### ESE 5310: Digital Signal Processing

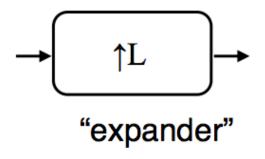
Lecture 11: February 16, 2023
Polyphase Decomposition and Multi-rate
Filter Banks



#### Lecture Outline

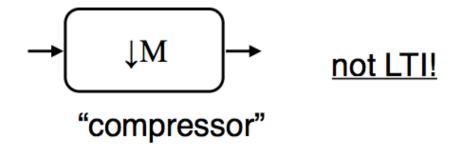
- □ Review: Interchanging Operations
- Polyphase Decomposition
- Multi-Rate Filter Banks
- Haar Filter Example

#### Expander and Compressor



**Upsampling** 

- -expanding in time
- -compressing in frequency



Downsampling

- -compressing in time
- -expanding in frequency

#### Interchanging Operations - Summary

Filter and expander

Expander and expanded filter\*

$$x[n] \rightarrow H(z) \rightarrow fl \rightarrow y[n] \equiv x[n] \rightarrow fl \rightarrow fl \rightarrow fl \rightarrow fl$$

$$x[n] \longrightarrow \underbrace{\downarrow \mathbf{M}} \longrightarrow \underbrace{H(z)} \longrightarrow y[n] \qquad \equiv \qquad x[n] \longrightarrow \underbrace{H(z^M)} \longrightarrow \underbrace{\downarrow \mathbf{M}} \longrightarrow y[n]$$

Compressor and filter

Expanded filter\* and compressor

\*Expanded filter = expanded impulse response, compressed freq response

#### Motivation

- Multirate DSP finds application in communications, speech processing, image compression, antenna systems, analog voice privacy systems, and in the digital audio industry to enable efficient processing
  - subband coding of waveforms
  - voice privacy systems
  - integral and fractional sampling rate conversion (such as in digital audio)
  - digital crossover networks
  - multirate coding of narrow-band filter coefficients.

P. P. Vaidyanathan, "Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial," in Proceedings of the IEEE, vol. 78, no. 1, pp. 56-93, Jan. 1990, doi: 10.1109/5.52200.

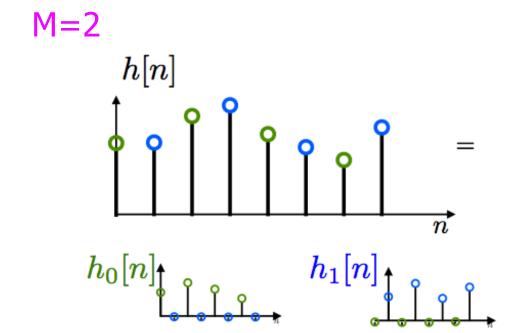
- □ The polyphase decomposition of a sequence is obtained by representing it as a superposition of M subsequences, each consisting of every M<sup>th</sup> value of successively delayed versions of the sequence
- When this decomposition is applied to a filter impulse response, it can lead to efficient implementation structures for linear filters in several contexts

■ We can decompose an impulse response (of our filter) to:

$$h[n] = \sum_{k=0}^{M-1} h_k[n-k]$$

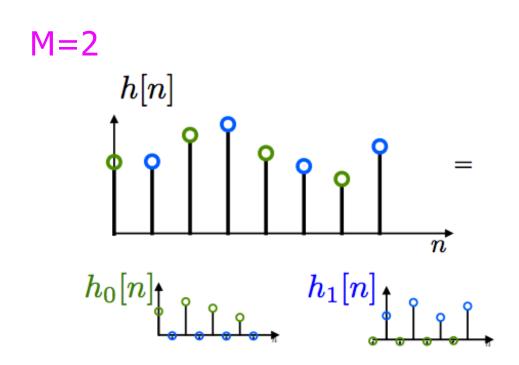
■ We can decompose an impulse response (of our filter) to:

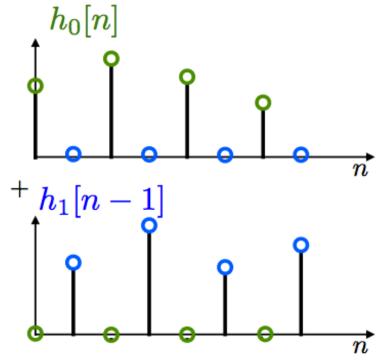
$$h[n] = \sum_{k=0}^{M-1} h_k[n-k]$$



■ We can decompose an impulse response (of our filter) to:

$$h[n] = \sum_{k=0}^{M-1} h_k[n-k]$$





$$h_k[n] \longrightarrow \downarrow M \longrightarrow e_k[n]$$

$$e_k[n] = h_k[nM]$$

$$h_0[n]$$

$$h_1[n]$$

$$h_{k}[n] \longrightarrow \bigcup M \longrightarrow e_{k}[n]$$

$$e_{k}[n] = h_{k}[nM]$$

$$h_{0}[n] \longrightarrow \bigoplus_{h_{1}[n]} \bigoplus_{h_{$$



$$e_k[n] \longrightarrow f_M \longrightarrow h_k[n]$$



$$e_k[n] \longrightarrow f_M \longrightarrow h_k[n]$$

recall upsampling ⇒ scaling

$$H_k(z) = E_k(z^M)$$

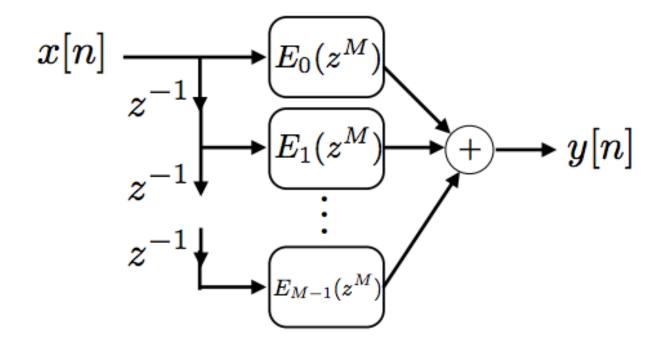
Also, recall:

