ESE 531: Digital Signal Processing

Lecture 25: April 21, 2022

Compressive Sensing
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Today

0 Compressive Sampling/Sensing
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Compressive Sampling

Anythin
. ything —
0
0 What is the rate you need to sample at?
= At least Nyquist

Penn ESE 531 Spring 2022 — Khanna
Adapted from M. Lustig, EECS Berkeley



Compressive Sampling

Something
1 T ot
0
0 What is the rate you need to sample at?
= Maybe less than Nyquist...
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First: Compression

0 Standard approach

= First collect, then compress

s Throw away unnecessary data

4 D
1001101001101
0001001110101
0100110100010
0010101101010
1010101100101
1101110111010
1010110110110

10100111111
L J

G%?gﬁmm] HCompr‘ession
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First: Compression

0 Examples

s Audio — 10x
= Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
= MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec

= Images — 22x

= Raw image (RGB): 24bit/pixel

= JPEG: 1280x960, normal = 1.09bit/pixel
= Videos — 75x

= Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz
x 16b x 2 = 98,578 Kbit/s

s MPEG4: 1300 Kbit/s
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First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT
= JPEG2000: Wavelet
= MPEG: DCT & time-difference
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First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT

= JPEG2000: Wavelet ‘
s MPEG: DCT & time-difference
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Sparse Transform
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Sparse Transtorm
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Sparsity
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wavelet
coefficients
(blue = 0)
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Signal Processing Trends

0 Traditional DSP = sample first, ask questions later
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Signal Processing Trends

0 Traditional DSP = sample first, ask questions later

0 Explosion in sensor technology/ubiquity has caused
two trends:
= Physical capabilities of hardware are being stressed,

increasing speed/resolution becoming expensive
= gigahertz+ analog-to-digital conversion
= accelerated MRI
= industrial imaging
= Deluge of data

= camera arrays and networks, multi-view target databases,
streaming video...
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Signal Processing Trends

0 Traditional DSP = sample first, ask questions later

0 Explosion in sensor technology/ubiquity has caused
two trends:

= Physical capabilities of hardware are being stressed,
increasing speed/resolution becoming expensive

= gigahertz+ analog-to-digital conversion
= accelerated MRI
= industrial imaging

= Deluge of data

= camera arrays and networks, multi-view target databases,
streaming video...

o Compressive Sensing = sample smarter, not faster

Penn ESE 531 Spring 2022 - Khanna
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Compressive Sensing/Sampling

0 Standard approach

= First collect, then compress

s Throw away unnecessary data

4 A
1001101001101
0001001110101
0100110100010
0010101101010
1010101100101
1101110111010
1010110110110

10100111111
\.

(—[Compr‘ession
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Compressive Sensing

a Shannon/Nyquist theorem is pessimistic

= 2 X bandwidth 1s the worst-case sampling rate — holds
uniformly for any bandlimited data

= sparsity/compressibility is irrelevant

= Shannon sampling based on a linear model, compression
based on a nonlinear model

0 Compressive sensing
= new sampling theory that leverages compressibility

= key roles played by new uncertainty principles and
randomness

Penn ESE 531 Spring 2022 - Khanna
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Sensing to Data

Data
Converter

sensor

INSTRUMENTS

“fast” ADC data compression

Data
Converter

i3 TExas
INSTRUMENTS

“compressive” “slow” ADC

Penn ESE 531 Spring 2022 - Khanna
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Sparse signal in time Frequency spectrum
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in time
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in time

0 10 20 30 40 50 60

Time (s) 0 0.5 1 1.5 2 2.5 3 3.5
Z
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in frequency

ndersampled in tim = .
Undersampled in time (reconstructed in time with IFFT)

/'\/\/\/.
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)




Compressive Sampling

a0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in frequency

ndersampled in tim = .
Undersampled in time (reconstructed in time with IFFT)

/'\,\/\/.
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)

Requires sparsity and incoherent sampling
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Compressive Sampling: Simple Example
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Compressive Sampling

Input signal w

Amplitude

4

T

ith undersampled measurements circled (~17.5% of MNyquist samples)

[ nN

0 Sense signal M times

0 Recover with linear

Time {s) pl‘ O gl‘ am
Frequency spectrum of input
i i
‘l
2 4 6 6 10 12 ” 16 " 20
Frequency (Hz)

minZIg(w)I subjectto g(t,) = f(t,), m=1,..,M
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Compressive Sampling

