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Lecture 20: April 5, 2022

Fast Fourier Transform
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I.ast Time

0 Discrete Fourier Transform

= Linear convolution through circular convolution
= Overlap and add

= Overlap and save

= Circular convolution through DFT

a0 Today

m The Fast Fourier Transform

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley



Fast Fourter Transtorm (FF'T)
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Fast Fourier Transform Algorithms

a0 We are interested in efficient computing methods

for the DFT and inverse DFT:

N—-1
X[k] = x[n]We",  k=0,...,N—1
n=0
N—-1
x[n] = XKWy ", n=0,...,N—1
k=0
Wy = e_j(%).

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley



Reminder: Inverse DFT via DFT

0 Recall that we can use the DFT to compute the
inverse DFT:

DFT-HXIK]} = 1 (DFT{X[K]})

= Hence, we can just focus on etficient computation of the

DFT.

0 Straightforward computation of an N-point DFT
(or inverse DFT) requires N* complex
multiplications.

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley



: Computation Order

Q Fast Fourser transform algorithms enable computation of
an N-point DFT (or inverse DFT) with the order of
just N+ log, N complex multiplications.

= This can represent a huge reduction in computational
load, especially for large N.

N2
N N2 N-logy N |
16 256 64 4.0
128 16,384 896 18.3

1,024 | 1,048,576 10,240 102.4
8,192 | 67,108,864 | 106,496 630.2

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley



: Computation Order

Q Fast Fourser transform algorithms enable computation of
an N-point DFT (or inverse DFT) with the order of
just N+ log, N complex multiplications.

= This can represent a huge reduction in computational
load, especially for large N.

N N2 | N-log, N |
16 256 64 4.0
128 | 16,384 896 18.3

1,024 | 1,048,576 10,240 102.4
8,192 | 67,108,864 | 106,496 630.2
6 x 10° | 36 x 10*% | 135 x 10° | 2.67 x 10°

Penn ESE 531 Spring 2022 — Khanna * 6Mp image size
Adapted from M. Lustig, EECS Berkeley



Figenfunction Properties

a0 Most FFT algorithms exploit the following
properties of W=

= Conjugate Symmetry

Wll\;(N n) _ W-kn — (W,sn)*
= Periodicity in n and k

Wkn — WA’;(IHLN) W(k+N)n

s Power

W5 = W),

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley



Figenfunction Properties

a0 Most FFT algorithms exploit the following
properties of Wy

= Conjugate Symmetry

k(N—n —Kn ny
WN( ) = WNk = (W)

Penn ESE 531 Spring 2022 — Khanna
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Figenfunction Properties

a0 Most FFT algorithms exploit the following
properties of Wy
= Periodicity in n and k

n k(n+N k+N)n
wir = wilrtN) — k)

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Figenfunction Properties

a0 Most FFT algorithms exploit the following
properties of Wy

s Power

W,%, — WN/2

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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FEFT Algorithms via Decimation

o Most FFT algorithms decompose the computation of a DFT
into successively smaller DF'T computations.

= Decimation-in-time algorithms decompose x|n] into successively
smaller subsequences.

= Decimation-in-frequency algorithms decompose X[k] into
successtvely smaller subsequences.

a0 Note: Assume length of x|n] is power of 2 (N = 27). If not,
zero-pad to closest power of 2.

