
ESE531 Spring 2022

University of Pennsylvania
Department of Electrical and System Engineering

Digital Signal Processing

Project 2: Adaptive Filtering Tuesday, Apr. 12

Due: Tuesday, April 26th, 11:59pm

Project: You can work in groups of no more than 2 for this project. You may work alone.
Each group must turn in one report with the clear contributions of each member clearly
delineated. Everyone is responsible for understanding the design and report in its entirety,
and the instructor reserves the right to interview the students to verify this.

You are to complete two parts of the handout for full credit: Part A, Part B. Part C may
be turned in for extra credit.

• Part A: ADAPTIVE NOTCH FILTER.
DO NOT use high level Matlab commands that may be available in the Signal Processing
and other Matlab toolboxes for adaptive filtering in this part. It is easy and much more
instructive to write your own Matlab code to implement these.

A simple real IIR notch filter is a second order filter with two conjugate zeros on the
unit circle and two conjugate poles inside the unit circle, with system function

H(z) =
(1− ejω0z−1)(1− e−jω0z−1)

(1− rejω0z−1)(1− re−jω0z−1)
=

1 + az−1 + z−2

1 + raz−1 + r2z−2
where a = −2cos(ω0), and 0 ≤ r < 1

The notch is at real frequency ω0 and the closeness of the poles to the unit circle
determines the notch sharpness. This filter can be used to reject a strong interfering
sinusoid that is contaminating a desired signal. For unknown interfering frequency we
want to build an adaptive notch filter, based on the principle that the filter output is
minimized when the notch is at the correct location. Note that the adaptation is with
respect to the parameter value a, with r generally set at a fixed value. Since this is
not an FIR filter, we cannot directly apply the LMS algorithm derived for adaptive
FIR filters. However it is possible to develop a simple algorithm for the adaptive notch
filter.

We can decompose H(z) as a cascade of the FIR part followed by the all-pole filter,
and we can write the output sequence y[n] when input sequence is x[n] in terms of an
intermediate sequence e[n]:

e[n] = x[n] + a · x[n− 1] + x[n− 2]

y[n] = e[n]− r · a · y[n− 1]− r2 · y[n− 2]

1

ESE531 Spring 2022

The gradient of y[n]2 with respect to a is 2y[n]dy[n]
da

where the derivative is not simple;

thus, as an approximation we replace dy[n]
da

with de[n]
da

= x[n− 1]. To minimize E(y[n]2),
we approximate its gradient as 2y[n]x[n− 1]. The adaptive notch filter update of the
parameter a (for fixed choice of r) is therefore: a[n + 1] = a[n]− µy[n]x[n− 1]. Since
a = −2cos(ω0) we have −2 ≤ a < 2 . We should impose this constraint for the updates
and reset a[n] = 0 if it is out of bounds.

1. Create a simple simulation of an adaptive notch filter for a desired signal with
unwanted additive sinusoidal interference. The desired signal may be some real
sequence perhaps with a small amount of additive noise; you can use a single-
frequency desired signal as one possibility, but experiment with other types of
desired signal also. The interference will be a single strong frequency (low signal-
to-interference power ratio). Start with a = 0 (ω0 = π

2
, mid-point of frequency

band). Consider different small values of µ , different fixed values of r (of the
order of 0.85 to 0.98), different interfering frequencies and powers. Note that
µ will have to be quite small. Give plots and results on frequency response,
convergence, spectra, etc. to show how well your adaptive filter works.

2. Consider one case where the single interfering sinusoid has a frequency that is
changing slowly. For example, you might define the interference as a sinusoid
with a slowly linearly increasing frequency or some other slowly changing profile.
Examine the tracking ability of the adaptive notch filter and give your results and
comments. (Note that the instantaneous frequency of a sinusoid cos(2π · φ(t)) is
dφ
dt

)

3. Can you extend your scheme of part (a) to a filter scheme creating two notches
to reject two sinusoidal components? In particular, you might consider a cascade
of two single-notch second-order notch filters, and adapt the a parameter of each
(i.e. a = a1 and a = a2). Explain your approach and give your results for a test
case of two interfering sinusoids on a desired signal.

• Part B: ADAPTIVE EQUALIZATION
DO NOT use high level Matlab commands that may be available in the Signal Processing
and other Matlab toolboxes for adaptive filtering in this part. It is easy and much more
instructive to write your own Matlab code to implement these.

Here you will use adaptive filtering to equalize or invert an unknown channel, with the
help of a training sequence.

Training Mode Equalization:

Consider a source sending continuous-time pulses of amplitude A or −A to represent
bits 1 and 0. The sequence of such pulses passing through a channel can undergo
distortion causing them to spread out and overlap with each other, creating what
is called inter-symbol interference or ISI. In addition, any front-end filtering at the
receiver may cause further pulse spreading.

