University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

Final	Thursday,	May	5

- 5 Problems with point weightings shown. All 5 problems must be completed.
- Calculators (non-cellphone) allowed.
- Closed book = No text allowed.
- Two two-sided 8.5x11 cheat sheet allowed.
- Final answers here.
- Additional workspace in exam book. Note where to find work in exam book if relevant.

Name: Answers

Grade:

Q1				
Q2				
Q3				
Q4				
Q5				
Total	Mean:	55.9,	Stdev:	20.8

Transform Pairs/Properties and Formulas

TABLE 2.3	FOURIER TRANSFORM PAIRS
-----------	-------------------------

Sequence		Fourier Transform	TABLE 2	.2 FOURIE	R TRANSFORM T	HEOREMS	
1. $\delta[n]$	1			Se	equence	Four	ier Transform
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$				x[n]		$X\left(e^{j\omega} ight)$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega)$	$+2\pi k$)			<i>y</i> [<i>n</i>]		$Y(e^{j\omega})$
	x=-∞ 1		1. ax[n] -	+ by[n]		$aX(e^{j\omega})$ +	$-bY(e^{j\omega})$
4. $a^n u[n]$ (<i>a</i> < 1)	$1-ae^{-j\omega}$		2. $x[n - n]$	$[n_d]$ (n_d an in	teger)	$e^{-j\omega n_d}X$ ($e^{j\omega}$)
5. $\mu[n]$	1 +	$\sum_{k=1}^{\infty} \pi \delta(\omega + 2\pi k)$	3. $e^{j\omega_0 n}x$	c[n]		$X (e^{j(\omega-\omega)})$	⁰⁾)
	$1-e^{-j\omega}$	$i = -\infty$	4. $x[-n]$			$X(e^{-j\omega})$	16 6 3 4 4 1
6. $(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	Ē				$X^+(e^{j\omega})$	If $x[n]$ real.
$\frac{r^n \sin \omega_p (n+1)}{u[n]} $	rl ~ 1)	1	5. nx[n]			$j \frac{dX(e^{j\omega})}{d\omega}$	
$\sin \omega_p$	$1-2r\cos\omega_p$	$e^{-j\omega} + r^2 e^{-j2\omega}$	6. $x[n] * $	v[n]		$X(e^{j\omega})Y(e^{j\omega})$	<i>₂jω</i>)
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1\\ 0 \end{cases}$	$ \omega < \omega_c, $ $ \omega_c < \omega \le \pi $	7			$1 \int_{-\pi}^{\pi} v$	$(i\theta) \mathbf{v} (i(\omega - \theta)) \mathbf{v}$
$0 n(n) = \begin{cases} 1, & 0 \le n \le M \end{cases}$	$\sin[\omega(M+1)]$	$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{\omega M/2}{2}$	7. $x[n]y[n]$	1]		$\overline{2\pi} \int_{-\pi} X$	$(e^{j^2})Y(e^{j(2-j^2)})a\theta$
9. $x[n] = \begin{cases} 0, & \text{otherwise} \end{cases}$	$\sin(\omega/2)$	<u>e</u> ;,-	Parseval's	s theorem:			
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega$	$-\omega_0 + 2\pi k$)	8. $\sum_{n=-\infty}^{\infty} $	$x[n] ^2 = \frac{1}{2\pi} \int$	$\int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$		
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} [\pi e^{j\phi} \delta$	$(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)]$	9. $\sum_{n=-\infty}^{\infty} x$	$x[n]y^*[n] = \frac{1}{2\pi}$	$\frac{1}{\pi}\int_{-\pi}^{\pi}X(e^{j\omega})Y^{*}(e^{j\omega})Y^{$	$(j\omega)d\omega$	
TABLE 3.1 SOME COMMON z-T	RANSFORM PAIRS						
Sequence	Transform	ROC					
1. $\delta[n]$	1	All z					
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1	TABLE 3.2	SOME z-TRAN	SFORM PROPERTIES		
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1	Property	Section	Sequence	Transform	ROC
4. $\delta[n - m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)	Number	Reference	x[n]	X(z)	R.
5. $a^{n}u[n]$	$\frac{1}{1-az^{-1}}$	z > a			$x_1[n]$	$X_1(z)$	R_{x_1}
6. $-a^n u[-n-1]$	$\frac{1}{1 - ar^{-1}}$	z < a			$x_2[n]$	$X_2(z)$	R_{x_2}
	az^{-1}		1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
/. na"u[n]	$\overline{(1-az^{-1})^2}$	z > a	2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible
8. $-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a					the origin or ∞

