ESE 531: Digital Signal Processing

Lec 26: April 26, 2022 Review

- Introduction
- Discrete Time Signals & Systems
- Discrete Time Fourier Transform
- **Z**-Transform
- □ Inverse Z-Transform
- Sampling of Continuous Time Signals
- Frequency Domain of Discrete
 Time Series
- Downsampling/Upsampling
- Data Converters, Sigma Delta Modulation

- Oversampling, Noise Shaping
- Frequency Response of LTI Systems
- Basic Structures for IIR and FIR Systems
- Design of IIR and FIR Filters
- **G** Filter Banks
- Adaptive Filters
- Computation of the Discrete Fourier Transform
- □ Fast Fourier Transform
- Spectral Analysis
- Wavelet Transform
- Compressive Sampling

- Represent signals by a sequence of numbers
 - Sampling and quantization (or analog-to-digital conversion)
- Perform processing on these numbers with a digital processor
 - Digital signal processing
- Reconstruct analog signal from processed numbers
 - Reconstruction or digital-to-analog conversion

- Analog input \rightarrow analog output
 - Eg. Digital recording music
- Analog input \rightarrow digital output
 - Eg. Touch tone phone dialing, speech to text
- Digital input \rightarrow analog output
 - Eg. Text to speech
- Digital input \rightarrow digital output
 - Eg. Compression of a file on computer

Discrete Time Signals and Systems

DEFINITION

A signal is a function that maps an independent variable to a dependent variable.

- Signal x[n]: each value of n produces the value x[n]
- In this course, we will focus on discrete-time signals:
 - Independent variable is an **integer**: $n \in \mathbb{Z}$ (will refer to as <u>time</u>)
 - Dependent variable is a real or complex number: $x[n] \in \mathbb{R}$ or \mathbb{C}

A discrete-time system \mathcal{H} is a transformation (a rule or formula) that maps a discrete-time input signal x into a discrete-time output signal y

$$y = \mathcal{H}\{x\}$$

 $x \longrightarrow \mathcal{H} \longrightarrow y$

- Systems manipulate the information in signals
- Examples:

DEFINITION

- · A speech recognition system converts acoustic waves of speech into text
- A radar system transforms the received radar pulse to estimate the position and velocity of targets
- A functional magnetic resonance imaging (fMRI) system transforms measurements of electron spin into voxel-by-voxel estimates of brain activity
- A 30 day moving average smooths out the day-to-day variability in a stock price

- Causality
 - y[n] only depends on x[m] for m<=n
- □ Linearity
 - Scaled sum of arbitrary inputs results in output that is a scaled sum of corresponding outputs
 - $Ax_1[n] + Bx_2[n] \rightarrow Ay_1[n] + By_2[n]$
- Memoryless
 - y[n] depends only on x[n]
- **Time Invariance**
 - Shifted input results in shifted output
 - $x[n-q] \rightarrow y[n-q]$
- BIBO Stability
 - A bounded input results in a bounded output (ie. max signal value exists for output if max)

DEFINITION

A system H is linear time-invariant (LTI) if it is both linear and time-invariant

LTI system can be completely characterized by its impulse response

 Then the output for an arbitrary input is a sum of weighted, delay impulse responses

$$x \longrightarrow h \longrightarrow y \qquad y[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$
$$y[n] = x[n] * h[n]$$

Discrete Time Fourier Transform

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Alternate

$$X(f) = \sum_{k=-\infty}^{\infty} x[k]e^{-j2\pi fk}$$
$$x[n] = \int_{-0.5}^{0.5} X(f)e^{j2\pi fn}df$$

$$W(e^{j\omega}) = \sum_{k=-\infty}^{\infty} w[k]e^{-j\omega k}$$
$$= \sum_{k=-N}^{N} e^{-j\omega k}$$

□ Fourier Transform of impulse response

$$x[n]=e^{j\omega n} \longrightarrow LTI System \longrightarrow y[n]=H(e^{j\omega n})e^{j\omega n}$$

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k}$$

- The z-transform generalizes the Discrete-Time Fourier Transform (DTFT) for analyzing infinitelength signals and systems
- Very useful for designing and analyzing signal processing systems
- Properties are very similar to the DTFT with a few caveats

$$H(z) = \sum_{n=-\infty}^{\infty} h[n] z^{-n}$$

Given a time signal x[n], the **region of convergence** (ROC) of its z-transform X(z) is the set of $z \in \mathbb{C}$ such that X(z) converges, that is, the set of $z \in \mathbb{C}$ such that $x[n] z^{-n}$ is absolutely summable

$$\sum_{n=-\infty}^{\infty} |x[n] \, z^{-n}| \ < \ \infty$$

Penn ESE 531 Spring 2022 - Khanna

DEFINITION

- □ Ways to avoid it:
 - Inspection (known transforms)
 - Properties of the z-transform
 - Partial fraction expansion

$$X(z) = \frac{b_0}{a_0} \frac{\prod_{k=1}^{M} (1 - c_k z^{-1})}{\prod_{k=1}^{N} (1 - d_k z^{-1})} = \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}}$$