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 We start with the DFT

N—1

X[kl =) x[n]Wy", k=0,...

n=0

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 We start with the DFT

N—1
X[kl =) x[nWx", k=0,...,N—1
n=0

a0 Separate the sum into even and odd terms:

X[kl =Y x[alW§"+ ) x[n]Wy"

n even n odd

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 We start with the DFT

N—1
X[kl =) x[nWx", k=0,...,N—1
n=0

a0 Separate the sum into even and odd terms:

X[kl =Y x[alW§"+ ) x[n]Wy"

n even n odd

s These are two DFTs, each with half the number of
samples (N/2)

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

X[kl = > x[Wx"+ > x[n]Wy"

n even n odd

Let n =2r (n even) and n =2r + 1 (n odd):

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

X[kl = > x[Wx"+ > x[n]Wy"

n even n odd

Let n =2r (n even) and n =2r + 1 (n odd):

(N/2)-1 (N/2)-1
Xkl = Y xRAWE*+ S x[2r+ qw i
r=0 r=0

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

X[kl = > x[Wx"+ > x[n]Wy"

n even n odd

Let n =2r (n even) and n =2r + 1 (n odd):

(N/2)-1 (N/2)-1
Xkl = Y xRAWE*+ S x[2r+ qw i
r=0 r=0
(N/2)—1 (N/2)—1
= Y xRAWFF+ W Y x[2r + 1w
r=0 r=0

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Let n =2r (n even) and n =2r + 1 (n odd):

(N/2)-1 (N/2)-1

Xkl = Y xRAWE*+ S x[2r+ g
r=0 r=0
(N/2)—-1 (N/2)—-1

= Y xRAWFF+ W Y x[2r+ 1w
r=>0 r=0
Note that:

Wark — e=i(%)(@rk) — o~ (#72)k _ 8

Remember this trick, it will turn up often.

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Let n =2r (n even) and n =2r + 1 (n odd):

(N/2)-1 (N/2)-1
X = 3 AAWRE+ S alar-+ W
r=0 r=>0
(N/2)-1 (N/2)-1
= Y xRAWEF+ W Y x[2r + Wk
r=0 r=0
(N/2)-1 (N/2)-1
XK = Y xRrAWg, +wh Y x2r+ 1wk,
r=0 r=0

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

N—1
X[k] = Wk k=0,...,N—1
Let n = 2r (n even) and 1 [K] ;xln] N 0,...,
(N/2)-1 (N/2)-1
X[k] = Z X[2r] W/%I’k + Z X[2r+ 1] Wlsl2r+1)k
r=0 r=0
(N/2)-1 (N/2)—-1
= > xRAWFF+ W Y0 x[2r + WR
r=0 r=0
(N/2)-1 (N/2)-1
Xk = >, xPRrAWg, + Wy Y x2r+ W,
r=0 r=0

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Hence:
(N/2)—-1 (N/2)-1
X[kl = Y xRAW,+ Wy > x[2r+ 1w,
r=0 r=0
A k
= G[k]+ WyHI|k], k=0,...,N—1
where we have defined:
(N/2)—1
Gkl & ) xeriwgk, = DFT of even samples
r=0
(N/2)-1
Hik 2 Y x2r+1Wg, = DFT of odd samples
r=0

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as X[k] = G[k] + W,{}H[k]

x[0] o—

Even Samples

x[6] o——

x[1] o——

Odd Samples

x[7] o——

Penn ESE 531 Spring 2022 — Khanna

x[2] o—

x[4] O—

G[0]

N/2 - Point
DFT

0 X[0]
o W

o o X1]
GL2] VN//

o ° X2

x[3] O—

x[6] o—

N/2 - Point
DFT

Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as X[K]

x[0]
X[2]
x[4]
X[6]
X[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

Penn ESE 531 Spring 2022 — Khanna

G[0]

= G[k] + W HIK]

Adapted from M. Lustig, EECS Berkeley

Gﬁ\ N
. Q T 72
N/2 - Point /
DFT Gﬁx N//o
X
O
o X S
O
5%
N/2 - Point - 5 2
DFT H[f]/ N .
H[3] Wy
O —p- O
wy’

X[0] = G[0] + W\ H[O0]

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]

24



Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as X[k] = G[k] + W,(‘,H[k]

x[0]
x[2]
x[4]
X[6]
X[1]

Even Samples

x[3]
x[8]
x[7]

Odd Samples

Penn ESE 531 Spring 2022 — Khanna

G[0]

N/2 - Point
DFT

O 0 o X[0]
GBN WN /
o X[1]

G[2]

G[3]

H[0] = .