3

4

5

6

7

8

9

3.4.3

3.4.4

3.4.5

3.4.6

3.4.7

 $z_0^n x[n]$

nx[n]

 $x^*[n]$

 $\mathcal{R}e\{x[n]\}$

 $\mathcal{I}m\{x[n]\}$

 $x^*[-n]$

 $x_1[n] \ast x_2[n]$

 $X(z/z_0)$

 $-z \frac{dX(z)}{z}$

 $X_1(z)X_2(z)$

 $\frac{1}{2}[X(z) + X^*(z^*)]$

 $\frac{-z}{X^*(z^*)}\frac{dz}{dz}$

 $|z_0|R_x$

 R_x

 R_x

 $\frac{1}{2j}[X(z) - X^*(z^*)] \quad \text{Contains } R_x$ $X^*(1/z^*) \qquad 1/R_x$

Contains R_x

Contains $R_{x_1} \cap R_{x_2}$

Trigonometric Identities:

 $1-\cos(\omega_0)z^{-1}$

 $\frac{1 - 2\cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} \frac{\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1}}$

 $\frac{\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}}{1 - r\cos(\omega_0)z^{-1}}$

 $\frac{1}{1-2r\cos(\omega_0)z^{-1}+r^2z^{-2}}$ $r\sin(\omega_0)z^{-1}$

 $\frac{1}{1-2r\cos(\omega_0)z^{-1}+r^2z^{-2}}$

 $1-a^N z^{-N}$

 $1 - az^{-1}$

|z| > 1

|z| > 1

|z| > r

|z| > r

|z|>0

$$e^{j\Theta} = \cos(\Theta) + j\sin(\Theta) \quad \cos(\Theta) = \frac{1}{2}(e^{j\Theta} + e^{-j\Theta}) \quad \sin(\Theta) = \frac{1}{2j}(e^{j\Theta} - e^{-j\Theta})$$

Geometric Series:

9. $\cos(\omega_0 n)u[n]$

10. $\sin(\omega_0 n)u[n]$

11. $r^n \cos(\omega_0 n) u[n]$

12. $r^n \sin(\omega_0 n) u[n]$

13. $\begin{cases} a^n, & 0 \le n \le N-1, \\ 0, & \text{otherwise} \end{cases}$

$$\sum_{n=0}^{N} r^n = \frac{1-r^{N+1}}{1-r}$$
$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}, |r| < 1$$

DTFT Equations:

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

Z-Transform Equations:

$$\begin{split} X(z) &= \sum_{n=-\infty}^{\infty} x[n] z^{-n} \\ x[n] &= \frac{1}{2\pi j} \oint\limits_{C} X(z) z^{n-1} dz \end{split}$$

Upsampling/Downsampling:

Upsampling by L (\uparrow L): $X_{up} = X(e^{j\omega L})$ Downsampling by M (\downarrow M): $X_{down} = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\frac{\omega}{M} - \frac{2\pi}{M}i)})$

Generalized Linear Phase Systems:

	· · · · · · · · · · · · · · · · · · ·			
	Type I	Type II		
Symmetry	Even, $h[n] = h[M - n]$	Even, $h[n] = h[M - n]$		
М	Even	Odd		
$H(e^{j\omega})$	$e^{-j\omega M/2} \left(\sum_{k=0}^{M/2} a[k] cos(\omega k)\right)$	$e^{-j\omega M/2} \left(\sum_{k=1}^{(M+1)/2} b[k] \cos(\omega(k-\frac{1}{2})) \right)$		
	a[0] = h[M/2]	b[k] = 2h[(M+1)/2 - k]		
	a[k] = 2h[(M/2) - k]	for $k = 1, 2,, (M+1)/2$		
	for $k = 1, 2,, M/2$			
	Type III	Type IV		
Symmetry	Odd, h[n] = -h[M - n]	Odd, h[n] = -h[M - n]		
М	Even	Odd		
$H(e^{j\omega})$	$je^{-j\omega M/2} \left(\sum_{k=1}^{M/2} c[k]sin(\omega k)\right)$	$je^{-j\omega M/2} \left(\sum_{k=1}^{(M+1)/2} d[k]sin(\omega(k-\frac{1}{2})) \right)$		
	c[k] = 2h[(M/2) - k]	d[k] = 2h[(M+1)/2 - k]		
	for $k = 1, 2,, M/2$	for $k = 1, 2,, (M+1)/2$		

Interchange Identities:

$$\begin{array}{rcl} x[n] & & & & & \\ & & & \\ & & & \\$$

DFT Equations:

