ESE531 Spring 2022

University of Pennsylvania
Department of Electrical and System Engineering
Digital Signal Processing

Final Thursday, May 5

5 Problems with point weightings shown. All 5 problems must be completed.

Calculators (non-cellphone) allowed.

Closed book = No text allowed.

Two two-sided 8.5x11 cheat sheet allowed.

Final answers here.

Additional workspace in exam book. Note where to find work in exam book if relevant.

Name: Answers

Grade:

Ql

Q2

Q3

Q4

Q5

Total | Mean: 55.9, Stdev: 20.8
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Transform Pairs/Properties and Formulas

TABLE 2.3 FOURIER TRANSFORM PAIRS
Sequence Fourier Transform TABLE2.2 FOURIER TRANSFORM THEOREMS
L. 8[n] 1 Sequence Fourier Transform
2. 8[n — ng) e~ Jeno x[n) X (ef*)
o0 .
3.1 (—0c <n < 00) Z 2mé (0 + 2mk) yln] Y(el®)
k=—o00 N "
1 1. ax[n] + by[n] aX (/) + bY (e/?)
4. auln] (lal <1) 1—aqe—jw 2. x[n —ng] (ng aninteger) e~iwnd ¥ (ejwy
oo 3, elwon X (el (@—wq)
5. u[n] ;_m + Z 78w+ 27k) ¢ #ln] e ) )
=™ 4. x[-n] X (i)
6. (n+a"uln] (lal <1) ﬁ X*(e/®) if x[n] real.
—ae~ ;
dX (e/”)
"o 5. nx[n] —)
7. T <y L : dw
sinwp 1-2rcoswpeI® + 12120 ) .
. 6. x[n]* y[n) X (e/)Y (/)
sin wen iw 1, ol <o,
8 = X(e )=[U <|wlsm 1 ji j
wn v @ <o) = 7. x[nlyln] o f X (e0)y (! @=9)dp
o xtn)— { L, 0<n<M sinlw (M +1/2) _jumy2 o
: 0, otherwise sin(w/2) Parseval’s theorem:
; & .- P jy 2
10, eleon 3 2mb( - wg + 270 8.3 wmP= oo [* )P
k=—00 n=—oo
oo ) ) o0 1 T . .
11. cos(won + ¢) Z [rei®8(w — wq + 2k) + me P 8(w + w + 2mk)) 9. Z x[nly*[n] = 5[ X (e/)Y*(e!)dw
k=—c0 ne—oo -
TABLE3.1  SOME COMMON z-TRANSFORM PAIRS
Sequence Transform ROC
1. 8[n] 1 Allz
1
2. u[n] 1_1 lz] > 1 TABLE3.2 SOME z-TRANSFORM PROPERTIES
3. —u[-n-1] ;1 Izl <1 Property Section
1-2z- Number Reference Sequence Transform ROC
_ -m . )
4., BEln m] z L All z except 0 (if m > 0) or oo (if m < 0) x[n] X(2) R,
5. a"uln] Tz 1 |z| > |a| xi[n] X1 Ry,
6. —a"ul-n—1] I ! ~ Izl < la] x2[n] X2 Rz
i gl 341  axmlnl+bxln] aXi@@)+bX,(z)  Contains Ry, N Ry,
7. na"uln] A—aciy lz| > la| 2 3.42 x[n — ng) 77X (z) Ry, except for the possible
az- addition or deletion of
8. —na"u[-n—1] Ay lz| < la| the origin or cc
1 — cos(wp)z~! 3 343 zpx[n] X(z/20) lz0|Rx
9. cos(won)uln] m lz] > 1 dX(z)
sin(@o)z—! 4 344 nx[n] -z ;11 Ry
. *| *
10. sin(won)uln] T ZoostanzT 52 lz| >1 5 345 x*[n] X*(z%) Ry
1 — r cos(wp)z~! 1 - .
e _ 1-reos@oz 6 Re Sx b'e Contains R,
11. r" cos(won)uln] 1= 2rcostapat +7%2 177 {xn]} FX@+X'E] ntains
e rsin(wp)z ! 1 — XA ;
12. r"sin(won)uln] T2 costwnz1 71222 lz| >r 7 Im{x[n]} % [X(z) — X*(z")] Contains R,
13 {a", 0<n<N-1, 1-a"z7¥ el >0 8 346 x*[-n] X*(1/2% 1/Rx
" 10, otherwise T—az1 : 9 347 xinlxxnh]l  X1(@X2(2) Contains Ry, N Ry,