K K
a F .
f@) =) as@i-w) Sf© =) et
Input signal with undersampled measurements circled (~17.5% of MNyquist samples) - -
4 T T T T T T T T {— =1 =1
@
2 H
Eg : :
g 0 Sense signal M times
_2_

0 Recover with linear
program

Time (s)

Frequency spectrum of input

1 | | 1 | |
2 4 6 8 10 12 14 16 18 20
Frequency (Hz)

minZIg(w)I subjectto g(t,) = f(t,), m=1,..,M
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Example: Sum of Sinusoids

Power (dB)

Fecovered spectrum using L1 minimization

0- -

Sl 1 T 0o Two relevant “knobs”

ol = percentage of Nyquist
samples as altered by

30t adjusting number of
samples, M

-40

N = input signal duration, T’

50 “ ‘ ! = Data block size

60 ’ J

70 ‘ ——— Recovered

| ——FFT L
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_800 2 4 6 8 10 12 14 16 18 20
Frequency (Hz)
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Example: Increasing M

7%

( 17.5%
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Example: Increasing M

(mHz)

f
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Example: Increasing T

Power (dB)

8
Frequency (Hz)

Recovered spectrum using L1 minimization Recovered spectrum using L1 minimization Recovered spectrum using L1 minimization
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Example: Increasing T

(mHz)

f
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Numerical Recovery Curves

0 Sense S-sparse signal of length N randomly M times

100 . ' ' ' "
| N=256 |
| N N=512

| N=1024 |

3

3

~

% success

38888

oO

0.2 0.4 0.6 0.8 1

S/M

= In practice, perfect recovery occurs when M = 2§ for N = 71000
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A Non-Linear Sampling Theorem

0 Exact Recovery Theorem (Candes, R, Tao, 2004):

= Select M sample locations {#,} “at random” with

M > Const-Slog N
0 Take time-domain samples (measurements)

Ym = T0 (tm)
a Solve

min ||Z|l¢, subjectto z(tm) =Ym, m=1,...,. M
T

0 Solution 1s exactly recovered signal with extremely

high probability

Penn ESE 531 Spring 2022 - Khanna 33



A Non-Linear Sampling Theorem

0 Exact Recovery Theorem (Candes, R, Tao, 2004):

= Select M sample locations {#,} “at random” with

M > Const-Slog N
0 Take time-domain samples (measurements)

Ym = T0 (tm)
a Solve

min ||Z|l¢, subjectto z(tm) =Ym, m=1,...,. M
T

0 Solution is exactly recovered signal with extremely

high probability

| M > C-p3(D,¥)-Slog 1\1
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Power (uW)

Power (uW)

Biometric Example: Parkinson’s Tremors
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Subject 5
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0o 20 40 60
Frequency (Hz)

Subject 8

0.5
0.4
03¢
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0.1}

Ll
20 40 60
Frequency (Hz)

0 6 Subjects of real tremor
data

= collected using low intensity
velocity-transducing laser
recording aimed at reflective
tape attached to the subjects’
tinger recording the finger
velocity

s All show Parkinson’s tremor
in the 4-6 Hz range.

= Subject 8 shows activity at
two higher frequencies

= Subject 4 appears to have two
tremors very close to each
other in frequency
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Real Data

Compressive Sampling

Recovered Frequency Spectrum: Subject &

Time Signal: Subject &

Recovered Frequency Spectrum; Subject |

Time Signal: Subject 6
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: Biometric Example: Parkinson’s Tremors

W mﬂ il } n(wli

|N

ﬂ

1 W Tty

“C=10.5, T=30

j: \”|

“m‘ l ‘ | | | M il

20% Nyquist required samples

g, il N ﬂ
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Biometric Example: Parkinson’s Tremors

Frequency error in tremor detection
T

Tremors detected
within 100 mHz

randomly sample
20% of the
Nyquist required
samples

Subject Number

Requires post processing to randomly sample!
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Implementing Compressive Sampling

a0 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies
within 100mHz

= Requires post processing to randomly sample!

0 Implement hardware on chip to “choose” samples in real
time
= Only write to memory the “chosen” samples
= Design random-like sequence generator
= Only convert the “chosen” samples

= Design low energy ADC

39



CS Theory

Why does 1t work?