N

H[1]

N/2 - Point
DFT

X[5]
Hﬂ/ \
X[6]
H[S/
—P O

Adapted from M. Lustig, EECS Berkeley

wN7
X[4] = G[4] + W\*H[4]

25



Decimation-in-Time FFT

Both G[k] and H[k] are periodic, with period N /2. For

example
(N/2)-1
Glk] £ > x[rwg,
r=0

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Both G[k] and H[k] are periodic, with period N /2. For

example
(N/2)—1
Glk] = Z X[2’]W/(/k/2
r=0
(N/2)-1
Glk+N/2] = Y x[rwysth/?
r=0

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Both G[k] and H[k] are periodic, with period N /2. For

example

G[]

Glk + N/2]

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley

(N/2)-1

Z x[2r]W,(/k/2

r=0

(N/2)-1

Z x[2r]W,(l(/l;+N/ 2)
w/2)-1 _q
Z x[2r]W,(,k/2
w2

Z x[2r]W,(,k/2

61Kl

28



. Decimation-in-Time FFT

a So

b

Glk+(N/2)] = G[k]
Hlk + (N/2)] = HIK]

0 The periodicity of G[k] and H[k] allows us to
further simplify. For the first N/2 points we
calculate G[k] and Wy *H[k], and then compute the

Sum

X[k] = G[k] + WS HIK] V{k:0< k < g}.

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley 29



Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as

x[0] o——

Even Samples

x[6] o——

x[1] o——

Odd Samples

x[7] o——

Penn ESE 531 Spring 2022 — Khanna

x[2] o—

x[4] O—

X[k] = G[k] + WSH[K]

G[0]

N/2 - Point
DFT

X[3] O

x[6] o—

N/2 - Point
DFT

Adapted from M. Lustig, EECS Berkeley

First N/2 DFTs
0 <k < N/2

30



®: Decimation-in-Time FFT

How does periodicity help for g’ <k <N?
X[k] = G[k] + W H[K]

for%§k<N:

WhHN/2)

X[k + (N/2)] =7

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley

V{k:0§k<g}.
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. Decimation-in-Time FFT

How does periodicity help for g’ < k< N?

X[k] = G[k] + WS HI[K] V{k:0< k < g}.
for % < k < N: / o k+N/2
W]\]?N/Z: e N)
\
k+(N/2 [ 2x 25
WN+( /2) _7 ) e_]sz\(e_JZNXJZV)
\ /
(A, )
X[k + (N/2)] =? =le ¥ )(e"”)=—WN
\

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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. Decimation-in-Time FFT

X[k + (N/2)] = G[k] — WHIK]
0 We previously calculated G[k] and W *H[K].

0 Now we only have to compute their difference to
obtain the second half of the spectrum. No
additional multiplies are required.

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as E[k] = G[k] + W,{;H[k]

G[0]
x[0] o—— o /O\ o X[0]
| o\ [oX
x[2] | o o X1
N/2 - Point
6;2]\\ N
O 0 // X[2]
-

x[6] o——

Even Samples

x[1] o——

O—
X[3] N/2 - Point

DFT

X[5] o—

Odd Samples

x[7] o——

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley 34



Decimation-in-Time FFT

The N-point DFT has been reduced two N/2-point DFTs,

plus N/2 complex multiplications. The 8 sample DFT is then:

x[0]
x[2]
x[4]
x[6]
x[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

o——

o—

G[K]

N/2 - Point
DFT

N/2 - Point
DFT

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]

35



Decimation-in-Time FFT

The N-point DFT has been reduced two N/2-point DFTs,
plus N /2 complex multiplications. The 8 sample DFT is then:

x[0]
x[2]
x[4]
x[6]
x[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley

G[K]
X[0]

