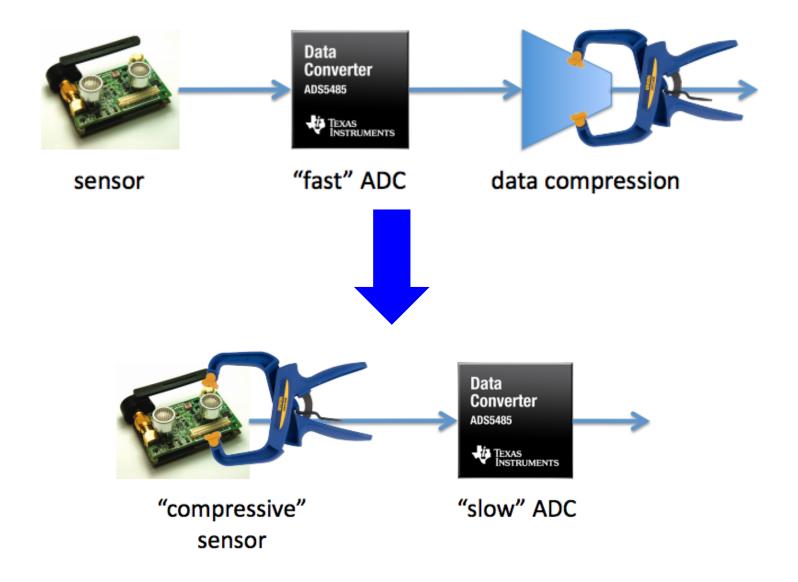
Penn ESE 531 Spring 2020 – Khanna Adapted from M. Lustig, EECS Berkeley



Compressive Sensing

- Shannon/Nyquist theorem is pessimistic
 - 2 × bandwidth is the worst-case sampling rate holds uniformly for any bandlimited data
 - sparsity/compressibility is irrelevant
 - Shannon sampling based on a linear model, compression based on a nonlinear model
- Compressive sensing
 - new sampling theory that leverages compressibility
 - key roles played by new uncertainty principles and randomness

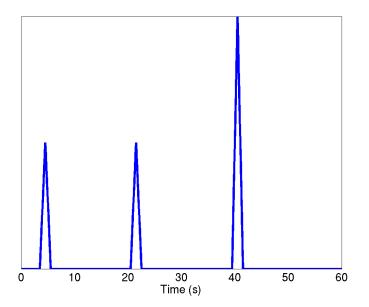
Sensing to Data



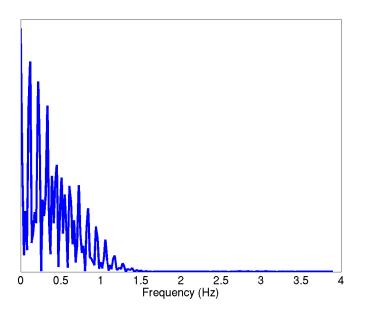
■ Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases *exactly* recover

■ Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases *exactly* recover

Sparse signal in time

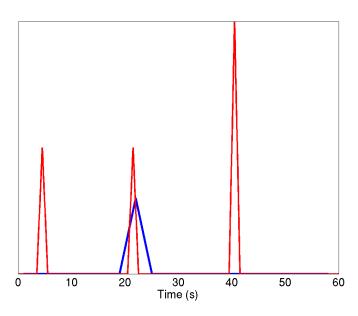


Frequency spectrum



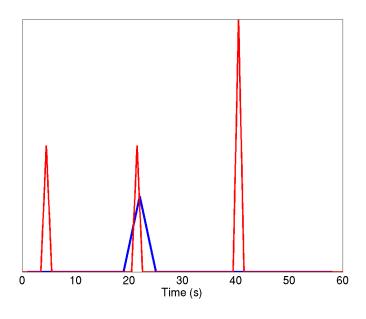
■ Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases *exactly* recover

