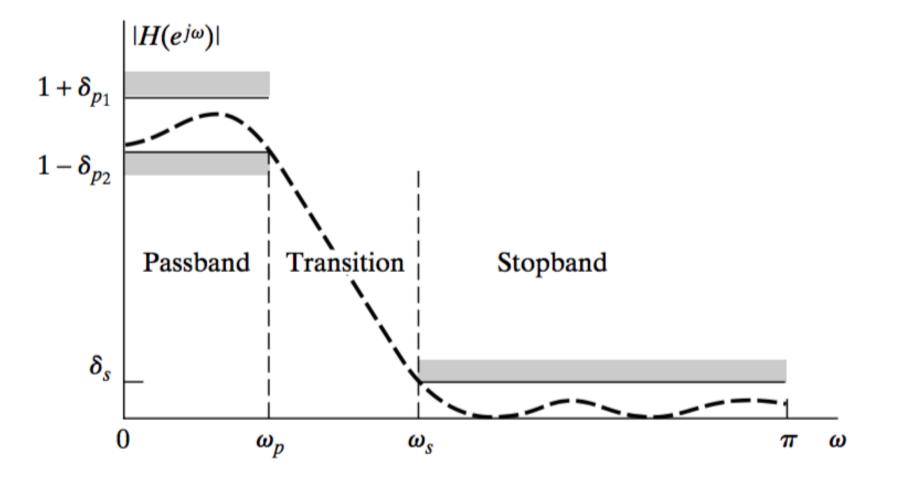
ESE 531: Digital Signal Processing

Lecture 16: March 15, 2022 Design of IIR Filters

- Used to be an ambiguous process
 - Now, lots of tools to design optimal filters
- □ For DSP there are two common classes
 - Infinite impulse response IIR
 - Finite impulse response FIR
- Both classes use finite order of parameters for design
 - Filter order (ie. Length) restricts filter design

- Attenuates certain frequencies
- Passes certain frequencies
- □ Affects both phase and magnitude
- □ What does it mean to design a filter?
 - Determine the parameters of a transfer function or difference equation that approximates a desired impulse response (h[n]) or frequency response (H(e^{jω})).



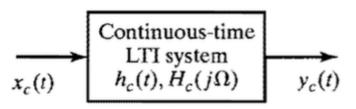
- Attenuates certain frequencies
- Passes certain frequencies
- □ Affects both phase and magnitude
- IIR
 - Mostly non-linear phase response
 - Could be linear over a range of frequencies
- **G** FIR
 - Much easier to control the phase
 - Both non-linear and linear phase

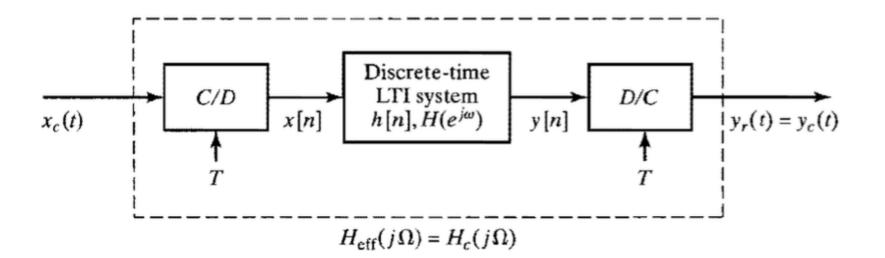
Penn ESE 531 Spring 2022 – Khanna Adapted from M. Lustig, EECS Berkeley

- IIR Filter Design
 - Impulse Invariance
 - Bilinear Transformation
- □ Transformation of DT Filters

- Transform continuous-time filter into a discretetime filter meeting specs
 - Pick suitable transformation from s (Laplace variable) to z (or t to n)
 - Pick suitable analog H_c(s) allowing specs to be met, transform to H(z)
- □ We've seen this before... impulse invariance