L) L]
S enn.
040
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Sampling

e Signal x is K-sparse in basis/dictionary W/
- WLOG assume sparse in space domain VU =]

e Sampling
b =1

N x 1

sparse
signal

N x 1

measurements

K

nonzero
entries

O TTTTE TS
EEE EEEEE EENEEERS

N x N
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Compressive Sampling

e When data is sparse/compressible, can directly
acquire a condensed representation with
no/little information loss through

linear dimensionality reduction y = Px
Yy D T

M x 1 — H N X1
measurements u Sparse
O signal
M x N E K

H nonzero

K< MKN u entries
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How Can It Work?

e Projection @

Y b
not full rank... i — -
M < N

... and so
loses information in general

e Ex: Infinitely many s map to the same Yy
(null space)

Penn ESE 531 Spring 2022 - Khanna
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How Can It Work?

e Projection @
not full rank...

M <N

... and so K columns
loses information in general

X

e But we are only interested in sparse vectors

Penn ESE 531 Spring 2022 - Khanna
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How Can It Work?

e Projection ¢
not full rank...

d
%I
M < N

... and so K columns
loses information in general

e But we are only interested in sparse vectors

e @ is effectively MxK
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How Can It Work?

e Projection @
not full rank...

M <N

... and so K columns
loses information in general

e But we are only interested in sparse vectors

e Design @ so that each of its MxK submatrices
are full rank (ideally close to orthobasis)

- Restricted Isometry Property (RIP)

Penn ESE 531 Spring 2022 - Khanna
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: RIP

P
e Draw ¢ at random il
T . m
!!d Gaussnar'1 n ..
- iid Bernoulli =1 =

K columns

e Then ® has the RIP with high probability

provided
M = O(Klog(N/K)) < N
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CS Signal Recovery

Y P
e Goal: Recover signal i _ B o g F

from measurements Y o B
il

=w

e Problem: Random
projection @ not full rank
(ill-posed inverse problem)

e Solution: Exploit the sparse/compressible
geometry of acquired signal &

Penn ESE 531 Spring 2022 - Khanna
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CS Signal Recovery

e Random projection ¢
not full rank

e Recovery problem:
given y = Px
find x

e Null space

e Search in null space
for the “best” &
according to some
criterion

- ex: least squares

Penn ESE 531 Spring 2022 - Khanna
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{' 1 y= P2’}
(N-M)-dim hyperplane
at random angle
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L, Signal Recovery

Recovery:
(ill-posed inverse problem)

Optimization:
Closed-form solution:

Wrong answer!

Penn ESE 531 Spring 2022 - Khanna

given y = Px
find X (sparse)

T = arg min
# = arg min [|z]l2

7= (dTd) 1Ty

RN
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L, Signal Recovery

e Recovery:
(ill-posed inverse problem)

e Optimization:

e Correct!

But NP-Complete alg

Penn ESE 531 Spring 2022 - Khanna

given y = Px
find X (sparse)

T = arg min ||z||o
y=>x

“find sparsest vector
in translated nullspace”

s RN

/ T
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L, Signal Recovery

e Recovery: given y = Px
(ill-posed inverse problem) find € (sparse)
e Optimization: T = arg rnq)n |z||1

e Convexify the £ optimization
e Correct!

e Polynomial time alg
(linear programming)

e Much recent alg progress
- greedy, Bayesian approaches, ...
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Universality

e Random measurements can be used for signals
sparse in any basis

r = WV«

8

illlllllllllllQ

Penn ESE 531 Spring 2022 - Khanna

53



Universality

e Random measurements can be used for signals
sparse in any basis

y = br = PV

Ill.l]ll.l.lllQ
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Universality

e Random measurements can be used for signals
sparse in any basis

y = Pr = dVa = o

@

N x 1

sparse
coefficient
vector

K

nonzero
entries

-§

Ill.llll.l.lllQ
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Reference Slide
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Big Ideas

0 Compressive Sampling

= Integrated sensing/sampling, compression and processing

= Based on sparsity and incoherency

57



Admin

a Project 2
m Due 4/26

0 Office hours end next week
0 Final Exam — 5/5

= Review session TBD (see Piazza)

s Virtual and will be recorded

m Covers lec 1-21*

= Doesn’t include lecture 12 (Data converters and noise shaping)

m All old exams online

Penn ESE 531 Spring 2022 — Khanna
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