N/2 - Point X011
DFT X(2]
X[3]

X[4]

N/2 - Point | XB]
DFT X6
X[7]

X[0] = G[0] + W\ H[O0]

36



Decimation-in-Time FFT

The N-point DFT has been reduced two N/2-point DFTs,
plus N /2 complex multiplications. The 8 sample DFT is then:

x[0]
x[2]
x[4]
x[6]
x[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

G[K]

o /o X[0]
o ) . o  X[1]
N/2 - Point
—— DFT X[2]
o0— X[3]
¢ X[4]
S N/2 - Point | XBI
o 1§ DFT X[6]
o— | X[7]

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[4] = G[0] - W\°H[0]

37



Decimation-in-Time FFT

0 Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

0 We can define a butterfly operation, e.g., the
computation of X[0] and X[4]| from G[0] and HJO]:

G[0] X[0] =G[0] + WNO H[O]

X[4] =G[o] - Wy,° H[0]

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

0 We can define a butterfly operation, e.g., the
computation of XJk] and X[k+N/2] from GJk] and

H[k]:

G/k] G[0]

XIk] = G[k]+W,fHIKk]
x[0] =G[o] + Wy HIo]

X[k+N/2] = GIk]-WifHfk]
X[4] =G[o] - Wy,° H[0]

H[k] HIO]

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

o Still O(N?) operations. ... What should we do?

x[0] o——

Even Samples

x[6] O——

x[1] o——

Odd Samples

x[7] o——

Penn ESE 531 Spring 2022 — Khanna

x[2] o——

x[4] o——

G[K]

S~

N/2 - Point
DFT

2N
D XX

x[3] o——

x[6] o——

N/2 - Point
DFT

Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]

41



Decimation-in-Time FFT

a0 We can use the same approach for each of the N/2
point DFT’s. For the N = 8 case, the N/2 DFT's
look like

0 O
e N/4 - Point \/0 el
x[4] © DFT o o G[1]

W 0
x[2] o —LWZ—G 0 G[2
N/4 - Point 1 [2]
DFT Wiz i
x[6] © L > o — o G[3]

-1

*Note that the inputs have been reordered again.

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The fundamental eigenfunction is:

Wija = Wajs = Wo = €77 = —1

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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. Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The fundamental eigenfunction is:

Wija = Wajs = Wo = €77 = —1

X[k]= E_x[n]W]]V‘”
" X[0]=x[0] + x[1]
= N <" X[1]=x[0] - x[1]
= [0, + x[1]w,"!
= x[0]+ x[1]*

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley



. Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The fundamental eigenfunction is:

Wija = Wajs = Wo = €77 = —1

The diagram of this stage is then
x[0] O x[0] + x[4]

x[4] ——3 —> x[0] - x[4]

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

a Replace N/2-point DFT with 2-point DFT and butterfly

operations

x[0] o——

Even Samples

x[6] O——

x[1] o——

Odd Samples

x[7] o——

Penn ESE 531 Spring 2022 — Khanna

x[2] o——

x[4] o——

G[K]

o  X[0]

N/2 - Point
DFT

X[1]

X[2]

x[3] o——

x[6] o——

X[3]

N/2 - Point
DFT

Adapted from M. Lustig, EECS Berkeley

X[4]

X[5]

X[6]

X[7]

46



Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] © X[0]
x[4] o——1>— X[1]
x[2] o—— X[2]
x[6] o——1>— X[3]
x[1] o—— X[4]
x[5] o——1>— X[5]
x[3] o—— X[6]
x[7] o——1>— X[7]

4 2pt DFTs 2 4pt DFTs 8pt DFT

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] O——0——0——0 o :.\ /o X[0]
X[1]

- \\/ / O

x[2] o X2]

X[6] AA o X3
0 vv’v’v

x[1] > VS % o X[4]

5 a

x[5] % wN2 > \o X[5]

x[3] ‘ =+ / = \o X[6]

X[7] > A - o X[7]

« 3=log,(N)=log,(8) stages
« 4=N/2=8/2 multiplications in each stage

Penn ESE 531 Spring 2022 — Khanna « 1st stage has trivial multiplication

Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

0 In general, there are log,N stages of decimation-in-time.

0 Each stage requires N/2 complex multiplications, some of
which are trivial.

0 The total number of complex multiplications is (N/2) log,N,
or 1s O(N log,N)

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 In general, there are log,N stages of decimation-in-time.