Trigonometric Identities:

19 = cos(0) + jsin(O) ‘ cos(©) = %(ej@ +e779) ‘ sin(©) =

1
2j

Calaadl

Geometric Series:

n __

N
En:O r

Z?Zlo = ﬁ

1—pN+1L

1—r

<1
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DTFT Equations:
X(e) = 300 o ke
zln] = 5= [T X(e?)elmdw
Z-Transform Equations:

X(z) = Zoo xn]z™"

n=—oo

x[n] = 27rj fX(z Lz
Upsampling/Downsampling:
Upsampling by L (1L): X,, = X(ej“’L)
Downsampling by M ({M): Xgown = 37 Z X (e QT?”)

Generalized Linear Phase Systems:

Type I Type 11
Symmetry Even, h[n] = h[M — n] Even, h[n] = h[M — n]
M Even Odd
M/2 (M+1)/2
H(e®) | e 7@M/2 [ 3™ q[k]cos(wk) e M2 S blk]cos(w(k — 1))
k=0 k=1
al0] = h[M/2] blk] = 2h[(M +1)/2 — k]
alk] = 2h[(M/2) — k] for k=1,2,...,(M+1)/2
for k=1,2,...,M/2
Type III Type IV
Symmetry | Odd, h[n] = —h[M — n] Odd, h[n] = —h[M — n]
M Even Odd
M/2 (M+1)/2
H(e®) | je 9@M2 [ S~ clk]sin(wk) | | je7«M/2 z d[k]sin(w(k — 3))
k=1
clk] = 2h[(M/2) — k] d[k] = 2h[(M +1)/2 — k|
for k=1,2,...,M/2 for k=1,2,...,(M+1)/2

Interchange Identities:

DFT Equations:
N—-1
N-point DFT of {z[n],n = 0,1,...N — 1} is X[k] = 3 z[n]e %+ for k =0,1,...,N — 1

n=0

a1 J( s vl

N-1 27
ZN-—1}isz[n] =+ Y X[k]e/vF forn=0,1,...,N—1
k=0

N-point IDFT of {X[k],k = 0,1, ..
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1. (25 pts) Consider four different continuous-time signals with the spectral graphs shown

below:
XCO (I-Q) Xcl (I-Q) XCZ (IQ) Xc3 (IQ)
A M
27W ¥ 2aW Q -2nW i 2tW O 2rW v 2rW Q -2rW 2w Q

The signals are all sampled at the Nyquist rate and put into the digital subbanding
system shown below. The impulse responses for the four filters

frln] = ej(k%ﬂ)"hlp[n], for k=0,1,2,3

are defined in terms of the ideal low pass filter given as

sin(%n)
h =4 4
w(n] .
Xoln]
Xeo(t)—>{ C/D —> foln] = hyy[n]
T
Fs = 2W
x4[n] o
Xe1(—> C/D —> filn] = /T by [n]
Fg =T2W yln]
x,fn] - /
Xe2(th—>1 C/D —> faln] = €74 " hyp [n]
T
Fe =2W
Xsln] i
Xes(t— C/D —> faln] = e/ Ty, [n]
T
Fe=2W

Plot the magnitude of the DTFT Y (e/*) of the final sum output y[n| over —7 < w < 7.
Show your work and any intermediate signals for partial credit.
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After sampling:

Xo(e/®) X1(e/®) X,(e/*) X3(e/)
- ‘L T W - l T w - T W -1 T w
After upsampling by 4:
ANRA o i
-T l' T W - l: T W -1 y T w
Filter frequency responses:
Fo(e/®) Fy(el®) Fs(e/®)
4 [k ]
VT T w - it T w -1 T - _ T T @
"% 2 33" “3r 3m 37 4
4 4 4 ~7

M
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2. (15 pts) Consider a causal system hi[n] with the z-transform
(L-5=) (1-4=71) (1-352)
(e

Note the different exponents on the z variables. A new system H(z) is designed such
that ho[n] = z{hi[n]. For what values of z; is Hz(z) a minimum-phase system?

