Signals and Systems Review

Resource: MIT OCW 6.003

Dennis Freeman. 6.003 Signals and Systems. Fall 2011. Massachusetts Institute of Technology: MIT OpenCourseWare, <u>https://ocw.mit.edu</u>. License: <u>Creative</u> Commons BY-NC-SA.

Document created by Yexuan Lu February 2018

Webpage for MIT OCW 6.003

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-003-signals-and-systems-fa ll-2011/

if you cannot find the contents you are looking for from the list below, you can always go to this webpage and find more! Note that there are <u>videos and homework with solutions</u> in addition to the <u>lecture and notes</u>. There are some matlab codes after each homework for advanced study. Overview of the webpage:

The corresponding readings in the S&S book and relevant topics. The detailed contents are in the other file.

TOPICS	SECTIONS	
Discrete-time (DT) systems	Chapters 1–4 of supplementary notes	
Continuous-time (CT) systems	1.0-1.5, 2.4-2.5	
Laplace transforms	9.1-9.10	
Z transforms	10.1-10.10	
Convolution	2.0-2.6	
Frequency response	3.10, 6.0-6.2.3, 6.5-6.5.3	
Feedback	11.0-11.2.3	
CT Fourier series	3.0-3.5.9	
CT Fourier transform	4.0-4.8	
DT Fourier series	3.6-3.12	
DT Fourier transform	5.0-5.9	
Sampling	7.0-7.6	
Modulation	8.0-8.9	

1. Convolution

location: lecture 8

The lecture uses an example and helps illustrate the definition with step-by-step analysis. In summary, the definition is:

Convolution

Response of an LTI system to an arbitrary input.

$$x[n] \longrightarrow \text{LTI} \longrightarrow y[n]$$
$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] \equiv (x*h)[n]$$

This operation is called **convolution**.

Notation

Convolution is represented with an asterisk.

$$\sum_{k=-\infty}^{\infty} x[k]h[n-k] \equiv (x*h)[n]$$

It is customary (but confusing) to abbreviate this notation:

$$(x*h)[n] = x[n]*h[n]$$

Suggested HW problems: HW5 P1, P2, P3.

2. System functions/Impulse response

Location: lecture 5.

The following map illustrates the relationship between different representations clearly.

Following the definitions for Z transform, there are many examples with solutions to help better understand the system function.

Location: lecture 4.

Steps leading to impulse response is in 'Elementary Building-Block Signals' from lecture 4 starting page 14. The unit-impulse signal acts as a pulse with unit area but zero width.

Suggested HW problems: HW4 P5; HW2 P5; Fall 2011 Quiz #1 P2; Quiz #1 (Spring 2010) P2

3. Laplace transform and properties

Location: lecture 6

Topics covered: Definition; Regions of Convergence; Time-Domain Interpretation of ROC; Properties of Laplace Transforms.

Properties of Laplace Transforms Usefulness of Laplace transforms derives from its many properties.				
				Property
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	$\supset (R_1 \cap R_2)$	
Delay by T	x(t-T)	$X(s)e^{-sT}$	R	
Multiply by t	tx(t)	$-\frac{dX(s)}{ds}$	R	
Multiply by $e^{-\alpha t}$	$x(t)e^{-\alpha t}$	$X(s+\alpha)$	shift R by $-\alpha$	
Differentiate in t	$rac{dx(t)}{dt}$	sX(s)	$\supset R$	
Integrate in t	$\int_{-\infty}^t x(\tau) d\tau$	$\frac{X(s)}{s}$	$\supset \left(R \cap \left(\operatorname{Re}(s) > 0 \right) \right)$	
Convolve in t	$\int_{-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau$	$X_1(s)X_2(s)$	$\supset (R_1 \cap R_2)$	
and many others!				

Suggested HW problems: HW4 P1; Fall 2011 Quiz #1 P3; Quiz #1 (Spring 2010) P3

4. Frequency response/Bode plots

Location: lecture 9

Summary: frequency response is a different way to characterize a system.

Topics covered: Eigenfunctions; Complex Exponentials; Rational System Functions; Vector Diagrams; Frequency Response; Conjugate Symmetry.

Location: lecture 11

For detailed explanation and examples, please refer to the original lecture slides.

Bode Plot

The log of the magnitude is a sum of logs.

$$|H(s_0)| = \left| K \quad \frac{\prod_{q=1}^{Q} (s_0 - z_q)}{\prod_{p=1}^{P} (s_0 - p_p)} \right| = |K| \quad \frac{\prod_{q=1}^{Q} |s_0 - z_q|}{\prod_{p=1}^{P} |s_0 - p_p|}$$
$$\log |H(j\omega)| = \log |K| + \sum_{q=1}^{Q} \log |j\omega - z_q| - \sum_{p=1}^{P} \log |j\omega - p_p|$$

Bode Plot

The angle of a product is the sum of the angles. $\begin{pmatrix} Q \\ Q \end{pmatrix}$

$$\angle H(s_0) = \angle \left(K \prod_{\substack{q=1\\P}}^{\overset{\scriptstyle q}{=}1} \frac{(s_0 - z_q)}{\prod_{p=1}^P (s_0 - p_p)} \right) = \angle K + \sum_{q=1}^Q \angle (s_0 - z_q) - \sum_{p=1}^P \angle (s_0 - p_p)$$

$$\angle (s_0 - z_1) \xrightarrow{\overset{\scriptstyle q}{=}1} \frac{(s_0 - p_1)}{(s_0 - p_1)} \sigma$$

The angle of K can be 0 or π for systems described by linear differential equations with constant, real-valued coefficients.

$$|H(j\omega)|[\mathsf{dB}] = 20\log_{10}|H(j\omega)|$$

Suggested HW problems: HW7 P2

5. Pole-zero plots

Location: lecture 3, 5.

Definition for poles are in lecture 3, (starting from page 23), followed by several example.

Also, on lecture 5 page 24-25, there are definitions abut poles and zeros, followed by examples for pole-zero plots.

Rational Polynomials

Applying the fundamental theorem of algebra and the factor theorem, we can express the polynomials as a product of factors.

$$H(z) = \frac{a_0 z^k + a_1 z^{k-1} + a_2 z^{k-2} + \cdots}{b_0 z^k + b_1 z^{k-1} + b_2 z^{k-2} + \cdots}$$
$$= \frac{(z - z_0) \ (z - z_1) \ \cdots \ (z - z_k)}{(z - p_0) \ (z - p_1) \ \cdots \ (z - p_k)}$$

where the roots are called **poles** and **zeros**.

Suggested HW problems: HW3 P5; HW4 P3