0 Each stage requires N/2 complex multiplications, some of
which are trivial.

0 The total number of complex multiplications is (N/2) log,N,
or 1s O(N log,N)

a0 The order of the input to the decimation-in-time FEFT
algorithm must be permuted.

= Net effect 1s reversing the bit order of indexes

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley 50



Decimation-in-Time FFT

This is illustrated in the following table for N = 8.

Decimal | Binary

0 000
001
010
011
100
101
110
111

~NOO OB W N

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

This is illustrated in the following table for N = 8.

Decimal | Binary | Bit-Reversed Binary
0 000 000
1 001 100
2 010 010
3 011 110
4 100 001
5 101 101
6 110 011
7 111 111

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

This is illustrated in the following table for N = 8.

Decimal | Binary | Bit-Reversed Binary | Bit-Reversed Decimal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Penn ESE 531 Spring 2022 — Khanna

Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]

54



Decimation-in-Frequency FFT

The DFT is
N—1

X[kl =Y x[n]Wgk

n=0

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley

55



Decimation-in-Frequency FFT

The DFT is
N-1

X[kl =) x[n]Wgk

n=0

If we only look at the even samples of X[k], we can write k = 2r,

N—-1

X[2r] = Y x{n]wy”
n=0

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley 56



Decimation-in-Frequency FFT

The DFT is
N-1

X[kl =) x[n]Wgk

n=0

If we only look at the even samples of X[k], we can write k = 2r,

N—-1

X[2r] = Y x{n]wy”
n=0

We split this into two sums, one over the first N/2 samples, and
the second of the last N/2 samples.

(N/2)-1 (N/2)-1
X2rl= Y xWE"+ S x[n+ N/2wi N2
n=0 n=0

Penn ESE 531 Spring 2022 — Khanna
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Decimation-in-Frequency FFT

But Wy "D = wRmwiv= Wi = wip,
We can then write

(N/2)-1 (N/2)-1
X2r] = 3 xaWEm+ Y xin+ N/2wi )
n=0 n=0
(N/2)-1 (N/2)-1
= Y x[AW{"+ Y x[n+ N/2QWF"
n=0 n=0
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Decimation-in-Frequency FFT

But Wy "D = wRmwiv= Wi = wip,
We can then write

(N/2)-1 (N/2)-1
X2r] = Y xmWEm+ N xin+ N/2wg TN
n=0 n=0
(N/2)-1 (N/2)-1
= Y x[AW{"+ ) x[n+ N/2QWR"
n=0 n=0
(N/2)—1

> (x[n] +x[n+ N/2]) Wi,

=0
This is the N/2-length DFT of first and second half of x[n]
summed.
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Decimation-in-Frequency FFT

X[2r] = DFTg {(x[n] + x[n+ N/2])}
X[2r+1] = DFTg {(x[n] —x[n+ N/2]) Wg}

(By a similar argument that gives the odd samples)
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Decimation-in-Frequency FFT

X[2r] = DFT w {(x[n] + x[n+ N/2])}
X[2r+1] = DFT%: {(x[n] —x[n+ N/2]) Wg}

(By a similar argument that gives the odd samples)

0 Continue the same approach on the N/2 DFTs, and N /4
DFTs until we reach the 2-point DFT, which is a simple
buttertly operation

Penn ESE 531 Spring 2022 — Khanna
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Decimation-in-Frequency FFT