Power series expansion

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

= \dots + x[-2] z^2 + x[-1] z + x[0] + x[1] z^{-1} + x[2] z^{-2} + \dots

$$\sum_{k=0}^{N} a_{k} y[n-k] = \sum_{m=0}^{M} b_{m} x[n-m]$$
$$H(z) = \frac{\sum_{k=0}^{M} (b_{k}) z^{-k}}{\sum_{k=0}^{N} (a_{k}) z^{-k}}$$

- Difference equations of this form behave as causal LTI systems
 - when the input is zero prior to n=0
 - Initial rest equations are imposed prior to the time when input becomes nonzero
 - i.e y[-N]=y[-N+1]=...=y[-1]=0

Sampling and Reconstruction

Discrete and Continuous

□ Ideal continuous-to-discrete time (C/D) converter

- T is the sampling period
- $f_s = 1/T$ is the sampling frequency

•
$$\Omega_s = 2\pi/T$$

define impulsive sampling:

$$\int \frac{1}{1 + \frac{x_s(t)}{1 + \frac{x$$

•
$$x_1[n] = \cos\left(\frac{\pi}{6}n\right)$$

Reconstruction of Bandlimited Signals

 Nyquist Sampling Theorem: Suppose x_c(t) is bandlimited. I.e.

$$X_c(j\Omega) = 0 \quad \forall \quad |\Omega| \ge \Omega_N$$

- □ If $\Omega_s \ge 2\Omega_N$, then $x_c(t)$ can be uniquely determined from its samples $x[n] = x_c(nT)$
- Bandlimitedness is the key to uniqueness

Mulitiple signals go through the samples, but only one is bandlimited within our sampling band

Reconstruction in Frequency Domain

Reconstruction in Time Domain

$$x_r(t) = x_s(t) * h_r(t) = \left(\sum_n x[n]\delta(t - nT)\right) * h_r(t)$$
$$= \sum_n x[n]h_r(t - nT)$$

Rate Re-Sampling

Definition: Reducing the sampling rate by an integer number

Definition: Increasing the sampling rate by an integer number

$$x[n] = x_c(nT)$$

$$x_i[n] = x_c(nT') \text{ where } T' = \frac{T}{L} \qquad L \text{ integer}$$

Obtain $x_i[n]$ from x[n] in two steps:

(1) Generate:
$$x_e[n] = \begin{cases} x[n/L] & n = 0, \pm L, \pm 2L, \cdots \\ 0 & \text{otherwise} \end{cases}$$

(2) Obtain $x_i[n]$ from $x_e[n]$ by bandlimited interpolation:

 \Box T'=TM/L

• Upsample by L, then downsample by M

Or,

Interchanging Operations - Summary

*Expanded filter = expanded impulse response, compressed freq response

Polyphase Implementation of Decimator

Polyphase Implementation of Interpolation

- Use filter banks to operate on a signal differently in different frequency bands
 - To save computation, reduce the rate after filtering
- □ $h_0[n]$ is low-pass, $h_1[n]$ is high-pass
 - Often $h_1[n] = e^{j\pi n} h_0[n] \leftarrow$ shift freq resp by π

• Assume h_0 , h_1 are ideal low/high pass with $\omega_C = \pi/2$

Quadrature mirror filters

$$H_1(e^{j\omega}) = H_0(e^{j(\omega-\pi)})$$
$$G_0(e^{j\omega}) = 2H_0(e^{j\omega})$$
$$G_1(e^{j\omega}) = -2H_1(e^{j\omega})$$

Penn ESE 531 Spring 2022 - Khanna

Frequency Response of Systems

Penn ESE 531 Spring 2022 - Khanna

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

• We can define a magnitude response
$$\left|Y\left(e^{j\omega}\right)\right| = \left|H\left(e^{j\omega}\right)\right|\left|X\left(e^{j\omega}\right)\right|$$

□ And a phase response

$$\angle Y(e^{j\omega}) = \angle H(e^{j\omega}) + \angle X(e^{j\omega})$$

 General phase response at a given frequency can be characterized with group delay, which is related to phase

$$\operatorname{grd}[H(e^{j\omega})] = -\frac{d}{d\omega} \{ \arg[H(e^{j\omega})] \}$$

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

Example:
$$y[n] = x[n] + 0.1y[n-1]$$

Stable and causal if all poles inside unit circle

$$H(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \ldots + a_N z^{-N}} = \frac{b_0}{a_0} \frac{\prod_{k=1}^M (1 - c_k z^{-1})}{\prod_{k=1}^N (1 - d_k z^{-1})}$$