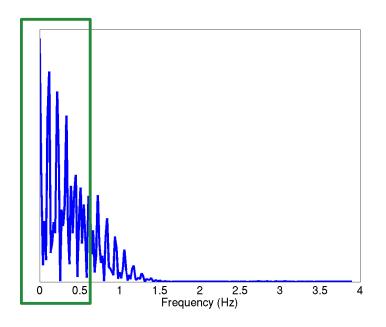
Undersampled in time



■ Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases *exactly* recover

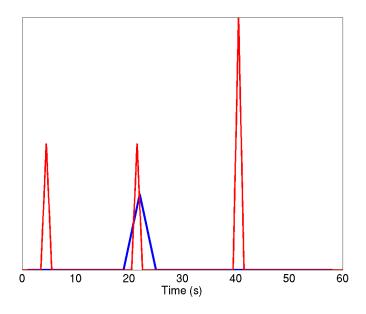
Undersampled in time



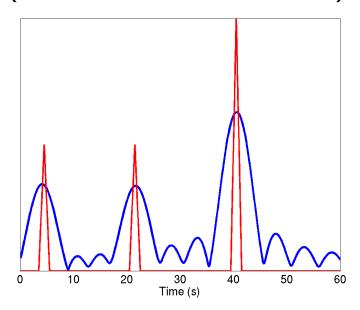


■ Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases *exactly* recover

Undersampled in time

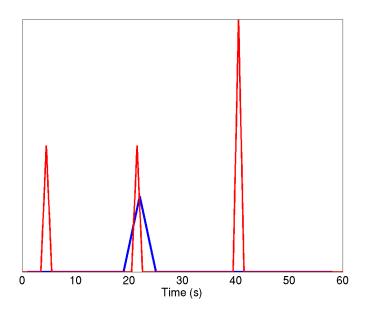


Undersampled in frequency (reconstructed in time with IFFT)

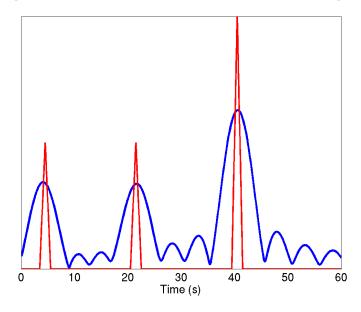


■ Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases *exactly* recover

Undersampled in time

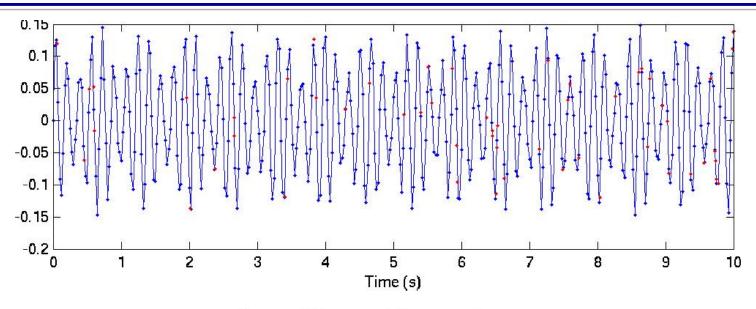


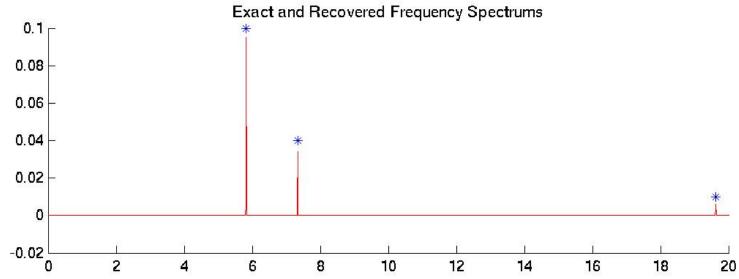
Undersampled in frequency (reconstructed in time with IFFT)

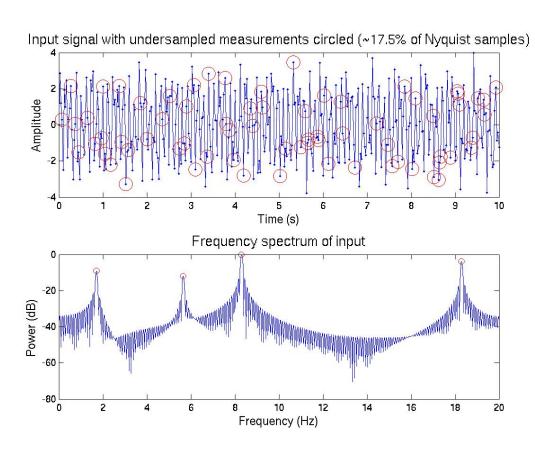


Requires sparsity and incoherent sampling

Compressive Sampling: Simple Example

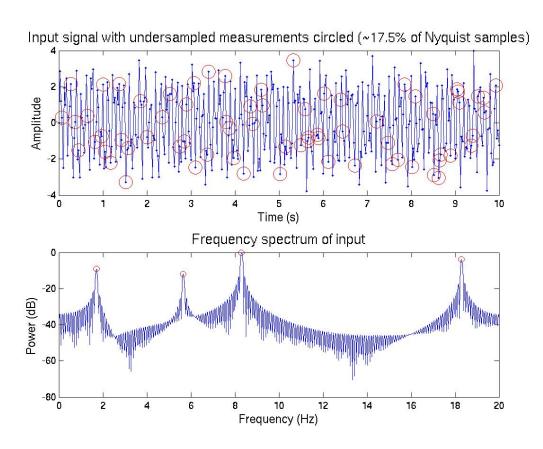






- Sense signal M times
- Recover with linear program

$$\min \sum_{\omega} |\hat{g}(\omega)|$$
 subject to $g(t_m) = f(t_m)$, $m = 1, ..., M$