The diagram for and 8-point decimation-in-frequency DFT is as
follows

This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.
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Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] O——0——0——0 o :.\ /o X[0]
X[1]

- \\/ / O

x[2] o X2]

X[6] AA o X3
0 vv’v’v

x[1] > VS % o X[4]

5 a

x[5] % wN2 > \o X[5]

x[3] ‘ =+ / = \o X[6]

X[7] > A - o X[7]

« 3=log,(N)=log,(8) stages
« 4=N/2=8/2 multiplications in each stage

Penn ESE 531 Spring 2022 — Khanna « 1st stage has trivial multiplication
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Non-Power-of-2 FFT's

a0 A similar argument applies for any length DFT, where the
length N is a composite number

0 For example, if N=06, with decimation-in-frequency you
could compute three 2-point DFTs followed by two 3-point

DFTs

X[0] 9| 2.point ©  X[0]
DFT 3-Point

x[3] © fontls  xp2)

X[1] | 2_point ___I° XM
DFT

xt4] o o X[1]

X[2] 9 2.point e X
DFT

x[5] © o X[5]

Penn ESE 531 Spring 2022 — Khanna
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Example: Non-Power-of-2 FFT's

X X X X X X
Iml ILI le INI IHI Iol

Penn ESE 531 Spring 2022 - Khanna

6-pt DFT

g G
IU1I ILI le INI IHI IOI

65



Decimation-in-Frequency FFT

X[2r] DFT% {(x[n] + x[n+ N/2])}
X[2r+1] = DFT% {(x[n] — x[n+ N/2]) Wg}

(By a similar argument that gives the odd samples)
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Example: Non-Power-of-2 FFT's

x[0] . / 10
x[1] 3-pt | xr2

' DFT -
X[2]. / / X[4]

X[ 3] / 1
X[4] E'FPTt X[3]
(5] X[5]
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Decimation-in-Frequency FFT

X[2r] DFT% {(x[n] + x[n+ N/2])}
X[2r+1] = DFT% {(x[n] — x[n+ N/2]) Wg}

(By a similar argument that gives the odd samples)

Penn ESE 531 Spring 2022 — Khanna
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Example: Non-Power-of-2 FFT's

X[0] '\ / X[0’

3-pt o3
e / DFT XZZI
x[2] X[4]

X[ 3]

X[4] 3Pt | x[3]
- f’ DFT o
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Example: Non-Power-of-2 FFT's

X[0] \ / X[O’

3-pt %
a / DFT XZZI
x[2] X[47

X[ 3]

x[4] 3-pt | x[3]
-j’ DFT -
X[S] \91 X-5-
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Example: Non-Power-of-2 FFT's

X[ O
0] 2-pt 1 ? 0.
DFT
X[4

X[1 -
[1] 2-pt

DFT
X[4] X1
X[2] 3-pt | x[3;

2-pt DFT T
(5] | DF X[5]
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Example: Non-Power-of-2 FFT's

x[0]
X[3]
X[1]
X[4]
X[2]

X[ 5]

2-pt
DFT

2-pt
DFT

3-pt
DFT

2-pt
DF

W0
Wl
W2

3-pt
DFT

Penn ESE 531 Spring 2022 - Khanna
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Non-Power-of-2 FFT's

0 Good component DFTs are available for lengths up to

20(@ish). Many of these exploit the structure for that specific
length

= For example, a factor of

* 29T * 9T
W/Cl/4 — eI NIN/A) — 5 —

Just swaps the real and imaginary components of a complex number.

Hence a DFT of length 4 doesn’t require any complex multiples.

