University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

Final	Monday, May 1
Final	Monday, May 1

- 4 Problems with point weightings shown. All 4 problems must be completed.
- Calculators (non-cellphone) allowed.
- Closed book = No text allowed.
- Two two-sided 8.5x11 cheat sheet allowed.
- Final answers here.
- Additional workspace in exam book. Note where to find work in exam book if relevant.

Name:

Grade:

Q1	
Q2	
Q3	
Q4	
Total	

DTFT Equations:	Z-Transform Equations:
$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$	$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$
$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform	TABLE 2.2 FOURIER TRANSFORM THEOREM	ЛS
1. $\delta[n]$	1	Sequence	Fourier Transform
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$	x[n]	$X\left(e^{j\omega} ight)$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=1}^{\infty} 2\pi \delta(\omega + 2\pi k)$	y[n]	$Y(e^{j\omega})$
	$k = -\infty$	1. $ax[n] + by[n]$	$aX(e^{j\omega}) + bY(e^{j\omega})$
4. $a^n u[n]$ (<i>a</i> < 1)	$\frac{1}{1-ae^{-j\omega}}$	2. $x[n-n_d]$ (n_d an integer)	$e^{-j\omega n_d} X(e^{j\omega})$
5 u[n]	$\frac{1}{1}$ + $\sum_{k=1}^{\infty} \pi \delta(\omega + 2\pi k)$	3. $e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$
5. <i>u</i> [<i>n</i>]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{n} \frac{n\sigma(\omega+2\pi k)}{k}$	4. $x[-n]$	$X(e^{-j\omega})$
6. $(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-i\omega})^2}$		$X^*(e^{j\omega})$ if $x[n]$ real.
7. $\frac{r^n \sin \omega_p(n+1)}{\sin \omega_p} u[n]$ (r < 1)	$\frac{1}{1 - 2\pi \cos \alpha} = \frac{1}{1 - 2\pi \cos \alpha} = \frac{1}{1 - 2\pi \cos \alpha}$	5. nx[n]	$j \frac{dX \left(e^{j\omega}\right)}{d\omega}$
$\sin \omega_p$	$1 - 2r\cos\omega_p e^{-y} + r e^{-y}$	6. $x[n] * y[n]$	$X\left(e^{j\omega} ight)Y(e^{j\omega})$
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_c, \\ 0, & \omega_c < \omega \le \pi \end{cases}$	7. $x[n]y[n]$	$\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	Parseval's theorem:	
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	8. $\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} \left[\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)\right]$	9. $\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$	

TABLE 3.1 SOME COMMON z-TRANSFORM PAIRS

Sequence	Transform	ROC					
1. δ[n]	1	All z					
2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1	TABLE 3.2	SOME <i>z</i> -TRAN	ISFORM PROPERTIES		
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1	Property Number	Section Reference	Sequence	Transform	ROC
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)			x[n]	X(z)	R _x
5. $a^{n}u[n]$	$\frac{1}{1-az^{-1}}$	z > a			$x_1[n]$	$X_1(z)$	R_{x_1}
6. $-a^n u[-n-1]$	$\frac{1}{1}$	z < a			$x_2[n]$	$X_2(z)$	R_{x_2}
	$1 - az^{-1}$		1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
7. $na^{n}u[n]$	$\frac{u_2}{(1-az^{-1})^2}$	z > a	2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible
8. $-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a					the origin or ∞
9. $\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0) z^{-1}}{1 - 2 \cos(\omega_0) z^{-1} + z^{-2}}$	z > 1	3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
	$1 - 2\cos(\omega_0)z^{-1} + z^{-2}$		4	3.4.4	nx[n]	$-z \frac{dX(z)}{dz}$	R_x
10. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1	5	3.4.5	$x^*[n]$	$X^*(z^*)^2$	R_x
11. $r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r	6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Contains R_x
12. $r^n \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1-2r\cos(\omega_0)z^{-1}+r^2z^{-2}}$	z > r	7		$\mathcal{I}m\{x[n]\}$	$\frac{1}{2i}[X(z) - X^*(z^*)]$	Contains R_x
13 ∫ a^n , $0 \le n \le N - 1$,	$1-a^Nz^{-N}$	z > 0	8	3.4.6	$x^{*}[-n]$	$X^{*}(1/z^{*})$	$1/R_x$
13. $0, \text{ otherwise}$	$1 - az^{-1}$	2 > 0	9	3.4.7	$x_1[n] \ast x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$

DFT Equations:

N-point DFT of
$$\{x[n], n = 0, 1, ..., N-1\}$$
 is $X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$, for $k = 0, 1, ..., N-1$
N-point IDFT of $\{X[k], k = 0, 1, ..., N-1\}$ is $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j\frac{2\pi}{N}kn}$, for $n = 0, 1, ..., N-1$

Trigonometric Identities:	Geometric Series:
$e^{j\Theta} = \cos(\Theta) + j\sin(\Theta)$	$\sum_{n=0}^{N} r^n = \frac{1-r^{N+1}}{1-r}$
$\cos(\Theta) = \frac{1}{2}(e^{j\Theta} + e^{-j\Theta})$	$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}, r < 1$
$sin(\Theta) = \frac{1}{2i}(e^{j\Theta} - e^{-j\Theta})$	