Want to implement continuous-time system in discrete-time





□ With $H_c(j\Omega)$ bandlimited, choose

$$H(e^{j\omega}) = H_c(j\frac{\omega}{T}), \quad |\omega| < \pi$$

 With the further requirement that T be chosen such that

$$H_c(j\Omega) = 0, \quad |\Omega| \ge \pi / T$$

□ With $H_c(j\Omega)$ bandlimited, choose

$$H(e^{j\omega}) = H_c(j\frac{\omega}{T}), \quad |\omega| < \pi$$

 With the further requirement that T be chosen such that

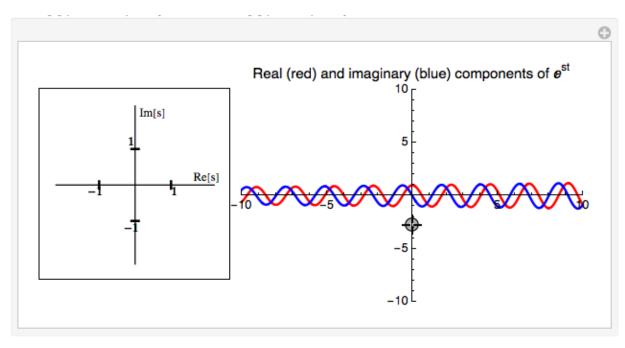
$$H_c(j\Omega) = 0, \quad |\Omega| \ge \pi / T$$

$$h[n] = Th_c(nT)$$

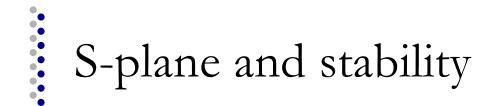
- The Laplace transform takes a function of time, t, and transforms it to a function of a complex variable, s.
- Because the transform is invertible, no information is lost and it is reasonable to think of a function f(t) and its Laplace transform F(s) as two views of the same phenomenon.
- Each view has its uses and some features of the phenomenon are easier to understand in one view or the other.