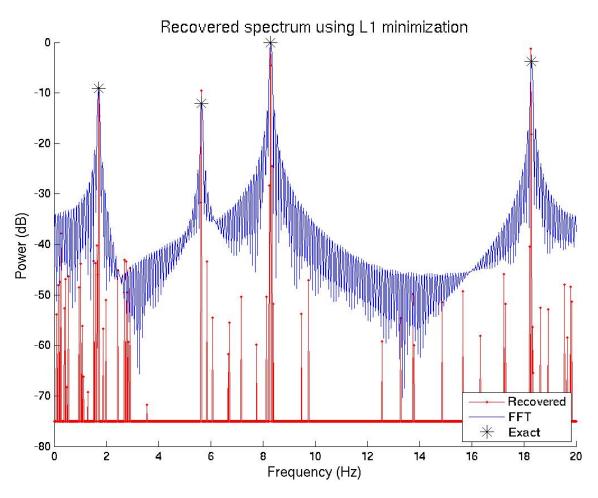


$$\hat{f}(\omega) = \sum_{i=1}^{K} \alpha_i \delta(\omega_i - \omega) \stackrel{\mathcal{F}}{\Leftrightarrow} f(t) = \sum_{i=1}^{K} \alpha_i e^{i\omega_i t}$$

- Sense signal M times
- Recover with linear program

$$\min \sum_{\omega} |\hat{g}(\omega)|$$
 subject to $g(t_m) = f(t_m)$, $m = 1, ..., M$

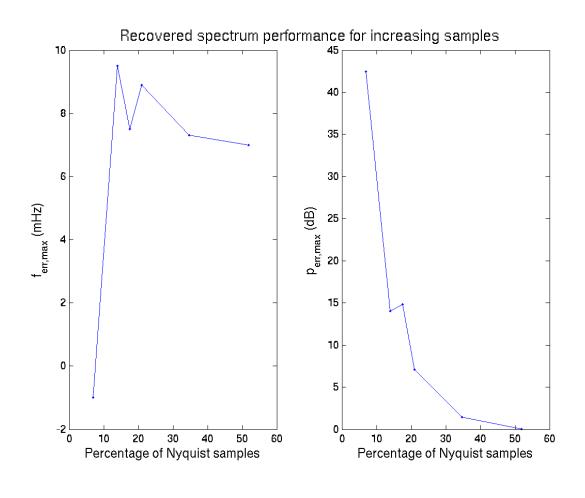
Example: Sum of Sinusoids



- □ Two relevant "knobs"
 - percentage of Nyquist samples as altered by adjusting number of samples, M
 - input signal duration, T
 - Data block size