N-point DFT of $\{x[n], n = 0, 1, ..., N - 1\}$ is $X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$, for k = 0, 1, ..., N - 1N-point IDFT of $\{X[k], k = 0, 1, ..., N - 1\}$ is $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j\frac{2\pi}{N}kn}$, for n = 0, 1, ..., N - 1

1. (25 pts) Consider four different continuous-time signals with the spectral graphs shown below:

The signals are all sampled at the Nyquist rate and put into the digital subbanding system shown below. The impulse responses for the four filters

$$f_k[n] = e^{j(k\frac{2\pi}{4})n} h_{lp}[n], \text{ for } k = 0, 1, 2, 3$$

are defined in terms of the ideal low pass filter given as

$$h_{lp}[n] = 4 \frac{\sin(\frac{\pi}{4}n)}{\pi n}$$

Plot the magnitude of the DTFT $Y(e^{j\omega})$ of the final sum output y[n] over $-\pi < \omega < \pi$. Show your work and any intermediate signals for partial credit.

2. (15 pts) Consider a causal system $h_1[n]$ with the z-transform

$$H_1(z) = \frac{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{5}z\right)}{\left(1 - \frac{1}{5}z\right)}$$

Note the different exponents on the z variables. A new system $H_2(z)$ is designed such that $h_2[n] = z_0^n h_1[n]$. For what values of z_0 is $H_2(z)$ a minimum-phase system?

$$H_{1}(z) = \frac{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{5}z\right)}{\left(1 - \frac{1}{6}z\right)} = \frac{6}{5}\frac{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - 5z^{-1}\right)}{\left(1 - 6z^{-1}\right)}$$
$$h_{2}[n] = z_{0}^{n}h_{1}[n] \leftrightarrow H_{2}(z) = H_{1}\left(\frac{z}{z_{0}}\right) = \frac{6}{5}\frac{\left(1 - \frac{1}{2}z_{0}z^{-1}\right)\left(1 - \frac{1}{4}z_{0}z^{-1}\right)\left(1 - 5z_{0}z^{-1}\right)}{\left(1 - 6z_{0}z^{-1}\right)}$$

A minimum phase system has all its poles and zeros inside the unit circle.

$$\begin{aligned} |\frac{z_0}{2}| < 1 \to |z_0| < 2\\ |\frac{z_0}{4}| < 1 \to |z_0| < 4\\ |5z_0| < 1 \to |z_0| < \frac{1}{5}\\ |6z_0| < 1 \to |z_0| < \frac{1}{6} \end{aligned}$$

Therefore, $|z_0| < \frac{1}{6}$ for $H_2(z)$ to be minimum phase.

3. (20 pts) A generalized linear-phase FIR system has an impulse response with real values and h[n] = 0 for n < 0 and for $n \ge 8$, and h[n] = -h[7 - n]. The system function of this system has a zero at $z = 0.8e^{\frac{j\pi}{4}}$ and another zero at z = -2. Find H(z) and draw its pole-zero diagram with the region of convergence specified.

We know that h[n] is length 8 (M = 7) and therefore has 7 zeros. Since M = 7 is odd and this has odd symmetry, it is a Type IV GLP filter with real coefficients. It therefore has the property that its zeros come in conjugate and reciprocal pairs. The zero at z = -2 implies another zero at $z = -\frac{1}{2}$, and the zero at $z = 0.8e^{\frac{j\pi}{4}}$, $z = 1.25e^{\frac{j\pi}{4}}$, and $z = 1.25e^{-\frac{j\pi}{4}}$. Because it is a Type IV filter it also has a zero at z = 1. Putting all this together gives

$$H(z) = (1+2z^{-1})(1+0.5z^{-1})(1-0.8e^{j\frac{\pi}{4}}z^{-1})(1-0.8e^{-j\frac{\pi}{4}}z^{-1})$$
$$(1-1.25e^{j\frac{\pi}{4}}z^{-1})(1-1.25e^{-j\frac{\pi}{4}}z^{-1})(1-z^{-1})$$

- 4. (20 pts) Read each part of this problem carefully to note the differences among the two parts.
 - (a) Consider the signal

$$x[n] = \begin{cases} 1 + \cos(\frac{\pi}{4}n) - 0.5\cos(\frac{3\pi}{4}n), & \text{if } 0 \le n \le 7\\ 0, & \text{else} \end{cases}$$

which can be represented by the IDFT equation as

$$x[n] = \begin{cases} \frac{1}{8} \sum_{k=0}^{7} X_8[k] e^{j\frac{2\pi}{8}kn}, & \text{if } 0 \le n \le 7\\ 0, & \text{else} \end{cases}$$

where $X_8[k]$ is the 8-point DFT of x[n]. Plot $X_8[k]$ for $0 \le k \le 7$.