$$h[n] = \sum_{k=0}^{M-1} h_k[n-k]$$

So,

$$H(z) = \sum_{k=0}^{M-1} E_k(z^M) z^{-k}$$

$$H(z) = \sum_{k=0}^{M-1} E_k(z^M) z^{-k}$$



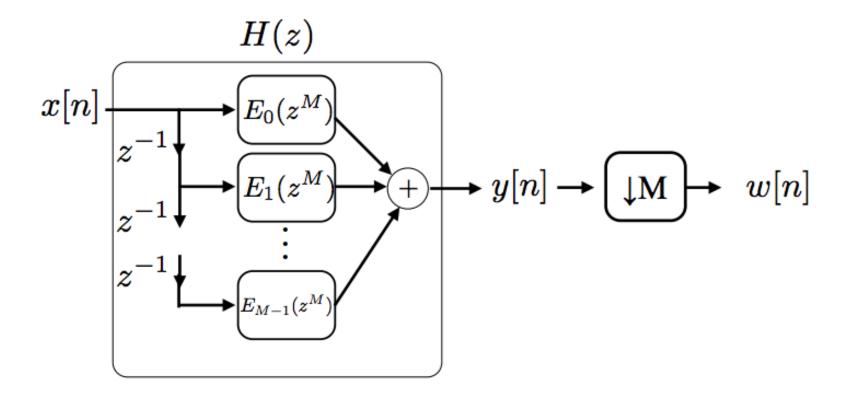
#### Problem:

Compute all y[n] and then throw away -- wasted computation!

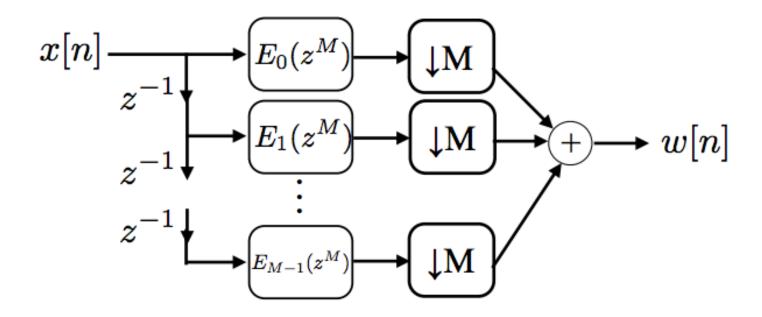
#### Problem:

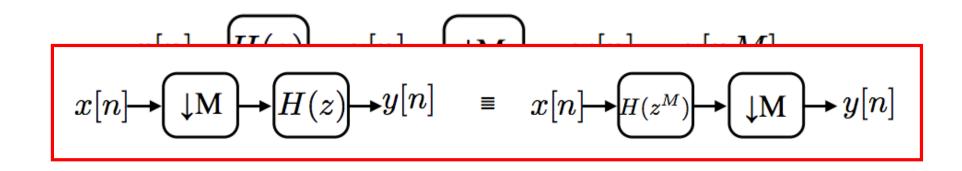
- Compute all y[n] and then throw away -- wasted computation!
- For FIR length  $N \rightarrow N$  multiplications/unit time

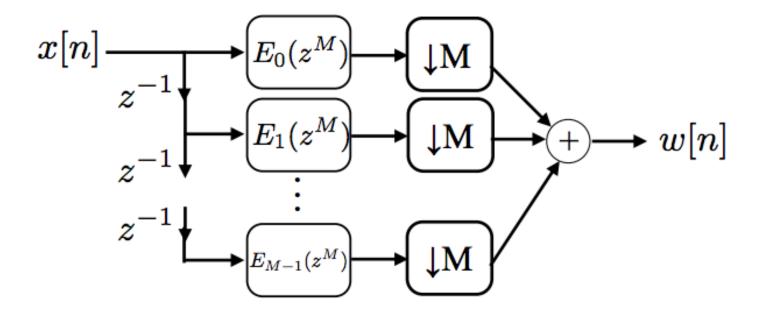
$$x[n] \rightarrow \underbrace{H(z)} \rightarrow y[n] \rightarrow \underbrace{\downarrow M} \rightarrow w[n] = y[nM]$$



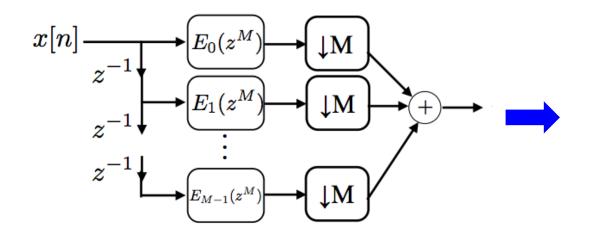
$$x[n] \rightarrow H(z) \rightarrow y[n] \rightarrow \downarrow M \rightarrow w[n] = y[nM]$$