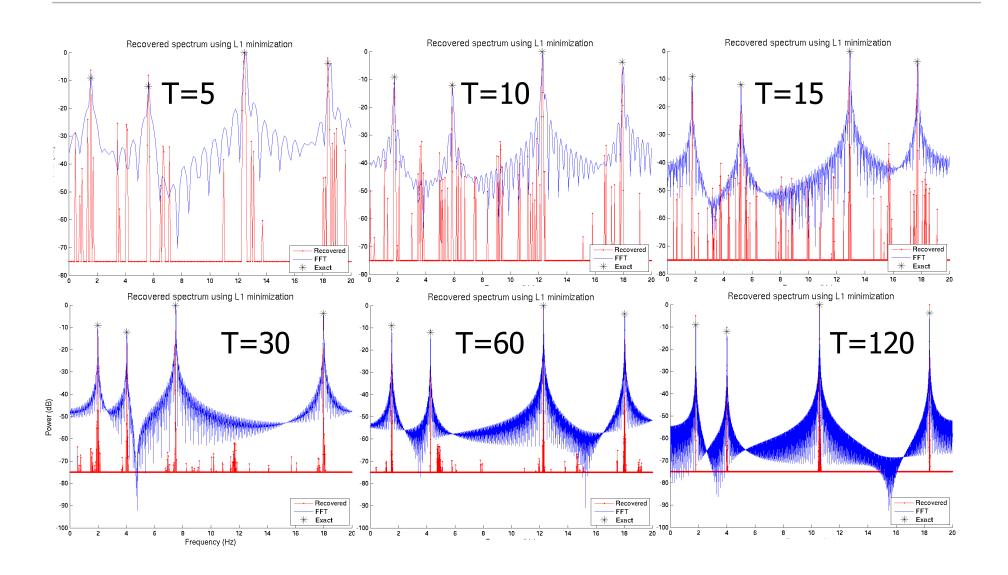
Example: Increasing M

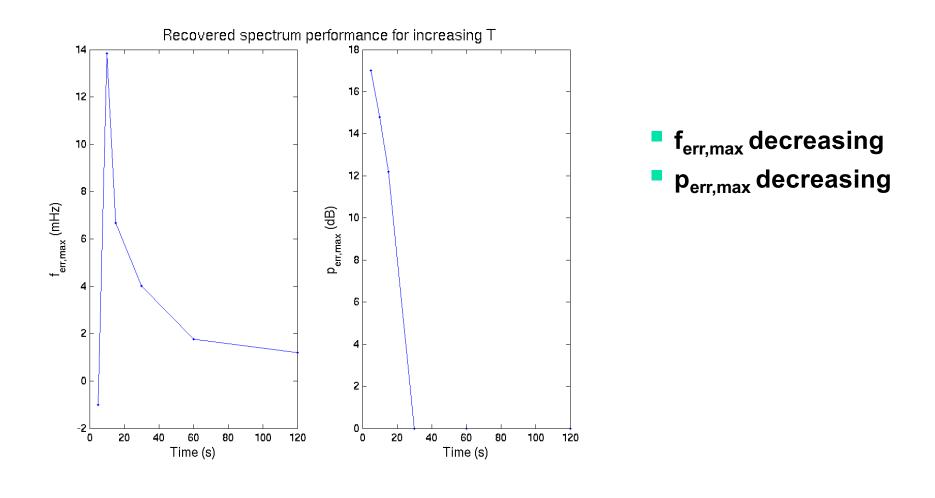




- f_{err,max} within 10 mHz
- p_{err,max} decreasing

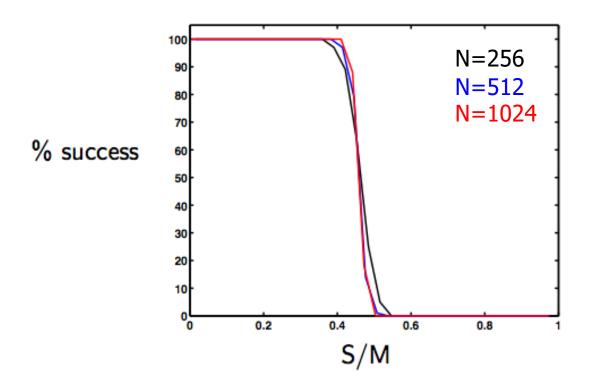
Example: Increasing T





Numerical Recovery Curves

□ Sense S-sparse signal of length N randomly M times



In practice, perfect recovery occurs when $M \approx 2S$ for $N \approx 1000$

A Non-Linear Sampling Theorem

- □ Exact Recovery Theorem (Candès, R, Tao, 2004):
 - Select M sample locations $\{t_m\}$ "at random" with

$$M \geq \operatorname{Const} \cdot S \log N$$

□ Take time-domain samples (measurements)

$$y_m = x_0(t_m)$$

Solve

$$\min_x \|\hat{x}\|_{\ell_1}$$
 subject to $x(t_m) = y_m, \ m = 1, \dots, M$

■ Solution is exactly recovered signal with extremely high probability

A Non-Linear Sampling Theorem

- □ Exact Recovery Theorem (Candès, R, Tao, 2004):
 - Select M sample locations $\{t_m\}$ "at random" with

$$M \geq \operatorname{Const} \cdot S \log N$$

□ Take time-domain samples (measurements)