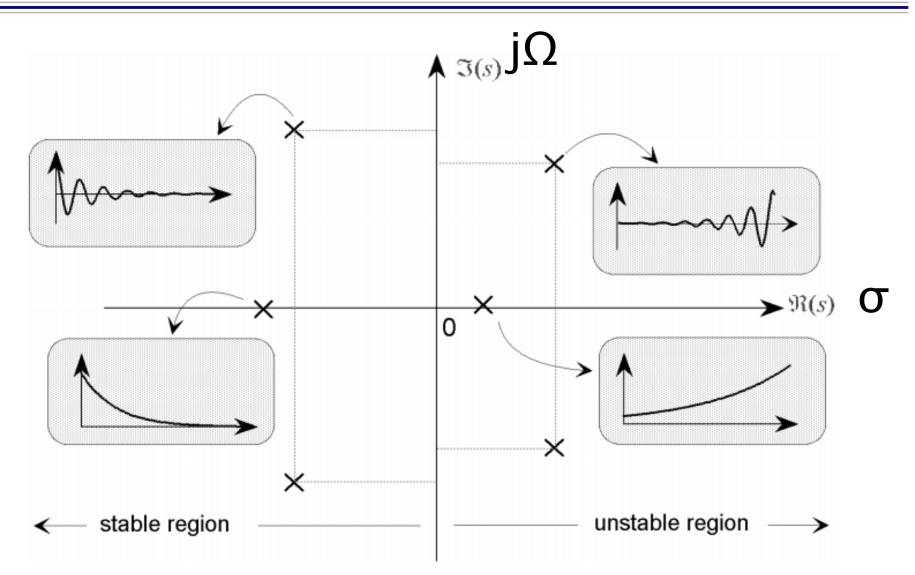
 \Box s= σ +j Ω

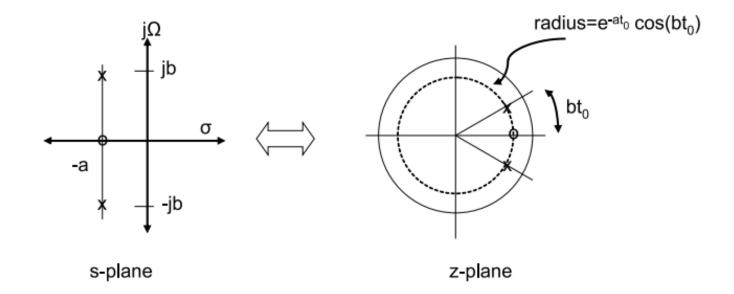
Wolfram Demo



http://pilot.cnxproject.org/content/collection/col10064/latest/module/m10060/latest



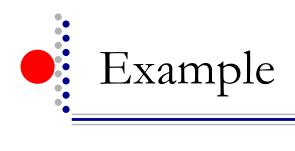




Example: If
$$H_c(s) = \frac{A_k}{s - p_k}$$

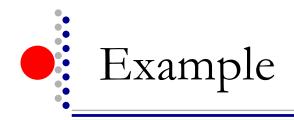
Laplace:
$$e^{at} \xleftarrow{L} \frac{1}{s-a}$$

Z-transform:
$$a^n u[n] \xleftarrow{Z} \frac{1}{1 - az^{-1}}$$



Example: If
$$|H_c(s) = \frac{A_k}{s - p_k}$$
 $e^{at} \leftarrow \frac{L}{s - a}$ $a^n u[n] \leftarrow \frac{Z}{1 - az^{-1}}$

Example: If
$$H_c(s) = \frac{A_k}{s - p_k}$$
 (e.g. one term in PF expansion)
 $h_c(t) = A_k e^{p_k t}, t \ge 0; \quad h[n] = T_d A_k e^{p_k T_d n} = T_d A_k \left(e^{p_k T_d}\right)^n$ Zeros do not map
 $\therefore \quad H(z) = T_d A_k \frac{1}{1 - e^{p_k T_d} z^{-1}}$ Pole mapping is $z \leftarrow e^{sT_d}$ the same way;
not the general mapping of s to z



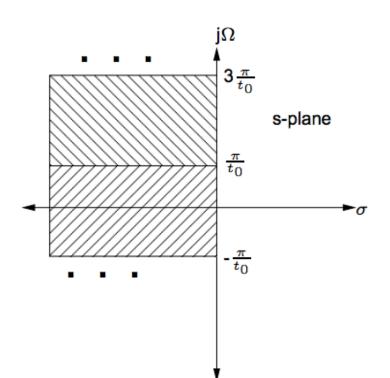
Example: If
$$H_c(s) = \frac{A_k}{s - p_k}$$
 (e.g. one term in PF expansion)
 $h_c(t) = A_k e^{p_k t}, t \ge 0;$ $h[n] = T_d A_k e^{p_k T_d n} = T_d A_k \left(e^{p_k T_d}\right)^n$ Zeros do not map
 $\therefore H(z) = T_d A_k \frac{1}{1 - e^{p_k T_d z^{-1}}}$ Pole mapping is $z \leftarrow e^{sT_d}$ the same way;
not the general mapping of s to z

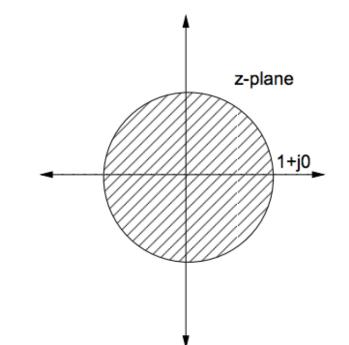
- · Stability, causality, preserved.
- $j\Omega$ axis mapped linearly to unit-circle, with aliasing
- · No control of zeros or of phase

- Sampling the impulse response is equivalent to mapping the s-plane to the z-plane using:
 - $z = e^{sTd} = r e^{j\omega}$
- The entire Ω axis of the s-plane wraps around the unit circle of the z-plane an infinite number of times