□ Transfer function is not unique without ROC

- If diff. eq represents LTI and causal system, ROC is region outside all singularities
- If diff. eq represents LTI and stable system, ROC includes unit circle in z-plane

Penn ESE 531 Spring 2022 - Khanna

 d_k=real pole, e_k=complex poles paired w/ conjugate, e_k*

$$H_{\rm ap}(z) = A \prod_{k=1}^{M_r} \frac{z^{-1} - d_k}{1 - d_k z^{-1}} \prod_{k=1}^{M_c} \frac{(z^{-1} - e_k^*)(z^{-1} - e_k)}{(1 - e_k z^{-1})(1 - e_k^* z^{-1})}$$

- Definition: A stable and causal system H(z) (i.e. poles inside unit circle) whose inverse 1/H(z) is also stable and causal (i.e. zeros inside unit circle)
 - All poles and zeros inside unit circle

Have some distortion that we want to compensate for:

□ If $H_d(z)$ is min phase, easy:

- $H_c(z)=1/H_d(z)$ \leftarrow also stable and causal
- □ Else, decompose $H_d(z) = H_{d,min}(z) H_{d,ap}(z)$
 - $H_c(z) = 1/H_{d,min}(z) \rightarrow H_d(z)H_c(z) = H_{d,ap}(z)$
 - Compensate for magnitude distortion

□ An LTI system has generalized linear phase if frequency response H(e^{j∞}) can be expressed as:

$$H(e^{j\omega}) = A(\omega)e^{-j\omega\alpha+j\beta}, \ |\omega| < \pi$$

• Where $A(\omega)$ is a real function.

□ What is the group delay?

Aleiw)

□ FIR GLP System Function

$$H(z) = \sum_{n=0}^{M} h[n] z^{-n}$$

Real system \rightarrow zeros occur in conjugate-reciprocal groups of 4 $(1 - re^{j\theta}z^{-1})(1 - re^{-j\theta}z^{-1})(1 - r^{-1}e^{j\theta}z^{-1})(1 - r^{-1}e^{-j\theta}z^{-1})$ If zero is on unit circle (r=1) $(1 - e^{j\theta}z^{-1})(1 - e^{-j\theta}z^{-1})$. If zero is real and not on unit circle (θ =0) $(1 \pm rz^{-1})(1 \pm r^{-1}z^{-1})$.

Penn ESE 531 Spring 2022 - Khanna

FIR Filter Design

FIR Design by Windowing

 $\hfill\square$ Given desired frequency response, $H_d(e^{j\omega})$, find an impulse response

$$h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(\underbrace{e^{j\omega})e^{j\omega n}d\omega}_{\text{ideal}}$$

 Obtain the Mth order causal FIR filter by truncating/windowing it

$$h[n] = \left\{ \begin{array}{cc} h_d[n]w[n] & 0 \le n \le M \\ 0 & \text{otherwise} \end{array} \right\}$$

Tradeoff – Ripple vs. Transition Width

Penn ESE 531 Spring 2022 – Khanna Adapted from M. Lustig, EECS Berkeley

□ Least Squares:

minimize
$$\int_{\omega \in \text{care}} |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega$$

Variation: Weighted Least Squares:

 $\operatorname{minimize}$

$$\int_{-\pi}^{\pi} W(\omega) |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega$$

Min-Max Ripple Design

 \Box Recall, $\tilde{H}(e^{j\omega})$ is symmetric and real • Given ω_p , ω_s , M, find δ , $egin{array}{cc} ilde{h}_+ & 1+\delta \ & 1-\delta \end{array}$ minimize δ Subject to : $1 - \delta \le \tilde{H}(e^{j\omega_k}) \le 1 + \delta \qquad 0 \le \omega_k \le \omega_p$ $-\delta \leq \tilde{H}(e^{j\omega_k}) \leq \delta$ $\omega_s \leq \omega_k \leq \pi$ $\delta > 0$ \Box Formulation is a linear program with solution δ , h_{\pm}

□ A well studied class of problems

IIR Filter Design

- Transform continuous-time filter into a discretetime filter meeting specs
 - Pick suitable transformation from s (Laplace variable) to z (or t to n)
 - Pick suitable analog H_c(s) allowing specs to be met, transform to H(z)
- □ We've seen this before... impulse invariance

The technique uses an algebraic transformation between the variables s and z that maps the entire jΩ-axis in the s-plane to one revolution of the unit circle in the z-plane.