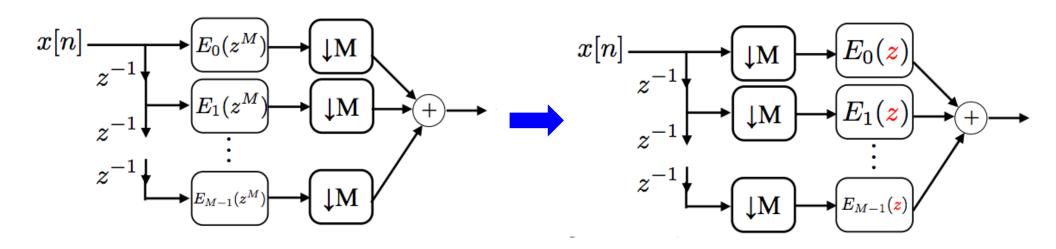




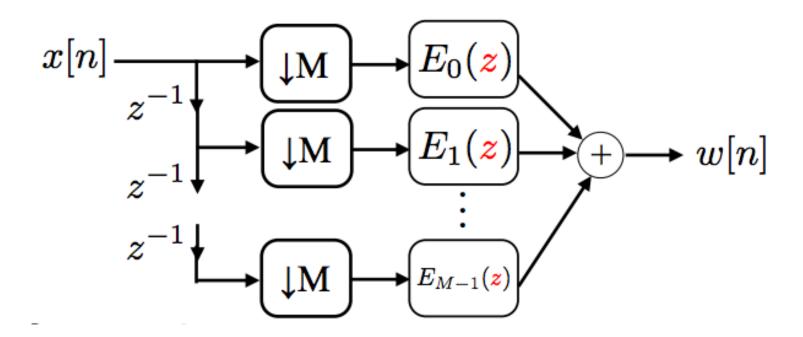
$$x[n] \longrightarrow \underbrace{\downarrow M} \longrightarrow \underbrace{H(z)} \longrightarrow y[n] \equiv x[n] \longrightarrow \underbrace{H(z^M)} \longrightarrow \underbrace{\downarrow M} \longrightarrow y[n]$$



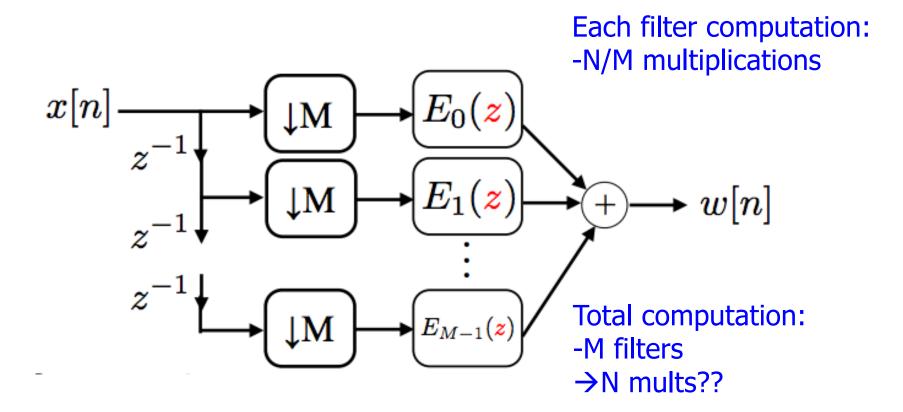
$$x[n] \longrightarrow \underbrace{\downarrow M} \longrightarrow \underbrace{H(z)} \longrightarrow y[n] \equiv x[n] \longrightarrow \underbrace{H(z^M)} \longrightarrow \underbrace{\downarrow M} \longrightarrow y[n]$$



$$x[n] \rightarrow H(z) \rightarrow y[n] \rightarrow \downarrow M \rightarrow w[n] = y[nM]$$



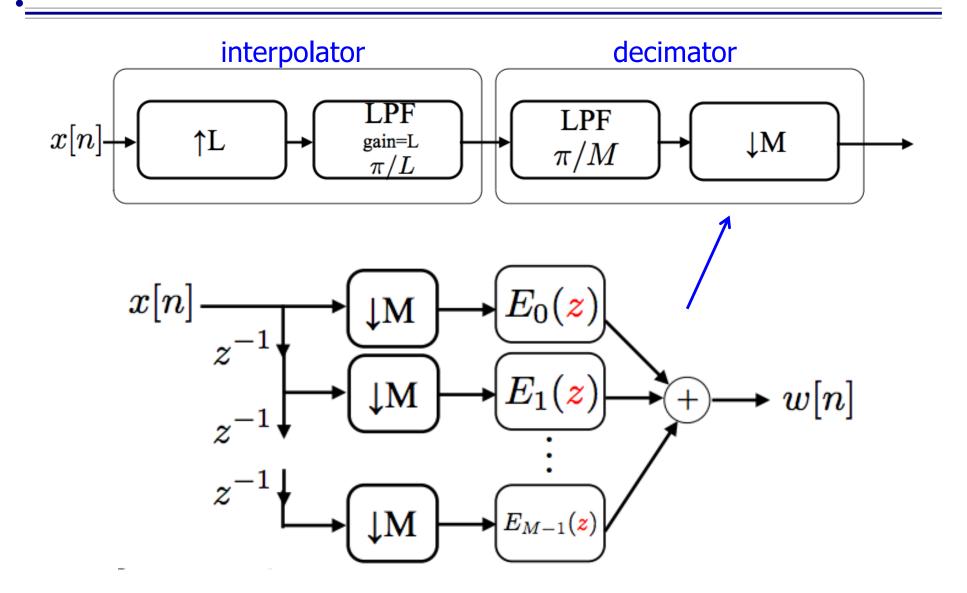
$$x[n] \rightarrow H(z) \rightarrow y[n] \rightarrow \downarrow M \rightarrow w[n] = y[nM]$$