$$y_m = x_0(t_m)$$

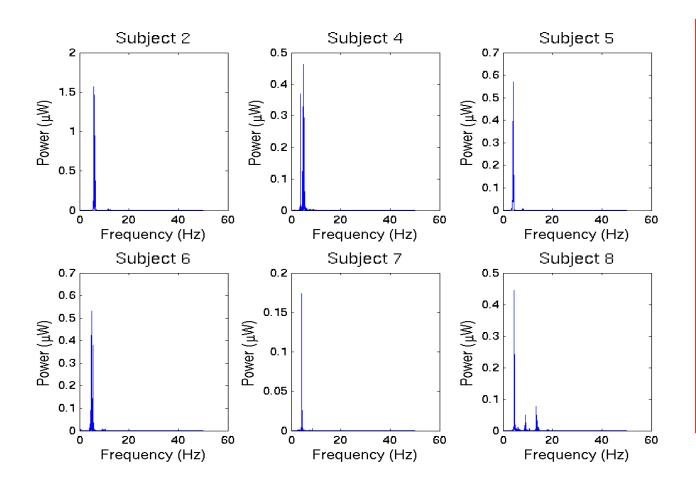
Solve

$$\min_x \|\hat{x}\|_{\ell_1}$$
 subject to $x(t_m) = y_m, \ m = 1, \dots, M$

■ Solution is exactly recovered signal with extremely high probability

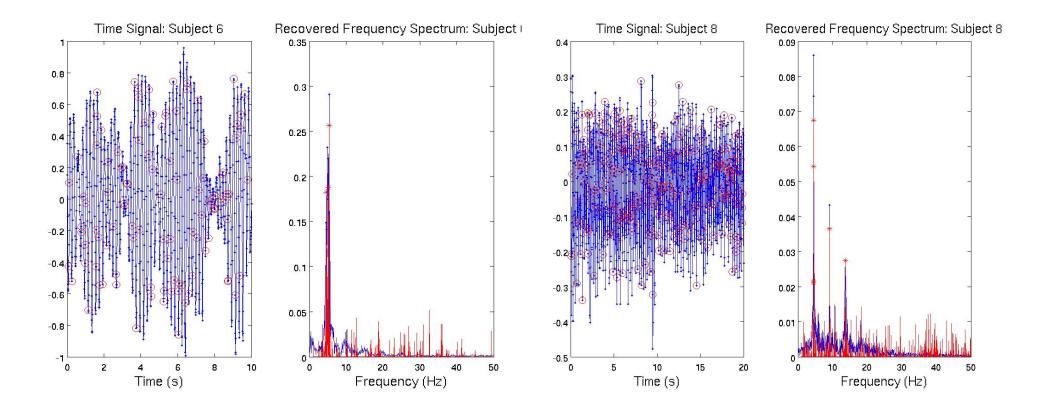
 $M > C \cdot \mu^2(\Phi, \Psi) \cdot S \cdot \log N$

Biometric Example: Parkinson's Tremors

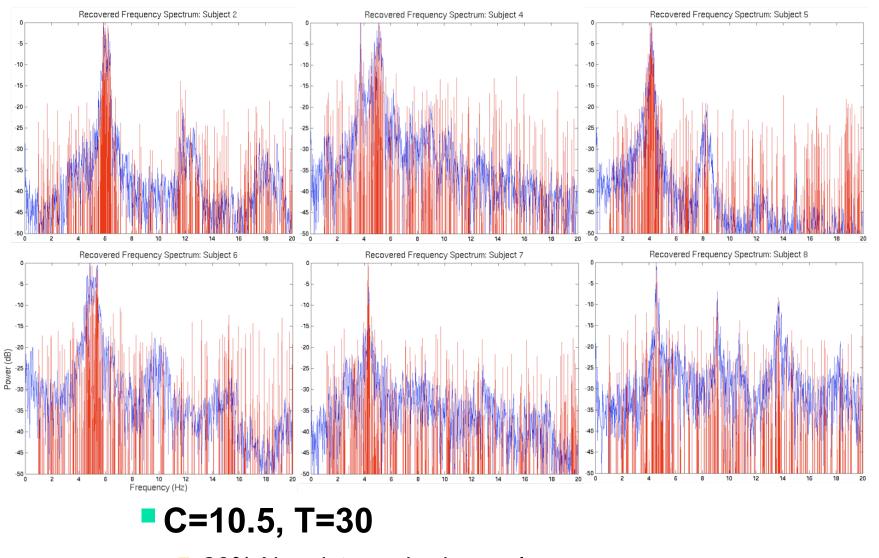


- 6 Subjects of real tremor data
 - collected using low intensity velocity-transducing laser recording aimed at reflective tape attached to the subjects' finger recording the finger velocity
 - All show Parkinson's tremor in the 4-6 Hz range.
 - Subject 8 shows activity at two higher frequencies
 - Subject 4 appears to have two tremors very close to each other in frequency