$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right);$$
$$H(z) = H_c \left(\frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \right).$$

• Map Z-plane \rightarrow z-plane with transformation G

$$H(z) = H_{lp}(Z) \Big|_{Z^{-1} = G(z^{-1})}$$

General Transformations

TABLE 7.1TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPEOF CUTOFF FREQUENCY θ_p TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

Filter Type	Transformations	Associated Design Formulas
Lowpass	$Z^{-1} = \frac{z^{-1} - \alpha}{1 - az^{-1}}$	$\alpha = \frac{\sin\left(\frac{\theta_p - \omega_p}{2}\right)}{\sin\left(\frac{\theta_p + \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Highpass	$Z^{-1} = -\frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$	$\alpha = -\frac{\cos\left(\frac{\theta_p + \omega_p}{2}\right)}{\cos\left(\frac{\theta_p - \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Bandpass	$Z^{-1} = -\frac{z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1}z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \cot\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right) \tan\left(\frac{\theta_p}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$
Bandstop	$Z^{-1} = \frac{z^{-2} - \frac{2\alpha}{1+k}z^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{1+k}z^{-2} - \frac{2\alpha}{1+k}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \tan\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right) \tan\left(\frac{\theta_{p}}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$

Penn ESE 531 Spring 2022 - Khanna

Discrete Fourier Transform

DFT

□ The DFT

$$x[n] = rac{1}{N}\sum_{k=0}^{N-1}X[k]W_N^{-kn}$$
 Inverse DFT, synthesis $X[k] = \sum_{n=0}^{N-1}x[n]W_N^{kn}$ DFT, analysis

□ It is understood that,

$$egin{array}{rl} x[n] &=& 0 & ext{outside } 0 \leq n \leq N-1 \ X[k] &=& 0 & ext{outside } 0 \leq k \leq N-1 \end{array}$$

DFT Intuition

• For $x_1[n]$ and $x_2[n]$ with length N

$x_1[n] \otimes x_2[n] \leftrightarrow X_1[k] \cdot X_2[k]$

• Very useful!! (for linear convolutions with DFT)

Linear Convolution via Circular Convolution

Zero-pad x[n] by P-1 zeros
x_{zp}[n] = $\begin{cases} x[n] & 0 \le n \le L-1 \\ 0 & L \le n \le L+P-2 \end{cases}$ Zero-pad h[n] by L-1 zeros

$$h_{\mathrm{zp}}[n] = \left\{ egin{array}{cc} h[n] & 0 \leq n \leq P-1 \ 0 & P \leq n \leq L+P-2 \end{array}
ight.$$

□ Now, both sequences are length M=L+P-1

Example:

L+P-1=16

Circular Conv. as Linear Conv. w/ Aliasing

$$x_{3p}[n] = \begin{cases} \sum_{r=-\infty}^{\infty} x_3[n-rN], & 0 \le n \le N-1, \\ 0, & \text{otherwise,} \end{cases}$$

□ Therefore

$$x_{3p}[n] = x_1[n] \otimes x_2[n]$$

The N-point circular convolution is the sum of linear convolutions shifted in time by N

□ What does the L-point circular convolution look like?

□ The L-shifted linear convolutions

Penn ESE 531 Spring 2022 - Khanna

Fast Fourier Transform

FFT

Fast Fourier Transform

- Enable computation of an N-point DFT (or DFT⁻¹) with the order of just N · log₂ N complex multiplications.
- Most FFT algorithms decompose the computation of a DFT into successively smaller DFT computations.
 - Decimation-in-time algorithms
 - Decimation-in-frequency
- □ Historically, power-of-2 DFTs had highest efficiency
- Modern computing has led to non-power-of-2 FFTs with high efficiency
- Sparsity leads to reduce computation on order $K \cdot \log N$

Combining all these stages, the diagram for the 8 sample DFT is:

• $3 = \log_2(N) = \log_2(8)$ stages

- 4=N/2=8/2 multiplications in each stage
- 1st stage has trivial multiplication

The diagram for and 8-point decimation-in-frequency DFT is as follows

This is just the decimation-in-time algorithm reversed! The inputs are in normal order, and the outputs are bit reversed.

- □ Final Project due Today!
 - TA advice "The report takes time. Leave time for it."
- Last day of TA office hours tomorrow
 - Piazza still available
 - Review session for exam next week TBD
 - See Piazza
- Last day of Tania office hours Friday
- □ Final Exam May 5th

Final Exam Admin

- □ Final Exam 5/5 (12pm-2pm)
 - Location DRLB A1 (same place as midterm)
 - Starts at exactly 12:00pm, ends at exactly 2:00pm (120 minutes)
 - Cumulative covers lec1-21
 - Except data converters, noise shaping (lec 12)
 - Closed book
 - Data/Equation sheet provided by me (see old exams)
 - 2 8.5x11 two-sided cheat sheets allowed
 - Calculators allowed, no smart phones
 - Can't share. Bring your own.
 - Old exams posted
 - Virtual TA Review session next week TBD
 - Watch Piazza for details
 - Will be recorded