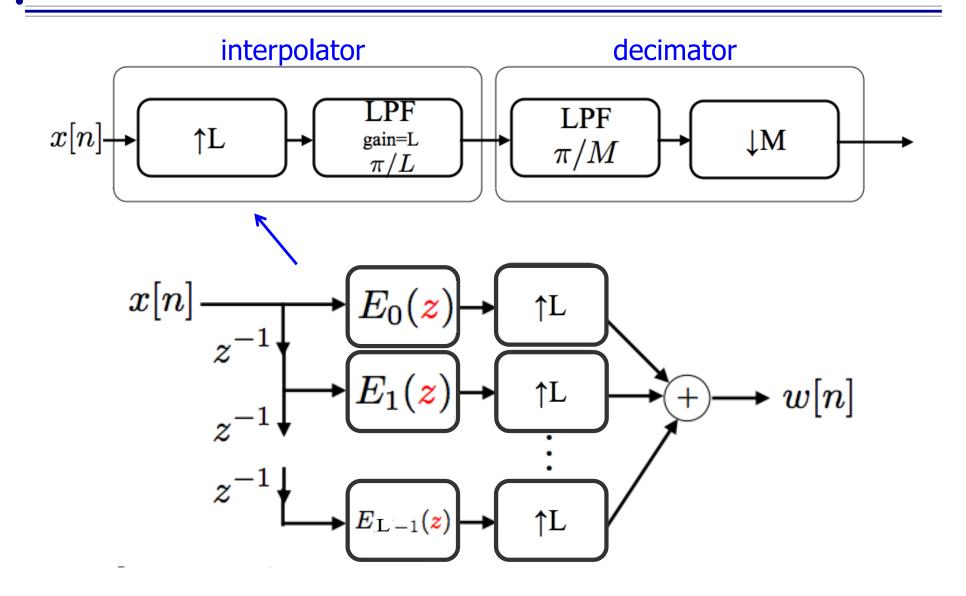
$$x[n] \longrightarrow H(z) \longrightarrow y[n] \longrightarrow \downarrow M \longrightarrow w[n] = y[nM]$$
 Each filter computation: -N/M multiplications -1/M rate per sample  $\rightarrow$  N/M\*(1/M) mults/unit time 
$$z^{-1} \longrightarrow \downarrow M \longrightarrow E_1(z) \longrightarrow w[n]$$
 
$$\vdots$$
 Total computation: M. Silver and the second second

-M filters

→N/M mults/unit time



#### Polyphase Implementation of Interpolation



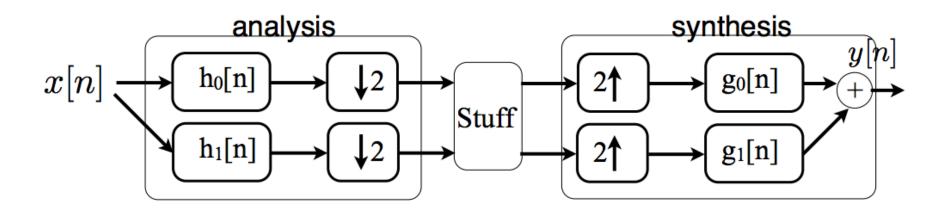
#### Multi-Rate Filter Banks

- Use filter banks to operate on a signal differently in different frequency bands
  - To save computation, reduce the rate after filtering



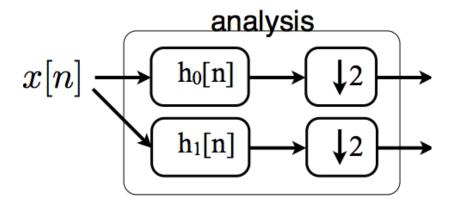
#### Multi-Rate Filter Banks

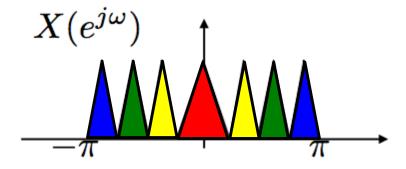
- Use filter banks to operate on a signal differently in different frequency bands
  - To save computation, reduce the rate after filtering
- $\bullet$  h<sub>0</sub>[n] is low-pass, h<sub>1</sub>[n] is high-pass
  - Often  $h_1[n] = e^{j\pi n} h_0[n]$   $\leftarrow$  shift freq resp by  $\pi$



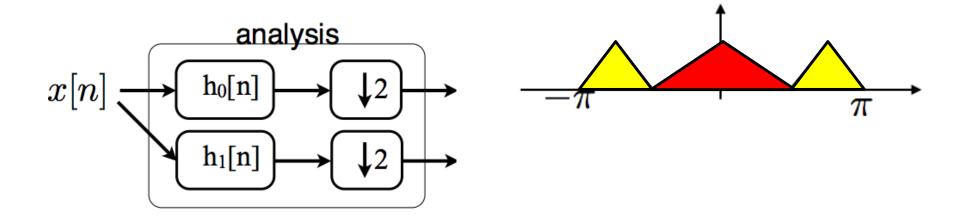


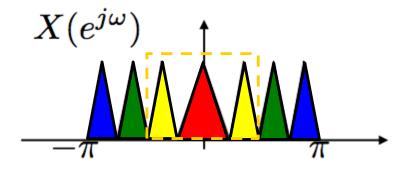
Assume  $h_0$ ,  $h_1$  are ideal low/high pass with  $\omega_C = \pi/2$ 