- Sampling the impulse response is equivalent to mapping the s-plane to the z-plane using:
 - $z = e^{sTd} = r e^{j\omega}$
- The entire Ω axis of the s-plane wraps around the unit circle of the z-plane an infinite number of times
- The left half s-plane maps to the interior of the unit circle and the right half plane to the exterior

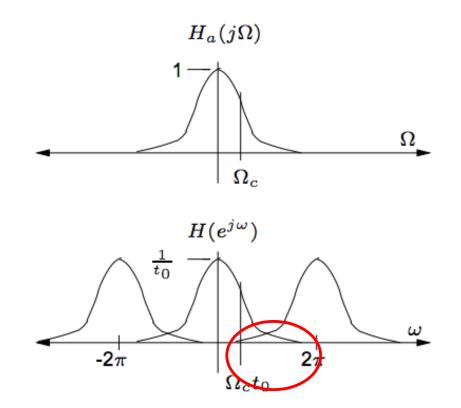
Mapping





- Sampling the impulse response is equivalent to mapping the s-plane to the z-plane using:
 - $z = e^{sTd} = r e^{j\omega}$
- The entire Ω axis of the s-plane wraps around the unit circle of the z-plane an infinite number of times
- The left half s-plane maps to the interior of the unit circle and the right half plane to the exterior
- This means stable analog filters (poles in LHP) will transform to stable digital filters (poles inside unit circle)
- This is a many-to-one mapping of strips of the s-plane to regions of the z-plane
 - Not a conformal mapping
 - The poles map according to $z = e^{sTd}$, but the zeros do not always

 Limitation of Impulse Invariance: overlap of images of the frequency response. This prevents it from being used for high-pass filter design



The technique uses an algebraic transformation between the variables *s* and *z* that maps the entire jΩ-axis in the s-plane to one revolution of the unit circle in the z-plane.

$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right);$$
$$H(z) = H_c \left(\frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \right).$$

$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right);$$

• Substituting $s = \sigma + j \Omega$ and $z = e^{j\omega}$

$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right);$$

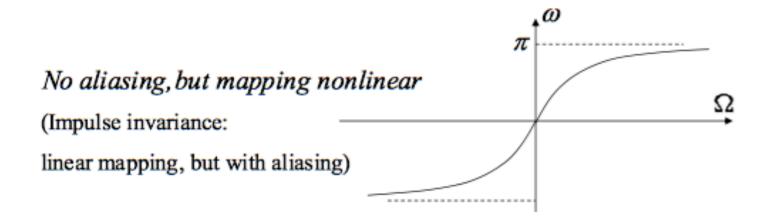
• Substituting $s = \sigma + j \Omega$ and $z = e^{j\omega}$

$$s = \frac{2}{T_d} \left(\frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} \right),$$

$$s = \sigma + j\Omega = \frac{2}{T_d} \left[\frac{2e^{-j\omega/2}(j\sin\omega/2)}{2e^{-j\omega/2}(\cos\omega/2)} \right] = \frac{2j}{T_d} \tan(\omega/2).$$

$$\Omega = \frac{2}{T_d} \tan(\omega/2),$$

$$\omega = 2 \arctan(\Omega T_d/2).$$



□ The continuous time filter with:

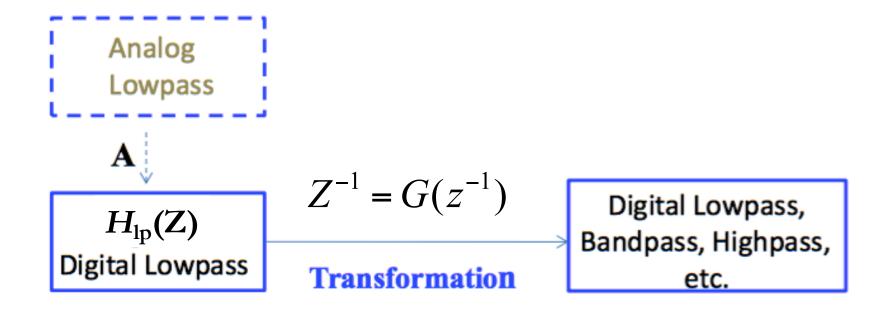
$$H_{a}(s) = \frac{s^{2} + \Omega_{0}^{2}}{s^{2} + Bs + \Omega_{0}^{2}}$$