(b) Determine $V_{16}[k]$, the 16-point DFT of the 16-point sequence v[n], where

$$v[n] = \begin{cases} 1 + \cos(\frac{\pi}{4}n) - 0.5\cos(\frac{3\pi}{4}n), & \text{if } 0 \le n \le 15\\ 0, & \text{else} \end{cases}$$

Plot $V_{16}[k]$ for $0 \le k \le 15$.

(a) We can rewrite x[n] as

$$\begin{aligned} x[n] &= 1 + \frac{1}{2} (e^{j\frac{\pi}{4}n} + e^{-j\frac{\pi}{4}n}) - \frac{1}{4} (e^{j\frac{3\pi}{4}n} + e^{-j\frac{3\pi}{4}n}) \\ &= 1 + \frac{1}{2} e^{j\frac{2\pi}{8}n} + \frac{1}{2} e^{j\frac{2\pi}{8}n\cdot7} - \frac{1}{4} e^{j\frac{2\pi}{8}n\cdot3} - \frac{1}{4} e^{j\frac{2\pi}{8}n\cdot5} \\ &= \frac{1}{8} \left(8 + 4e^{j\frac{2\pi}{8}n} + 4e^{j\frac{2\pi}{8}n\cdot7} - 2e^{j\frac{2\pi}{8}n\cdot3} - 2e^{j\frac{2\pi}{8}n\cdot5} \right) \end{aligned}$$

Setting this equal to the IDFT representation of x[n] we get

$$\frac{1}{8}\left(8+4e^{j\frac{2\pi}{8}n}+4e^{j\frac{2\pi}{8}n\cdot7}-2e^{j\frac{2\pi}{8}n\cdot3}-2e^{j\frac{2\pi}{8}n\cdot5}\right)=\frac{1}{8}\sum_{k=0}^{7}X_{8}[k]e^{j\frac{2\pi}{8}kn}$$

We thus get the following plot for $X_8[k]$

(b) Similarly since x[n] is the same sum of cosines,

$$x[n] = 1 + \frac{1}{2} \left(e^{j\frac{\pi}{4}n} + e^{-j\frac{\pi}{4}n} \right) - \frac{1}{4} \left(e^{j\frac{3\pi}{4}n} + e^{-j\frac{3\pi}{4}n} \right)$$
$$= \frac{1}{16} \left(16 + 8e^{j\frac{2\pi}{16}n \cdot 2} + 8e^{j\frac{2\pi}{16}n \cdot 14} - 4e^{j\frac{2\pi}{16}n \cdot 6} - 4e^{j\frac{2\pi}{16}n \cdot 10} \right)$$

We thus get the following plot for $V_{16}[k]$

5. (20 pts) You have two discrete-time signals, x[n] and v[n], where x[n] = 0 for n < 0 and $n \ge 500$ and v[n] = 0 for n < 0 and $n \ge 450$. Describe what FFT/IFFT operations (including the FFT/IFFT length) you would use in order to efficiently compute the linear convolution x[n] * v[n] and estimate the number of (complex) multiplications your method would need.

In general, the convolution of x[n] and v[n] will have 500 + 450 = 950 nonzero components. The smallest power of 2 that is larger than 950 is $L = 1024 = 2^{10}$. Let us pad x[n] and v[n] with zeros so that

$$\begin{aligned} x[n] &= 0, \ n = 500, 501, ..., 1024 \\ v[n] &= 0, \ n = 450, 451, ..., 1024 \end{aligned}$$

Then to compute x[n] * v[n], we would first use the FFT algorithm to compute the *L*-point DFTs X_k and V_k of x[n] and v[n], and then use the FFT algorithm to compute the inverse *L*-point DFT of the product of X_k and V_k . We will need:

- There are $(1/2) \cdot L \cdot log_2(L) = (1/2) \cdot 1024 \cdot 10 = 5120$ multiplications to compute the *L*-point DFT of x[n].
- There are $(1/2) \cdot L \cdot log_2(L) = (1/2) \cdot 1024 \cdot 10 = 5120$ multiplications to compute the *L*-point DFT of v[n].
- L = 1024 multiplications to compute the product of X_k and V_k .
- There are $(1/2) \cdot L \cdot log_2(L) = (1/2) \cdot 1024 \cdot 10 = 5120$ multiplications to compute the *L*-point inverse DFT of the product of X_k and V_k .

Thus, the total number of multiplications is on the order of 5120 + 5120 + 1024 + 5120 = 16384.