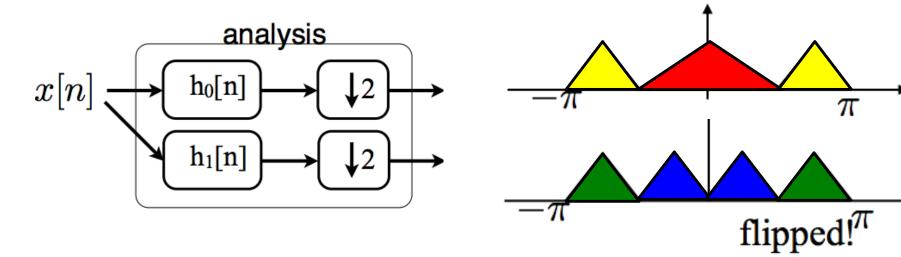


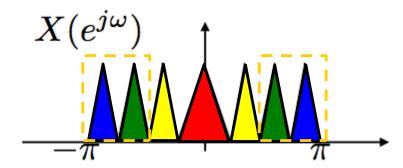
□ Assume  $h_0$ ,  $h_1$  are ideal low/high pass with  $\omega_C = \pi/2$ 



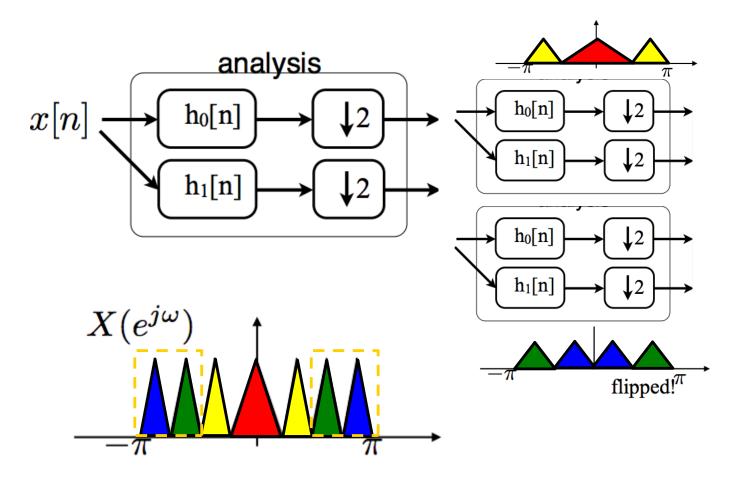


□ Assume  $h_0$ ,  $h_1$  are ideal low/high pass with  $ω_C = π/2$ 

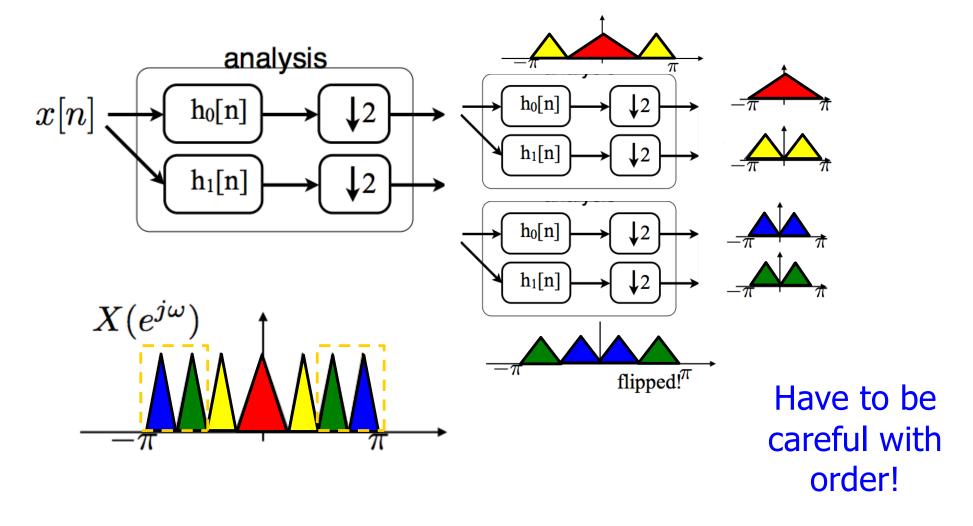




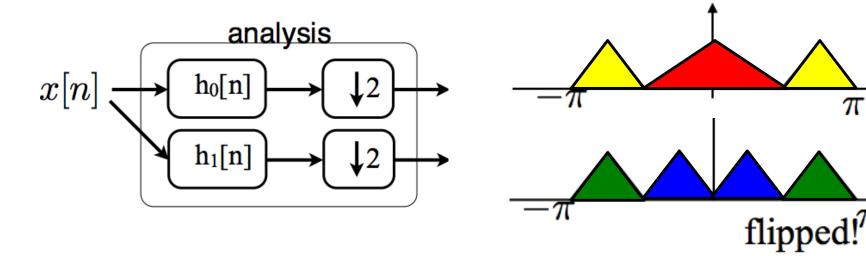
□ Assume  $h_0$ ,  $h_1$  are ideal low/high pass with  $ω_C = π/2$ 

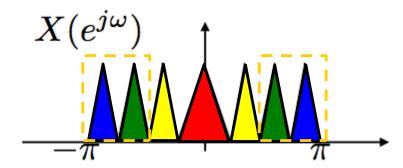


Assume  $h_0$ ,  $h_1$  are ideal low/high pass with  $ω_C = π/2$ 



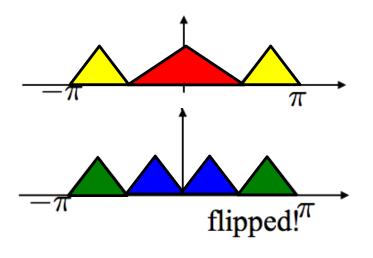
□ Assume  $h_0$ ,  $h_1$  are ideal low/high pass with  $ω_C = π/2$ 