$$\Omega = \frac{2}{T_d} \tan(\omega/2),$$

 $\omega = 2 \arctan(\Omega T_d/2).$

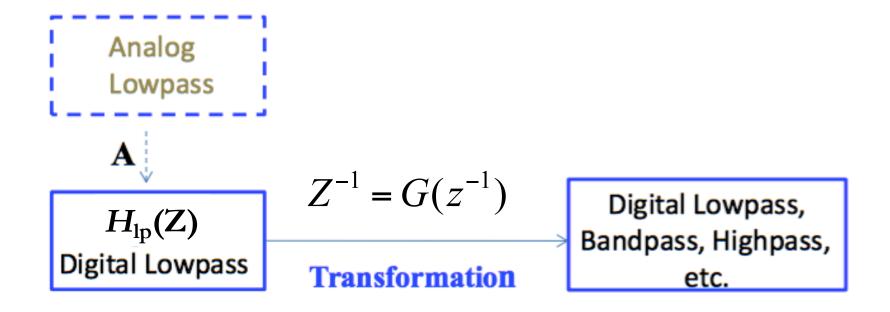
□ The continuous time filter with:

$$H_{a}(s) = \frac{s^{2} + \Omega_{0}^{2}}{s^{2} + Bs + \Omega_{0}^{2}}$$



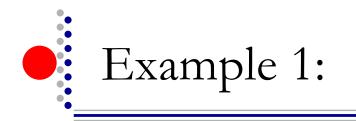
Z – complex variable for the LP filter
z – complex variable for the transformed filter

□ Map Z-plane → z-plane with transformation G



□ Map Z-plane → z-plane with transformation G

$$H(z) = H_{lp}(Z) \Big|_{Z^{-1} = G(z^{-1})}$$



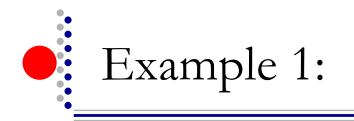
- □ Lowpass→highpass
 - Shift frequency by π

so $\omega \rightarrow \omega - \pi$ (Lowpass to highpass)

- □ Lowpass→highpass
 - Shift frequency by π

so $\omega \rightarrow \omega - \pi$ (Lowpass to highpass)

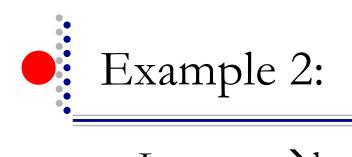
$$G(z^{-1}) = -z^{-1}$$
 or $e^{-j\omega} \rightarrow e^{-j(\omega-\pi)}$



- □ Lowpass→highpass
 - Shift frequency by π

$$G(z^{-1}) = -z^{-1}$$

ω	Z	$ H_{lp}(z) = \left \frac{0.1}{1 - 0.9z^{-1}}\right $	$ H_{hp}(z) = \left \frac{0.1}{1+0.9z^{-1}}\right $
0			
$\frac{\pi}{2}$			
π			
$\frac{3\pi}{2}$			
2π			



$$G(z^{-1}) = -z^{-2}$$

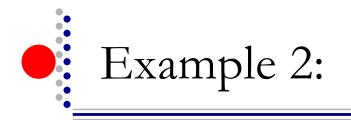
□ Lowpass→bandpass

$$G(z^{-1}) = -z^{-2}$$

$$H_{lp}(z) = \frac{1}{1 - az^{-1}} \longrightarrow H_{bp}(z) = \frac{1}{1 + az^{-2}}$$