The channel may be modeled in discrete-time as follows: an input sequence s[n] (ran-
dom sequence) of ±A amplitudes passes through a discrete-time LTI system (channel)

2

ESE531 Spring 2022

with unit-sample response sequence h[n] to produce the observed sequence of channel
output samples x[n] in the presence of noise. Thus we have x[n] = h[n] ∗ s[n] + w[n]
where w[n] is a sequence of zero-mean, independent, Gaussian variates representing
additive noise. The channel may be assumed to be an FIR channel of order L (length
L + 1), and its unit-sample response h[n] is unknown. At the channel output we use
an FIR adaptive equalizer filter of larger length M + 1 operating on x[n] to try to
invert the channel, to ideally get at its output a delayed version of the original input
sequence s[n], after the adaptive filter has converged. In order to implement the LMS
training algorithm for the equalizer, we need a copy of the actual input sequence for
use as the desired (delayed) output signal during an initial training phase. After the
training phase, the equalizer should have converged to a good approximation of an
inverse filter.

Produce a random ±1 amplitude training sequence of length 1000. Assume some
channel unit-sample response h[n]; you may use for example something like h =
[0.3, 1, 0.7, 0.3, 0.2] for your initial trials, but you should also test your implementa-
tion for different unknown channels of such short lengths (≤ 7). At the output of the
channel (after convolution of input sequence with h[n]) add Gaussian noise to simulate
a more realistic noisy output condition. You may use an SNR of around 20-35 dB.
Now implement an adaptive filter operating on the noisy channel output x[n], using
a training sequence which is an appropriately delayed version of the input sequence.
The delay will take care of any unknown channel delay (for example, for the channel
given above the channel delay may be 2 units,) and equalizer filter delay. Examine the
performance you get with different combinations of equalizer filter order M (choose
this between 10 and 30), filter step-size µ , adaptive filter initialization, SNR, channel
impulse response h[n], etc.

Examine the impulse and frequency response and pole-zero plot of the channel, and
the impulse and frequency responses of the equalizer upon convergence, and provide
plots and results that show how well your adaptive equalizer works under different
channel and noise conditions. Plot also the impulse response and frequency response
of the equivalent LTI system between input and output, i.e. the result of the chan-
nel and equalizer in cascade, after the equalizer has reached reasonable convergence.
Determine if output decisions about the transmitted bits are better after equalization,
compared to the un-equalized case. (You can check the output of the system using the
equalizer obtained after convergence, by sending several thousand further inputs into
the channel.) Comment on your findings.

• Project Submission: Your report submission for this project will consist of two
parts.

– Project Report:
You should submit by the due date a single file report (preferably pdf) explaining
what you did and the results you obtained, including figures, test cases, interpre-
tations and comments, as well as responses to any specific questions asked above.
Please explain briefly your Matlab code; include a copy of all your Matlab code

3

ESE531 Spring 2022

in your report in an Appendix. The report must be uploaded to Canvas by
midnight on the due date.

– MATLAB Code and Other Soft Files: Also submit (upload) by the due date
through the Assignments Area on the ESE 531 Canvas Site all supporting material
(all your Matlab code files, test input/output files, and any other results files).
Ideally all placed in a compressed .zip file. Please make sure you follow the proper
procedure for submitting files through Canvas.

4

ESE531 Spring 2022

• Part C: EXTRA CREDIT

1. Adaptive Blind Equalization:

Going back to your work in Part B, It is not always possible to have an initial
training phase, during which an equalizer at the receiver knows the input, to form
an error to drive its LMS training algorithm. The transmitter may be continuously
sending data through a channel, and it may be left to the receiver to figure out for
itself how to equalize the channel, without the benefit of a known training input
sequence.

In the context of the simple scenario of Part B, the situation now is that the
receiver knows only that the transmitted pulse amplitudes are two-level ±1 values
(more generally ±A amplitudes). It has to use only this general knowledge about
the nature of the input to learn how to equalize the channel. It has no knowledge
of an explicit transmitted sequence that it can use for training, and we say it is
operating in the blind mode.

A simple approach to blind equalization in this setting is based on the use of the
constant- modulus property of the input; the modulus or absolute value of the
input amplitude sequence is a constant (= 1 or more generally A). The constant-
modulus (CM) blind equalization algorithm attempts to equalize the channel by
iterative adjustments to the equalizer with the objective of minimizing a measure
of deviation of the equalizer output modulus values from a constant modulus
value.

Referring to the LMS adaptive algorithm description, we now have input sequence
x[n] to an equalizer that produces output y[n]. The error function for the CM

blind equalizer is defined as e2n = (|y[n]|2 − 1)
2

=
(
|gTnxn|2 − 1

)2
where gn is

the equalizer coefficient vector at time n. Differentiating this with respect to gn
we easily find that the gradient de2n

dgn
is proportional to (|y[n]|2 − 1)y[n]xn. Thus

the corresponding stochastic gradient algorithm becomes gn+1 = gn− µ(|y[n]|2−
1)y[n]xn.

– Implement this blind adaptive equalizer. Does the blind equalizer converge to
a reasonably equalized condition? You will have to try different settings for
µ and equalizer order M . (You will need possibly many tens of thousands of
iterations, and will need to experiment with rather small value of µ , perhaps
of the order of 10−4 depending on the specifics of your other parameters.) Use
short channel impulse response lengths (around 5) and dont use equalizer
lengths that are too long (around 20 maximum). Try different SNRs, but
expect poor results if the SNR is not high.
Provide plots and results, and give explanations/comments as in the case
of part B above. Also provide a one-dimensional scatter plot of the output
amplitudes after equalizer convergence, to get a visual sense of how well the
equalizer is able to bring the output amplitudes close to the desired two
amplitudes.

5