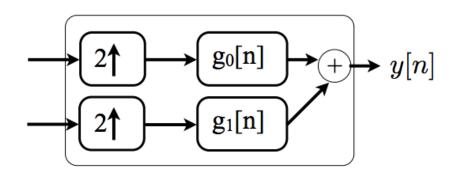




#### Multi-Rate Filter Banks: Synthesis

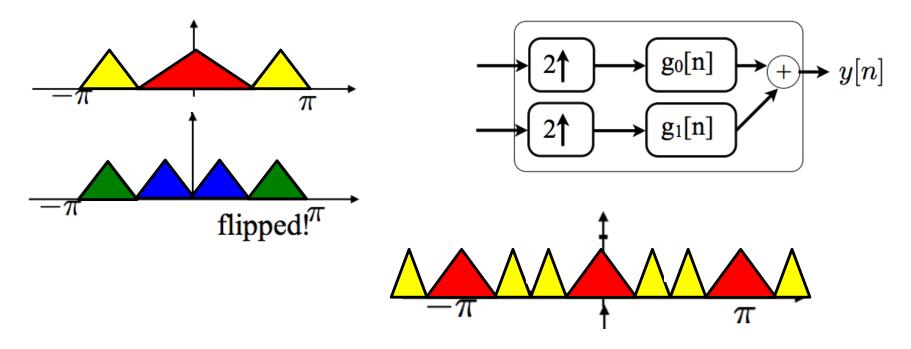
□ Assume  $g_0$ ,  $g_1$  are ideal low/high pass with  $ω_C = π/2$ 





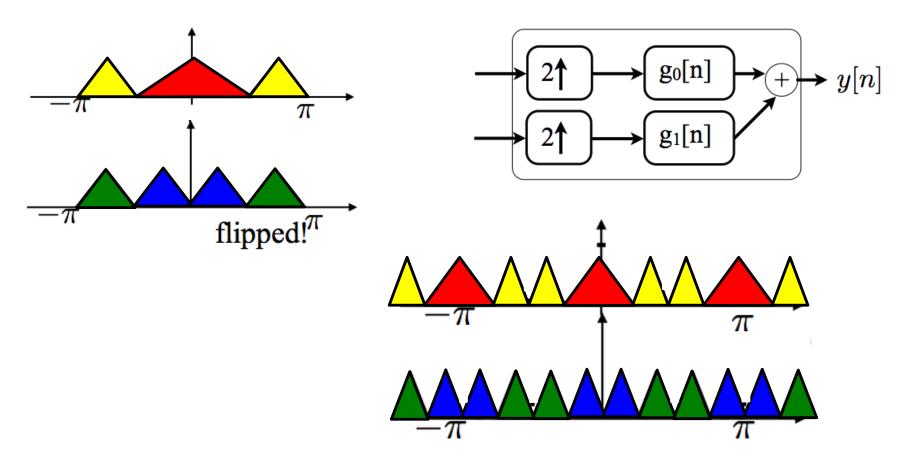
#### Multi-Rate Filter Banks: Synthesis

□ Assume  $g_0$ ,  $g_1$  are ideal low/high pass with  $ω_C = π/2$ 



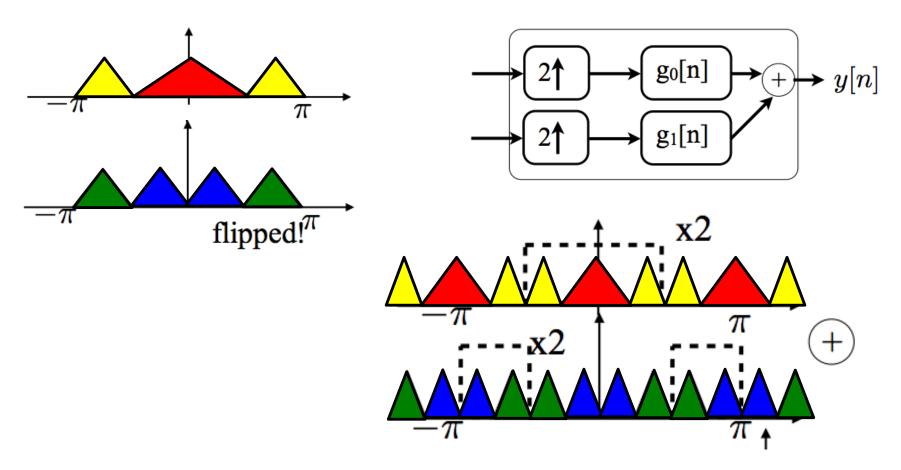
## Multi-Rate Filter Banks: Synthesis

Assume  $g_0$ ,  $g_1$  are ideal low/high pass with  $ω_C = π/2$ 



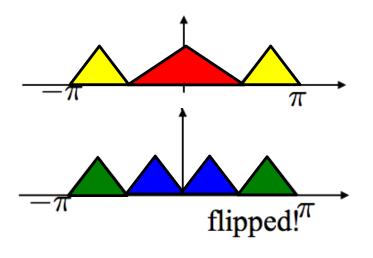
# Multi-Rate Filter Banks: Synthesis

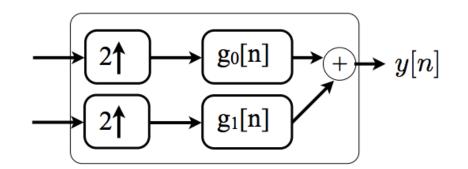
□ Assume  $g_0$ ,  $g_1$  are ideal low/high pass with  $ω_C = π/2$ 