Pole at z=a

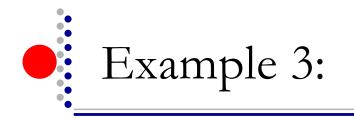
Pole at $z=\pm j\sqrt{a}$



□ Lowpass→bandpass

 $G(z^{-1}) = -z^{-2}$

ω	Z	$ H_{lp}(z) = \left \frac{0.1}{1 - 0.9z^{-1}}\right $	$ H_{hp}(z) = \left \frac{0.1}{1+0.9z^{-2}}\right $
0	1	1	
$\frac{\pi}{2}$	j	0.074	
π	-1	0.05	
$\frac{3\pi}{2}$	-j	0.074	
2π	1	1	



□ Lowpass→bandstop

$$Z^{-1} = G(z^{-1}) = z^{-2}$$

$$H_{lp}(z) = \frac{1}{1 - az^{-1}} \longrightarrow H_{bs}(z) = \frac{1}{1 - az^{-2}}$$
Pole at $z = \pm \sqrt{a}$

- If H_{lp}(Z) is the rational system function of a causal and stable system, we naturally require that the transformed system function H(z) be a rational function and that the system also be causal and stable.
 - G(Z⁻¹) must be a rational function of z⁻¹
 - The inside of the unit circle of the Z-plane must map to the inside of the unit circle of the z-plane
 - The unit circle of the Z-plane must map onto the unit circle of the z-plane.

• Respective unit circles in both planes

$$Z = e^{j\theta}$$
 and $z = e^{j\omega}$

Respective unit circles in both planes

$$Z = e^{j\theta} \text{ and } z = e^{j\omega}$$
$$Z^{-1} = G(z^{-1})$$
$$e^{-j\theta} = G(e^{-j\omega})$$
$$e^{-j\theta} = \left|G(e^{-j\omega})\right| e^{j\angle G(e^{-j\omega})}$$

• Respective unit circles in both planes

$$Z = e^{j\theta} \text{ and } z = e^{j\omega}$$
$$Z^{-1} = G(z^{-1})$$
$$e^{-j\theta} = G(e^{-j\omega})$$
$$e^{-j\theta} = \left|G(e^{-j\omega})\right| e^{j\angle G(e^{-j\omega})}$$

$$1 = \left| G(e^{-j\omega}) \right| \qquad -\theta = \angle G(e^{-j\omega})$$

General form that meets all constraints:

• a_k real and $|a_k| < 1$

$$G(z^{-1}) = \pm \prod_{k=1}^{N} \frac{z^{-1} - \alpha_k}{1 - \alpha_k z^{-1}}$$

□ Lowpass→lowpass

$$G(z^{-1}) = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$$

Changes passband/stopband edge frequencies

□ Lowpass→lowpass

$$G(z^{-1}) = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$$

Changes passband/stopband edge frequencies

From
$$e^{-j\theta} = \frac{e^{-j\omega} - \alpha}{1 - \alpha e^{-j\omega}}$$
, get
 $\omega(\theta) = \tan^{-1} \left(\frac{(1 - \alpha^2)\sin(\theta)}{2\alpha + (1 + \alpha^2)\cos(\theta)} \right)$

□ Lowpass→lowpass

$$G(z^{-1}) = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$$

Changes passband/stopband edge frequencies

From
$$e^{-j\theta} = \frac{e^{-j\omega} - \alpha}{1 - \alpha e^{-j\omega}}$$
, get π
 $\omega(\theta) = \tan^{-1}\left(\frac{(1 - \alpha^2)\sin(\theta)}{2\alpha + (1 + \alpha^2)\cos(\theta)}\right)$
 π

TABLE 7.1TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPEOF CUTOFF FREQUENCY θ_p TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