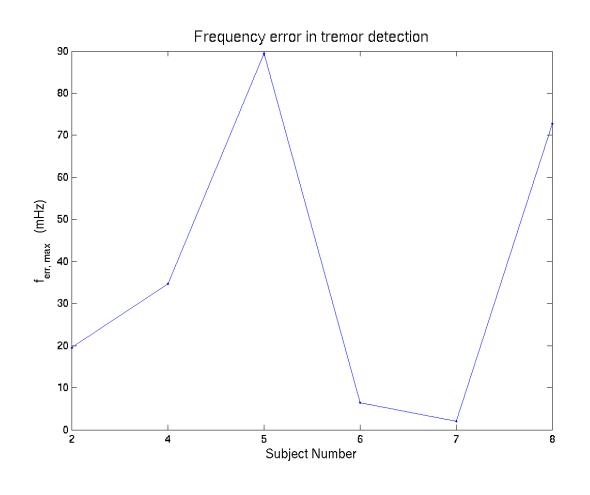
Compressive Sampling: Real Data



Biometric Example: Parkinson's Tremors



20% Nyquist required samples



- Tremors detected within 100 mHz
- randomly sample 20% of the Nyquist required samples

Requires post processing to randomly sample!

Implementing Compressive Sampling

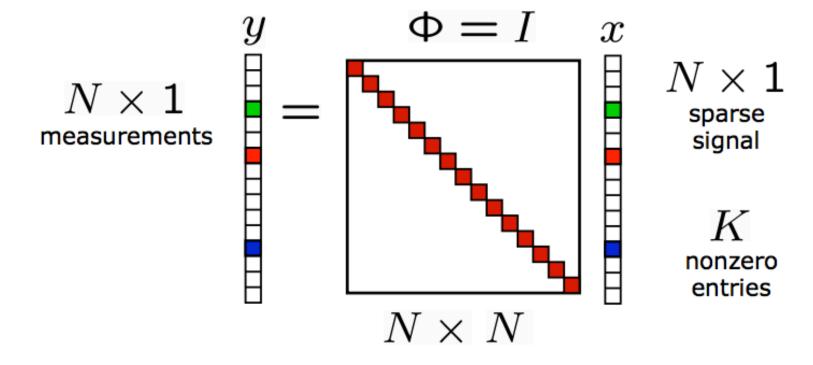
- □ Devised a way to randomly sample 20% of the Nyquist required samples and still detect the tremor frequencies within 100mHz
 - Requires post processing to randomly sample!
- Implement hardware on chip to "choose" samples in real time
 - Only write to memory the "chosen" samples
 - Design random-like sequence generator
 - Only convert the "chosen" samples
 - Design low energy ADC

CS Theory

Why does it work?

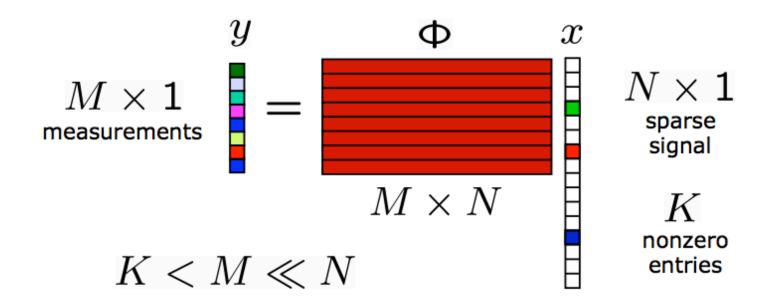
Sampling

- Signal x is K-sparse in basis/dictionary Ψ WLOG assume sparse in space domain $\Psi = I$
- Sampling



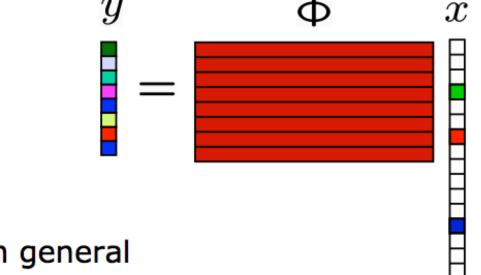
Compressive Sampling

• When data is sparse/compressible, can directly acquire a *condensed representation* with no/little information loss through linear *dimensionality reduction* $y = \Phi x$



 Projection Φ not full rank...

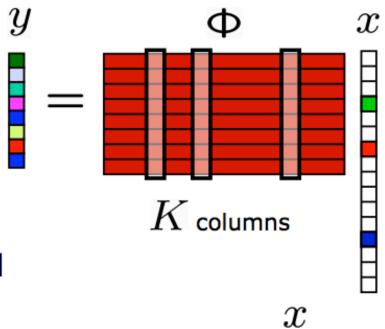
... and so loses information in general



• Ex: Infinitely many x's map to the same y (null space)

 Projection Φ not full rank...

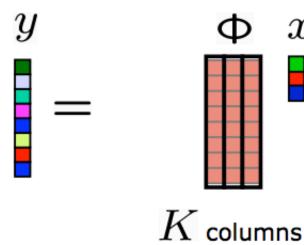
... and so loses information in general



But we are only interested in sparse vectors

 Projection Φ not full rank...