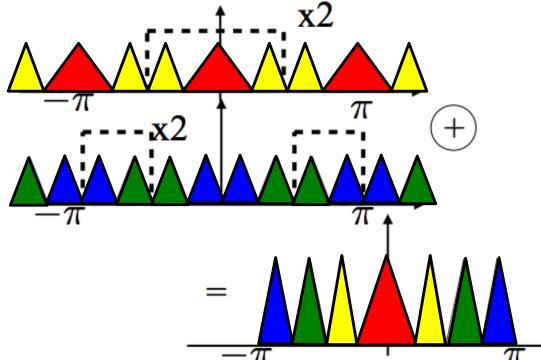


# Multi-Rate Filter Banks: Synthesis

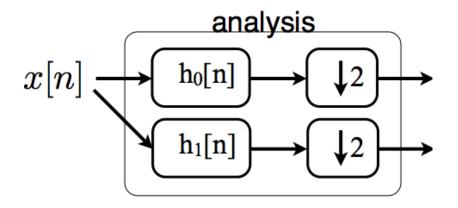
□ Assume  $g_0$ ,  $g_1$  are ideal low/high pass with  $ω_C = π/2$ 

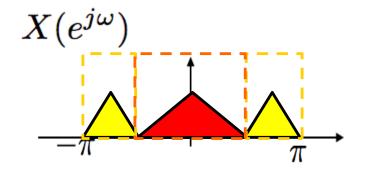


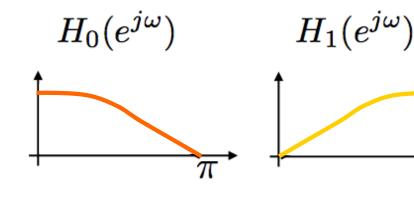


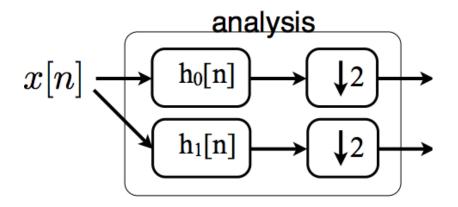


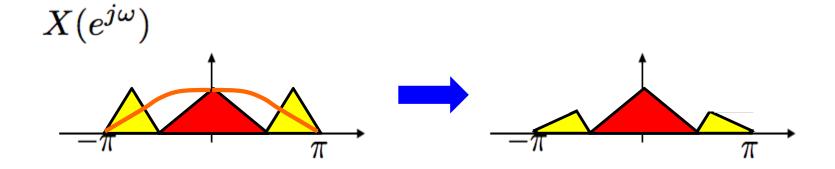
#### Multi-Rate Filter Banks

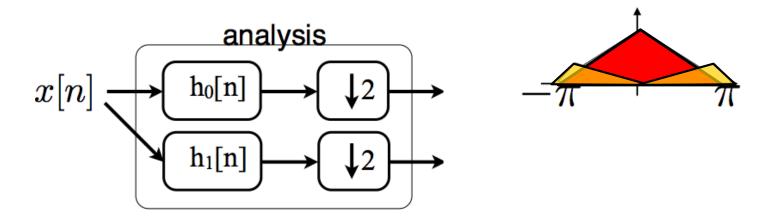