Filter Type	Transformations	Associated Design Formulas
Lowpass	$Z^{-1} = \frac{z^{-1} - \alpha}{1 - az^{-1}}$	$\alpha = \frac{\sin\left(\frac{\theta_p - \omega_p}{2}\right)}{\sin\left(\frac{\theta_p + \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Highpass	$Z^{-1} = -\frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$	$\alpha = -\frac{\cos\left(\frac{\theta_p + \omega_p}{2}\right)}{\cos\left(\frac{\theta_p - \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Bandpass	$Z^{-1} = -\frac{z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1}z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \cot\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right) \tan\left(\frac{\theta_p}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$
Bandstop	$Z^{-1} = \frac{z^{-2} - \frac{2\alpha}{1+k}z^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{1+k}z^{-2} - \frac{2\alpha}{1+k}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \tan\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)\tan\left(\frac{\theta_{p}}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$

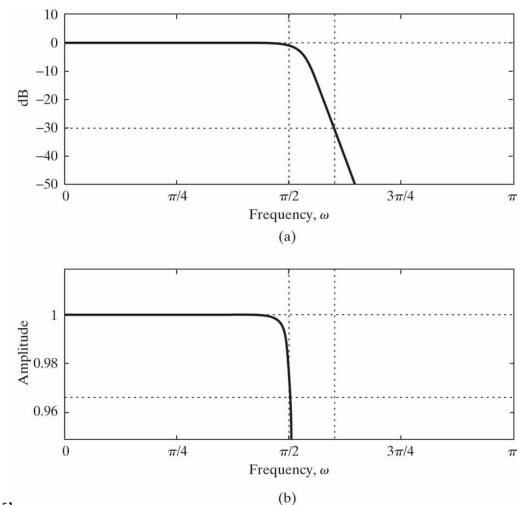
- Butterworth
 - Monotonic in pass and stop bands
- □ Chebyshev, Type I
 - Equiripple in pass band and monotonic in stop band
- □ Chebyshev, Type II
 - Monotonic in pass band and equiripple in stop band
- Elliptic
 - Equiripple in pass and stop bands

• Appendix B in textbook

- Design specifications
 - passband edge frequency $\omega_p = 0.5\pi$
 - stopband edge frequency $\omega_s = 0.6\pi$
 - maximum passband gain = 0 dB
 - minimum passband gain = -0.3dB
 - maximum stopband gain =-30dB
- Use bilinear transformation to design DT low pass filter for each type