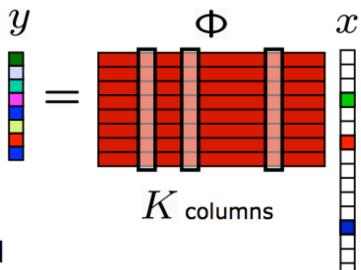
... and so loses information in general



- But we are only interested in sparse vectors
- Φ is effectively MxK

 Projection Φ not full rank...

... and so loses information in general

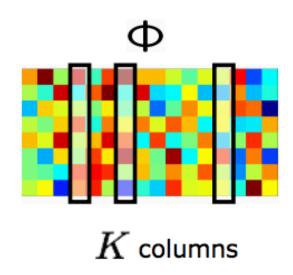


- But we are only interested in sparse vectors
- Design Φ so that each of its MxK submatrices are full rank (ideally close to orthobasis)
 - Restricted Isometry Property (RIP)

RIP

- Draw Φ at random
 - iid Gaussian
 - iid Bernoulli ± 1

•••



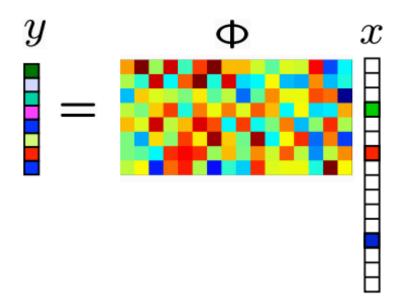
Then

 has the RIP with high probability provided

$$M = O(K \log(N/K)) \ll N$$

CS Signal Recovery

• Goal: Recover signal \boldsymbol{x} from measurements \boldsymbol{y}

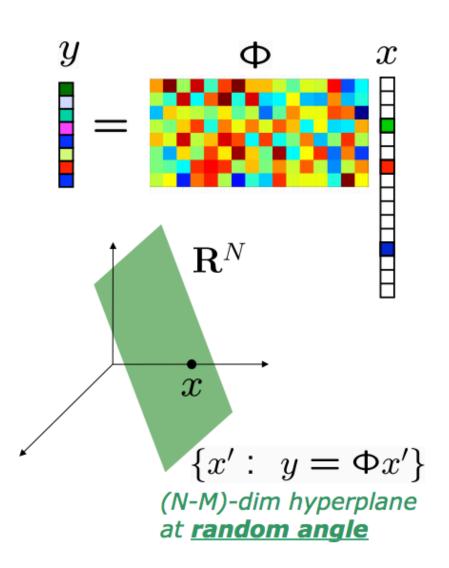


 Problem: Random projection Φ not full rank (ill-posed inverse problem)

 Solution: Exploit the sparse/compressible geometry of acquired signal x

CS Signal Recovery

- Random projection Φ not full rank
- Recovery problem: given $y = \Phi x$ find x
- Null space
- Search in null space for the "best" \boldsymbol{x} according to some criterion
 - ex: least squares



L₂ Signal Recovery

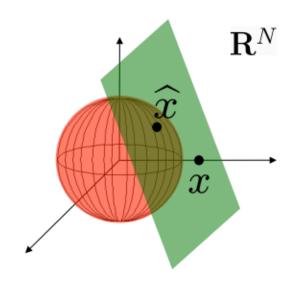
- Recovery:

 (ill-posed inverse problem)
- · Optimization:
- Closed-form solution:
- Wrong answer!

given
$$y = \Phi x$$
 find x (sparse)

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$$

$$\widehat{x} = (\Phi^T \Phi)^{-1} \Phi^T y$$



L₀ Signal Recovery

- Recovery:

 (ill-posed inverse problem)
- Optimization:

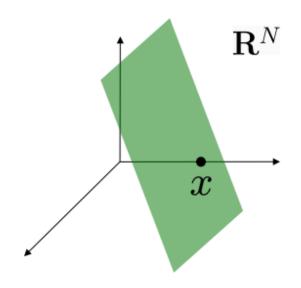
Correct!