Upsampling/Downsampling:

Upsampling by L (\uparrow L): $X_{up} = X(e^{j\omega L})$ Downsampling by M (\downarrow M): $X_{down} = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\frac{\omega}{M} - \frac{2\pi}{M}i)})$

Generalized Linear Phase Systems:

	Type I	Type II
Symmetry	Even, $h[n] = h[M - n]$	Even, $h[n] = h[M - n]$
М	Even	Odd
$H(e^{j\omega})$	$A(e^{j\omega})e^{-j\omega M/2}$	$A(e^{j\omega})e^{-j\omega M/2}$
$A(e^{j\omega})$	$\sum_{k=0}^{M/2} a[k] cos(\omega k)$	$\sum_{k=1}^{(M+1)/2} b[k] \cos(\omega(k-\frac{1}{2}))$
	a[0] = h[M/2]	b[k] = 2h[(M+1)/2 - k]
	a[k] = 2h[(M/2) - k]	for $k = 1, 2,, (M + 1)/2$
	for $k = 1, 2,, M/2$	
	Type III	Type IV
Symmetry	Odd, $h[n] = -h[M - n]$	Odd, h[n] = -h[M - n]
М	Even	Odd
$H(e^{j\omega})$	$A(e^{j\omega})je^{-j\omega M/2}$	$A(e^{j\omega})je^{-j\omega M/2}$
$A(e^{j\omega})$	$\sum_{k=1}^{M/2} c[k] sin(\omega k)$	$\sum_{k=1}^{(M+1)/2} d[k] sin(\omega(k-\frac{1}{2}))$
	c[k] = 2h[(M/2) - k]	d[k] = 2h[(M+1)/2 - k]
	for $k = 1, 2,, M/2$	for $k = 1, 2,, (M+1)/2$

Interchange Identities:

$$\begin{array}{rcl} x[n] & & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

1. (25 pts) Determine the the impulse response $h_{eq}[n]$ in Figure 2(b) so that the I/O relationship of the system in Figure 2(b) is exactly the same as the I/O relationship of the system in Figure 2(a). Hint: Analyze the system of Figure 2(a) in the time domain with the interchange identities.

where $h[n] = \delta[n] + \delta[n-8]$.

(this page intentionally left mostly blank)

2. (30 pts) Consider a discrete time system $H(e^{j\omega})$ defined as

$$H(e^{j\omega}) = \begin{cases} j, & \text{if } -\pi < \omega < 0\\ 0, & \text{if } \omega = 0\\ -j, & \text{if } 0 < \omega < \pi \end{cases}$$

This is a very useful system, called a Hilbert-filter, and is often used in communication. The system diagram is given below.

$$x[n] \longrightarrow H(e^{j\omega}) \longrightarrow y[n]$$

(a) Plot the magnitude and phase response of $H(e^{j\omega})$.

(b) We apply an input to this system $x[n] = cos(\frac{\pi}{8}n)$. Find the output y[n].

(c) We now apply an arbitrary input $x_1[n]$ to two Hilbert-filters cascaded together in series, as shown below. Derive an expression for the output $y_1[n]$ in terms of the input $x_1[n]$.

$$x_1[n] \longrightarrow H(e^{j\omega}) \longrightarrow H(e^{j\omega}) \longrightarrow y_1[n]$$

(d) The Hilbert-filter is used in the system configuration given below with an input $x_2[n]$ with the spectrum $X_2(e^{j\omega})$. Draw the output spectrum $Y_2(e^{j\omega})$.

3. (25 pts) The system function $H_{II}(z)$ represents a Type II FIR generalized linear-phase (GLP) system with impulse response $h_{II}[n]$. This system is cascaded with an LTI system, $F(z) = 1 - z^{-1}$, to produce a third system, $H_{eff}(z)$ and impulse response $h_{eff}[n]$. The corresponding diagram is below:

- (a) For the LTI system F(z), write an expression for the magnitude response, $|F(e^{j\omega})|$, and the phase response, $\angle F(e^{j\omega})$.
- (b) Prove that the cascaded system $H_{eff}(z)$ is also a linear-phase system and indicate what type GLP system it is.

4. (20 pts) Consider the system in the figure below with input $x(t) = e^{j(\frac{3\pi}{8})10^4 t}$, sampling period $T = 10^{-4}$ s, and

$$w[n] = \begin{cases} 1, & \text{if } 0 \le n \le N-1 \\ 0, & \text{else} \end{cases}$$

(a) What is the smallest nonzero value of N such that $X_w[k]$ is nonzero at exactly one value of k?

(b) Suppose now that N = 32, the input signal is $x(t) = e^{j\Omega_0 t}$, and the sampling period T is chosen such that no aliasing occurs during the sampling process. The figures below show the magnitude of the sequence $X_w[k]$ for k = 0, ..., 31 for the following two different choices of w[n]:

$$w_1[n] = \begin{cases} 1, & \text{if } 0 \le n \le 31 \\ 0, & \text{else} \end{cases} \qquad \qquad w_2[n] = \begin{cases} 1, & \text{if } 0 \le n \le 7 \\ 0, & \text{else} \end{cases}$$

Indicate which figure corresponds to which choice of w[n]. State your reasoning clearly.