Butterworth

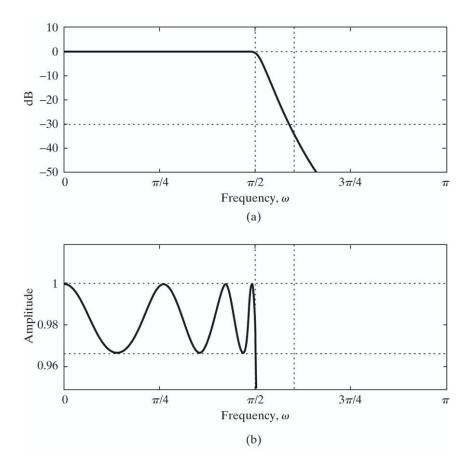
Monotonic in pass and stop bands



Penn ESE 531 Spring 2022 - Khanna

Type I

• Equiripple in pass band and monotonic in stop band



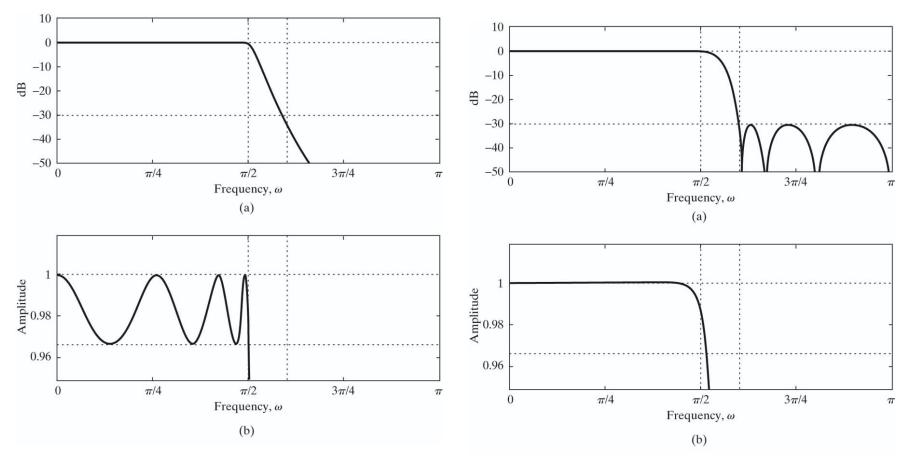
Penn ESE 531 Spring 2022 - Khanna

Type I

• Equiripple in pass band and monotonic in stop band

• Type II

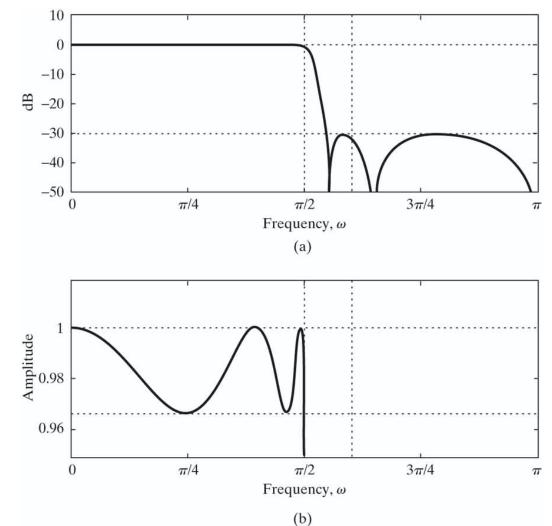
Monotonic in pass band and equiripple in stop band

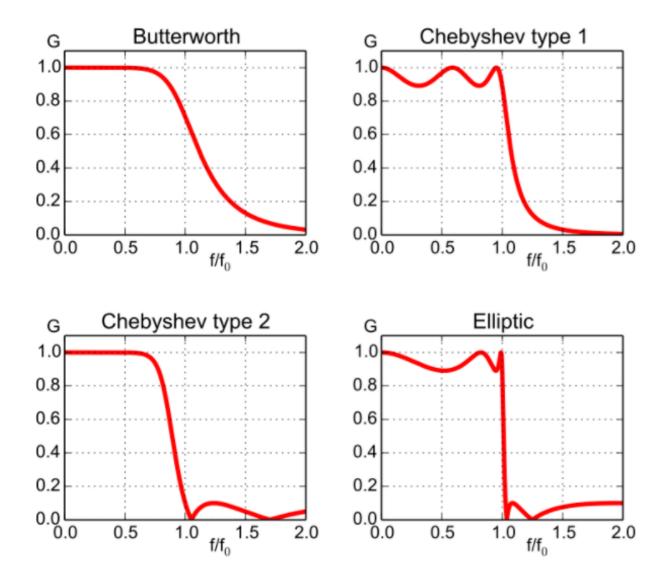


Penn ESE 531 Spring 2022 - Khanna

□ Elliptic

Equiripple in pass and stop bands





□ IIR

- Design from continuous time filters with mapping of splane onto z-plane
 - Linear mapping impulse invariance
 - Non-linear mapping bilinear transformation
- DT filter transformations
 - Transform z-plane with rational function $G(z^{-1})$
 - Constraints on G for causal/stable systems

- Midterm
 - Thursday 3/17 in person during class in DRLB A1
 - Covers lectures 1-14
 - Doesn't cover data converters and noise shaping
 - Old exams online
 - Disclaimer: 2020/2021 had different exam coverage
 - Closed book/notes
 - Can bring 1 double-sided 8"x11" cheat sheet and non-cell phone calculator