ESE531 Spring 2022

University of Pennsylvania
Department of Electrical and System Engineering
Digital Signal Processing

Final Thursday, May 5

5 Problems with point weightings shown. All 5 problems must be completed.

Calculators (non-cellphone) allowed.

Closed book = No text allowed.

Two two-sided 8.5x11 cheat sheet allowed.

Final answers here.

Additional workspace in exam book. Note where to find work in exam book if relevant.
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Transform Pairs/Properties and Formulas

TABLE 2.3 FOURIER TRANSFORM PAIRS
Sequence Fourier Transform TABLE2.2 FOURIER TRANSFORM THEOREMS
L. 8[n] 1 Sequence Fourier Transform
2. 8[n — ng) e~ Jeno x[n) X (ef*)
o0 .
3.1 (—0c <n < 00) Z 2mé (0 + 2mk) yln] Y(el®)
k=—o00 N "
1 1. ax[n] + by[n] aX (/) + bY (e/?)
4. auln] (lal <1) 1—aqe—jw 2. x[n —ng] (ng aninteger) e~iwnd ¥ (ejwy
oo 3, elwon X (el (@—wq)
5. u[n] ;_m + Z 78w+ 27k) ¢ #ln] e ) )
=™ 4. x[-n] X (i)
6. (n+a"uln] (lal <1) ﬁ X*(e/®) if x[n] real.
—ae~ ;
dX (e/”)
"o 5. nx[n] —)
7. T <y L : dw
sinwp 1-2rcoswpeI® + 12120 ) .
. 6. x[n]* y[n) X (e/)Y (/)
sin wen iw 1, ol <o,
8 = X(e )=[U <|wlsm 1 ji j
wn v @ <o) = 7. x[nlyln] o f X (e0)y (! @=9)dp
o xtn)— { L, 0<n<M sinlw (M +1/2) _jumy2 o
: 0, otherwise sin(w/2) Parseval’s theorem:
; & .- P jy 2
10, eleon 3 2mb( - wg + 270 8.3 wmP= oo [* )P
k=—00 n=—oo
oo ) ) o0 1 T . .
11. cos(won + ¢) Z [rei®8(w — wq + 2k) + me P 8(w + w + 2mk)) 9. Z x[nly*[n] = 5[ X (e/)Y*(e!)dw
k=—c0 ne—oo -
TABLE3.1  SOME COMMON z-TRANSFORM PAIRS
Sequence Transform ROC
1. 8[n] 1 Allz
1
2. u[n] 1_1 lz] > 1 TABLE3.2 SOME z-TRANSFORM PROPERTIES
3. —u[-n-1] ;1 Izl <1 Property Section
1-2z- Number Reference Sequence Transform ROC
_ -m . )
4., BEln m] z L All z except 0 (if m > 0) or oo (if m < 0) x[n] X(2) R,
5. a"uln] Tz 1 |z| > |a| xi[n] X1 Ry,
6. —a"ul-n—1] I ! ~ Izl < la] x2[n] X2 Rz
i gl 341  axmlnl+bxln] aXi@@)+bX,(z)  Contains Ry, N Ry,
7. na"uln] A—aciy lz| > la| 2 3.42 x[n — ng) 77X (z) Ry, except for the possible
az- addition or deletion of
8. —na"u[-n—1] Ay lz| < la| the origin or cc
1 — cos(wp)z~! 3 343 zpx[n] X(z/20) lz0|Rx
9. cos(won)uln] m lz] > 1 dX(z)
sin(@o)z—! 4 344 nx[n] -z ;11 Ry
. *| *
10. sin(won)uln] T ZoostanzT 52 lz| >1 5 345 x*[n] X*(z%) Ry
1 — r cos(wp)z~! 1 - .
e _ 1-reos@oz 6 Re Sx b'e Contains R,
11. r" cos(won)uln] 1= 2rcostapat +7%2 177 {xn]} FX@+X'E] ntains
e rsin(wp)z ! 1 — XA ;
12. r"sin(won)uln] T2 costwnz1 71222 lz| >r 7 Im{x[n]} % [X(z) — X*(z")] Contains R,
13 {a", 0<n<N-1, 1-a"z7¥ el >0 8 346 x*[-n] X*(1/2% 1/Rx
" 10, otherwise T—az1 : 9 347 xinlxxnh]l  X1(@X2(2) Contains Ry, N Ry,

Trigonometric Identities:

19 = cos(0) + jsin(O) ‘ cos(©) = %(ej@ +e779) ‘ sin(©) =

1
2j

Calaadl

Geometric Series:

n __

N
En:O r

Z?Zlo = ﬁ
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DTFT Equations:
X(e) = 300 o ke
zln] = 5= [T X(e?)elmdw
Z-Transform Equations:

X(z) = Zoo xn]z™"

n=—oo

x[n] = 27rj fX(z Lz
Upsampling/Downsampling:
Upsampling by L (1L): X,, = X(ej“’L)
Downsampling by M ({M): Xgown = 37 Z X (e QT?”)