Hi(z) =

O () () () )
(=) = (1-32) "5 (1—-6z71)
o B z\ 6 (1 — %zoz_l) (1 — izoz_l) (1 —5zp271)
hg[n] = 2 hl[n] g HQ(Z) = H1 <Z—O> = 5 (1 — 62:02_1)

A minimum phase system has all its poles and zeros inside the unit circle.
]%|<1—>\zo|<2
3 <1 |zl <4

520l < 1= |l < ¢

1
‘6ZO| <1l—= ‘20’ < 6

Therefore, 2| < g for Hy(2) to be minimum phase.
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3. (20 pts) A generalized linear-phase FIR system has an impulse response with real values
and h[n] = 0 for n < 0 and for n > 8, and h[n] = —h[7 — n]. The system function of
this system has a zero at z = 0.8¢’T and another zero at z = —2. Find H(z) and draw
its pole-zero diagram with the region of convergence specified.

We know that h[n] is length 8 (M = 7) and therefore has 7 zeros. Since M = 7 is
odd and this has odd symmetry, it is a Type IV GLP filter with real coefficients. It
therefore has the property that its zeros come in conjugate and reciprocal pairs. The
zero at z = —2 implies another zero at z = —%, and the zero at z = 0.8¢'t implies
zeros at z = 0.8¢7 T, z = 1.25¢T, and 2z = 1.25¢~ 7. Because it is a Type IV filter it
also has a zero at z = 1. Putting all this together gives

H(z) = (1425)(1+0527)(1 - 0867 27")(1— 0.8 /5271
(1—1.2567T271) (1 —1.25e 75271 (1 - 271
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4. (20 pts) Read each part of this problem carefully to note the differences among the
two parts.

(a) Consider the signal

2] = 1+ cos(En) — 0.5cos(2n), f0<n<7
0, else

which can be represented by the IDFT equation as

7
%,;)Xs[k]ej%”m, if0<n<7

a[n] =
0, else
where Xg[k| is the 8-point DFT of x[n]. Plot Xg[k] for 0 < k < 7.
(b) Determine Vig[k], the 16-point DFT of the 16-point sequence v[n], where

4 4

i) 1+ cos(Zn) — 0.5cos(%xn), if0<n<15
v[n] =
0, else

Plot Viglk] for 0 < k < 15.

(a) We can rewrite x[n] as

1 s - 1 .37 .37
zln] = 1+ 5(6”” +e7JEm) — Z(eﬂ%" + eI
1 2« 1 ox 1 .2x 1 .on
= 1+ 563%" + 561%"'7 — Zej%m‘ — Zeﬂ%nﬁ
= é (8 + 4T F 4 eI TT _ 9i 3 263-%%5)

Setting this equal to the IDFT representation of z[n] we get

1 - 27 - 27 - 27 - 27T .27
< (840 ¥n L4 BT _ 0 E s 9o En0) _ O3 X e ¥

We thus get the following plot for Xg[k]
Xkl @8
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(b) Similarly since x[n] is the same sum of cosines,
1 - - 1 .37 .37
tfn] = 148" i) — Z(eﬂ%n +elm)
- % (16 1 8eITin2 4 geifinlt _ 4eiTine 461%"'10>
We thus get the following plot for Vig[k]
Vielk] ¢ 1°
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5. (20 pts) You have two discrete-time signals, z[n| and v[n], where xz[n] = 0 for n < 0 and
n > 500 and v[n] = 0 for n < 0 and n > 450. Describe what FFT/IFEFT operations
(including the FFT/IFFT length) you would use in order to efficiently compute the
linear convolution z[n] * v[n] and estimate the number of (complex) multiplications
your method would need.

In general, the convolution of z[n] and v[n] will have 500 4+ 450 = 950 nonzero compo-
nents. The smallest power of 2 that is larger than 950 is L = 1024 = 2'0. Let us pad
x[n] and v[n] with zeros so that

x[n] =0, n = 500,501, ...,1024
u[n] = 0, n = 450,451, ..., 1024

—

n]

Then to compute z[n] * v[n], we would first use the FFT algorithm to compute the
L-point DFTs X}, and V}, of z[n| and v[n|, and then use the FFT algorithm to compute
the inverse L-point DFT of the product of X and V,. We will need:

e There are (1/2) - L-logs(L) = (1/2)-1024 - 10 = 5120 multiplications to compute
the L-point DFT of z[n].

e There are (1/2) - L-logs(L) = (1/2)-1024 - 10 = 5120 multiplications to compute
the L-point DFT of v[n].

e [ = 1024 multiplications to compute the product of X}, and V.

e There are (1/2) - L-logs(L) = (1/2)-1024 - 10 = 5120 multiplications to compute
the L-point inverse DFT of the product of X and V.

Thus, the total number of multiplications is on the order of 5120 + 5120 + 1024 +
5120 = 16384.

10