But NP-Complete alg

given
$$y = \Phi x$$
 find x (sparse)

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0$$

"find sparsest vector in translated nullspace"



L₁ Signal Recovery

Recovery:

 (ill-posed inverse problem)

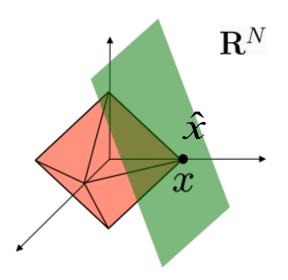
given
$$y = \Phi x$$

find x (sparse)

• Optimization:

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_1$$

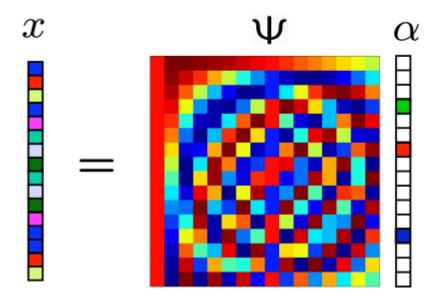
- Convexify the ℓ_0 optimization
- Correct!
- Polynomial time alg (linear programming)
- Much recent alg progress
 - greedy, Bayesian approaches, ...



Universality

 Random measurements can be used for signals sparse in any basis

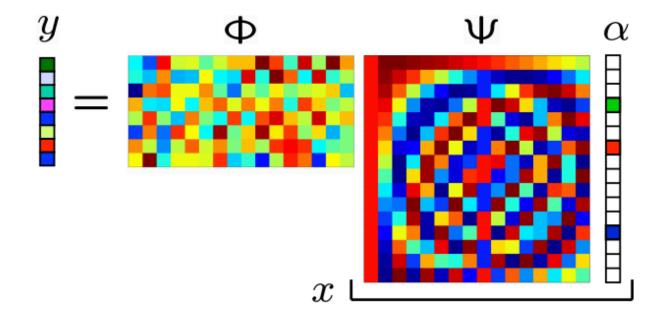
$$x = \Psi \alpha$$



Universality

 Random measurements can be used for signals sparse in any basis

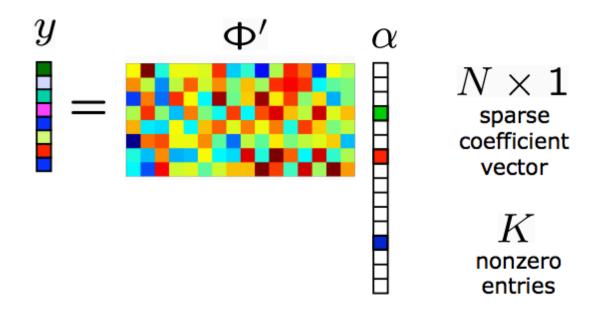
$$y = \Phi x = \Phi \Psi \alpha$$



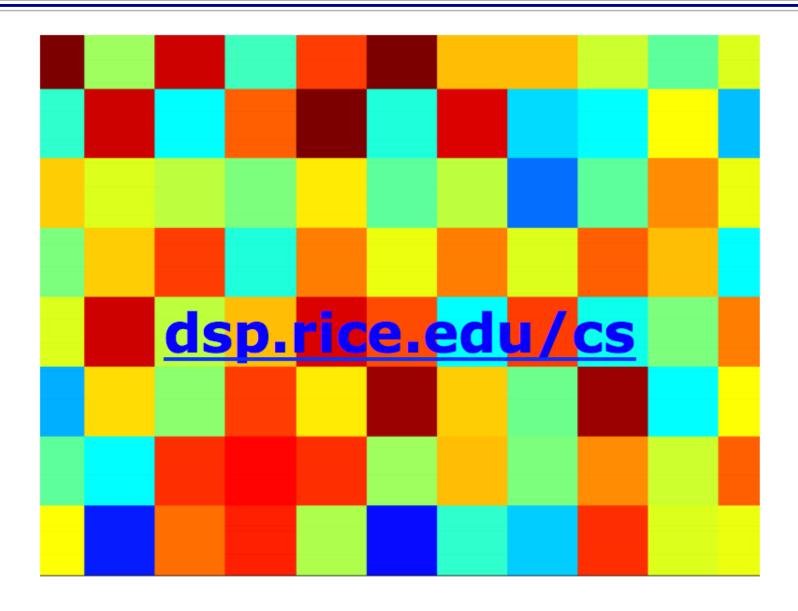
Universality

 Random measurements can be used for signals sparse in any basis

$$y = \Phi x = \Phi \Psi \alpha = \Phi' \alpha$$



Reference Slide



Big Ideas

- Compressive Sampling
 - Integrated sensing/sampling, compression and processing
 - Based on sparsity and incoherency

Admir

- Project 2
 - Due 4/30
- □ Final Exam -5/5
 - In Canvas
 - 2 hr window within a 12 hr time block
 - Open course notes and textbook, but cannot communicate with anyone about the exam
 - Students will have randomized and different questions
 - Reminder, it is not in your best interest to share the exam
 - Old exams posted on old course websites
 - Covers lec 1-24*
 - Doesn't include lecture 13