Generalized Linear Phase Systems:

Type I Type 11
Symmetry Even, h[n] = h[M — n] Even, h[n] = h[M — n]
M Even Odd
M/2 (M+1)/2
H(e®) | e 7@M/2 [ 3™ q[k]cos(wk) e M2 S blk]cos(w(k — 1))
k=0 k=1
al0] = h[M/2] blk] = 2h[(M +1)/2 — k]
alk] = 2h[(M/2) — k] for k=1,2,...,(M+1)/2
for k=1,2,...,M/2
Type III Type IV
Symmetry | Odd, h[n] = —h[M — n] Odd, h[n] = —h[M — n]
M Even Odd
M/2 (M+1)/2
H(e®) | je 9@M2 [ S~ clk]sin(wk) | | je7«M/2 z d[k]sin(w(k — 3))
k=1
clk] = 2h[(M/2) — k] d[k] = 2h[(M +1)/2 — k|
for k=1,2,...,M/2 for k=1,2,...,(M+1)/2

Interchange Identities:

DFT Equations:
N—-1
N-point DFT of {z[n],n = 0,1,...N — 1} is X[k] = 3 z[n]e %+ for k =0,1,...,N — 1

n=0

a1 J( s vl

N-1 27
ZN-—1}isz[n] =+ Y X[k]e/vF forn=0,1,...,N—1
k=0

N-point IDFT of {X[k],k = 0,1, ..
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1. (25 pts) Consider four different continuous-time signals with the spectral graphs shown

below:
XCO (I-Q) Xcl (I-Q) XCZ (IQ) Xc3 (IQ)
A M
27W ¥ 2aW Q -2nW i 2tW O 2rW v 2rW Q -2rW 2w Q

The signals are all sampled at the Nyquist rate and put into the digital subbanding
system shown below. The impulse responses for the four filters

frln] = ej(k%ﬂ)"hlp[n], for k=0,1,2,3

are defined in terms of the ideal low pass filter given as

sin(%n)
h =4 4
w(n] .
Xoln]
Xeo(t)—>{ C/D —> foln] = hyy[n]
T
Fs = 2W
x4[n] o
Xe1(—> C/D —> filn] = /T by [n]
Fg =T2W yln]
x,fn] - /
Xe2(th—>1 C/D —> faln] = €74 " hyp [n]
T
Fe =2W
Xsln] i
Xes(t— C/D —> faln] = e/ Ty, [n]
T
Fe=2W

Plot the magnitude of the DTFT Y (e/*) of the final sum output y[n| over —7 < w < 7.
Show your work and any intermediate signals for partial credit.
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2. (15 pts) Consider a causal system hi[n] with the z-transform
(L-5=) (1-4=71) (1-352)
(e

Note the different exponents on the z variables. A new system H(z) is designed such
that ho[n] = z{hi[n]. For what values of z; is Hz(z) a minimum-phase system?

Hi(z) =
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3. (20 pts) A generalized linear-phase FIR system has an impulse response with real values
and h[n] = 0 for n < 0 and for n > 8, and h[n] = —h[7 — n]. The system function of

this system has a zero at z = 0.8¢T and another zero at z = —2. Fine H(z) and draw
its pole-zero diagram with the region of convergence specified.
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4. (20 pts) Read each part of this problem carefully to note the differences among the
two parts.

(a) Consider the signal

2] = 1+ cos(En) — 0.5cos(2n), f0<n<7
0, else

which can be represented by the IDFT equation as
7 - 27
S Xglkled sk if0<n <7
x[n] = =0
0, else
where Xg[k] is the 8-point DFT of x[n]. Plot Xg[k] for 0 < k < 7.

(b) Determine Vig[k], the 16-point DFT of the 16-point sequence v[n], where

] 1+ cos(§n) — 0.5cos(2fn), if0<n <15
v[n] =
0, else

Plot Vig[k] for 0 < k < 15.
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5. (20 pts) You have two discrete-time signals, z[n| and v[n], where xz[n] = 0 for n < 0 and
n > 500 and v[n] = 0 for n < 0 and n > 450. Describe what FFT/IFEFT operations
(including the FFT/IFFT length) you would use in order to efficiently compute the
linear convolution z[n] * v[n| and estimate the number of (complex) multiplications
your method would need.

10