= Half of the multiples of an 8-point DFT also don’t require
multiplication

= Composite length FEFTs can be very efficient for any length that
factors into terms of this order
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Non-Power-of-2 FFT's

0 For example N = 693 factors into
= N=O1)
0 each of which can be implemented efficiently. We
would perform
= 9x 11 DFTs of length 7

= 7x 11 DFTs of length 9, and
= 7x9DFTs of length 11

Penn ESE 531 Spring 2022 — Khanna
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Non-Power-of-2 FFT's

0 Historically, the power-of-two FFT's were much
faster (better written and implemented).

0 For non-power-of-two length, it was faster to zero
pad to power of two.

0 Recently this has changed. The tree FFT'W package
implements very efficient algorithms for almost any

filter length. Matlab has used FFFTW since version 6
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FEF'T Computation FLLOPS

X 10° Number of FLOPS for MATLAB FFT Function

Number of FLOPS

0 50 100 150 200 250
Transform length N

Penn ESE 531 Spring 2022 - Khanna
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FF'T Computation Time

FFT computation time (Matlab FFTW) on MacBookPro

0.015 T T T 1

run time [ms]

0.005

50 100 150 200 250
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FEFT as Matrix Operation

(x| wy - Wy
\ XN —1] / N:— 0 i N:— n
l ] \ wiv-me L e

0 Wy is fully populated = N entries

Penn ESE 531 Spring 2022 — Khanna
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Wf(\)l(N—l) \

k(N—1)
Wy

WISIN—i)(N—l) )

( 0]\
x[.n]
\ x[N - 1] /
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FEFT as Matrix Operation

( X[0] \ ( Wy’ T Wy T Wf(\)/(N_l) \ / x[0] \
X[K] - W,@O » M},@n . W,’;W—l) x[n]
\ X[N.— 1] / K W,E,N‘-I)O W,(VN‘—I)n W&N—i)(N-n / \ x[N — 1] /

0 Wy is fully populated = N entries

o FFT 1s a decomposition of Wy into a more sparse form:

£o— | In2 Dwy2 Wy O Even-Odd Perm.
N IN/2 _DN/2 0 WN/2 Matrix

0 Iy, 1s an identity matrix. Dy, is a diagonal matrix with
entries 1, Wy, *** , WNN/2-1
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@®: FFT as Matrix Operation

Fr — Inj2  Dny2 Wnpp 0 Even-Odd Perm.
" In2 —Dnyj2 0 Wh /2 Matrix

Example: N =4

10 1 0 1 1 0 0 100
|01 0 W 1 -1 0 0 0 0 1
10 -1 0 0 0 1 1 010
01 0 -W,| [0 0 1 -1/[00 0

Penn ESE 531 Spring 2022 — Khanna
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Run Time (sec)

Beyond NlogN

10

e
-l

0.01

0.001

0.0001

1e-05

0 What if the signal x[n] has a k sparse frequency

= A. Gilbert et. al, “Near-optimal sparse Fourier representations via

sampling

= H. Hassanieh et. al, “Nearly Optimal Sparse Fourier Transform”

m Others...

= O(K Log N) instead of O(N Log N)

Run Time vs Signal Size (k=50)

'sFFT 3.0 (Exact)

FEEIWEB G s R s

AAFFT 0.9 P ot
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0.01

Run Time (sec)

o
g

Run Time vs Signal Sparsity (N=222)

sFFT 3.0 (Exact)
FFTW
AAFFT 0.9

210 211 212 213 214 215 216 217 218
Sparsity (K)

25 27 2% 2°

From: http://groups.csail.mit.edu/netmit/sFFT/paper.html 81



Big Ideas

0 Fast Fourier Transform

s Enable computation of an N-point DFT (or DFT"!) with
the order of just N* log, N complex multiplications.

= Most FFT algorithms decompose the computation of a DFT into
successtvely smaller DFT computations.
= Decimation-in-time algorithms

= Decimation-in-frequency
= Historically, power-of-2 DFT's had highest efficiency

= Modern computing has led to non-power-of-2 FFT's with
high efficiency

= Sparsity leads to reduced computation on order K- logN
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Admin

a0 HW 7 due tonight midnight
a HW 8 due 4/12

m Out now
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