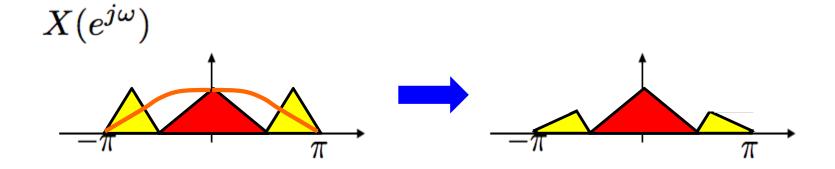


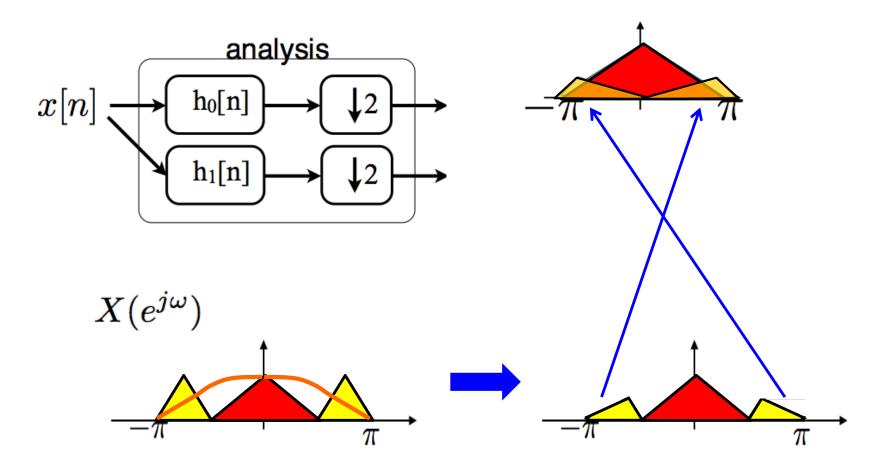


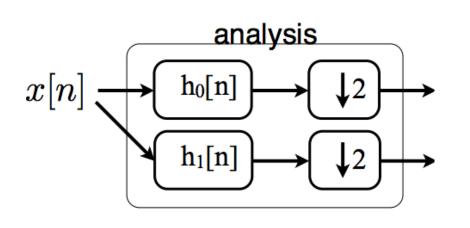


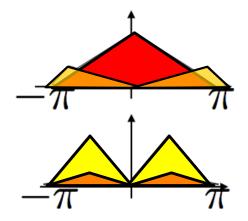


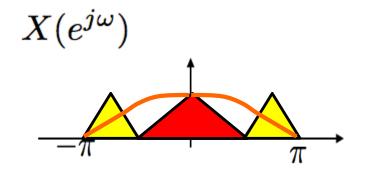


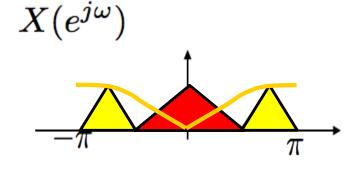


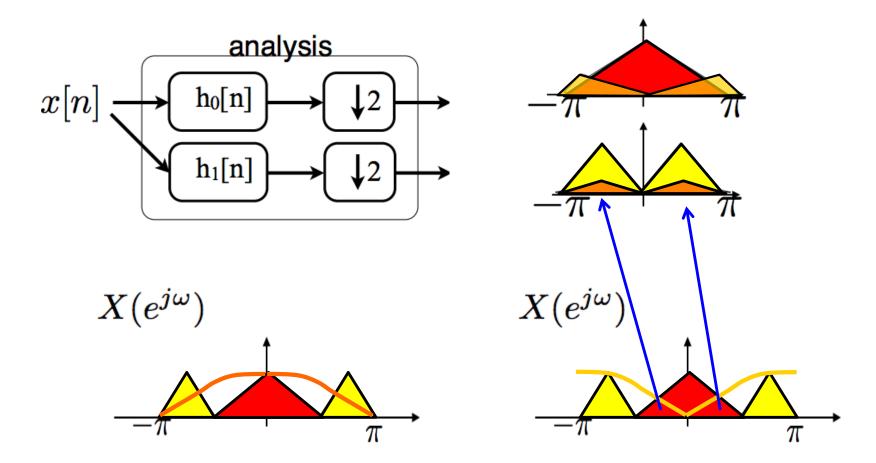


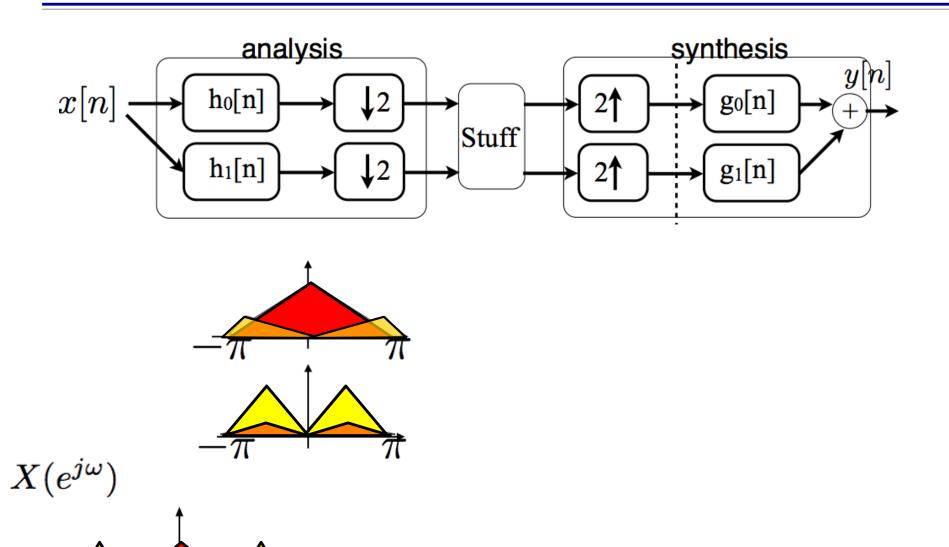




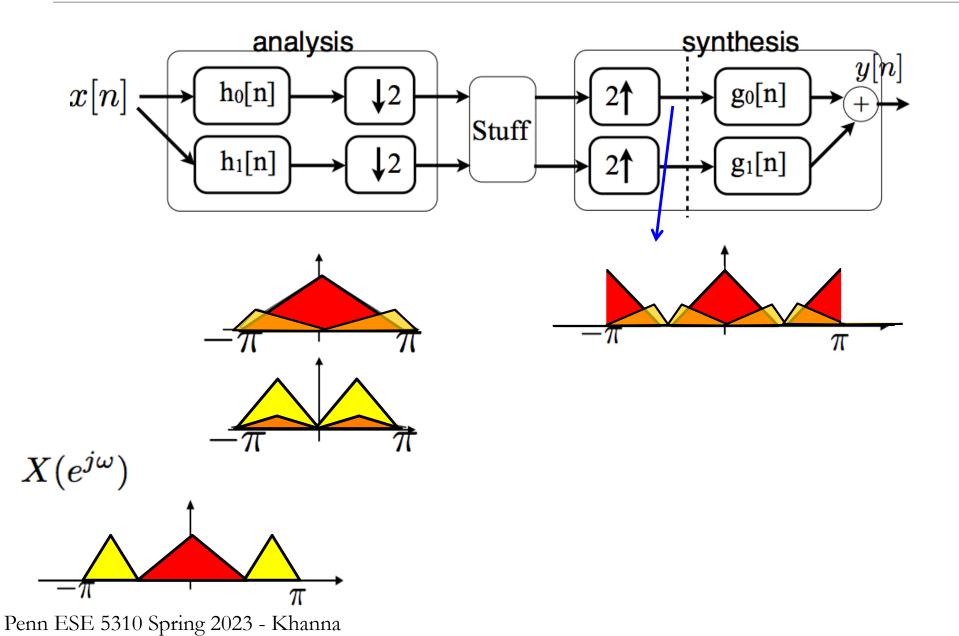


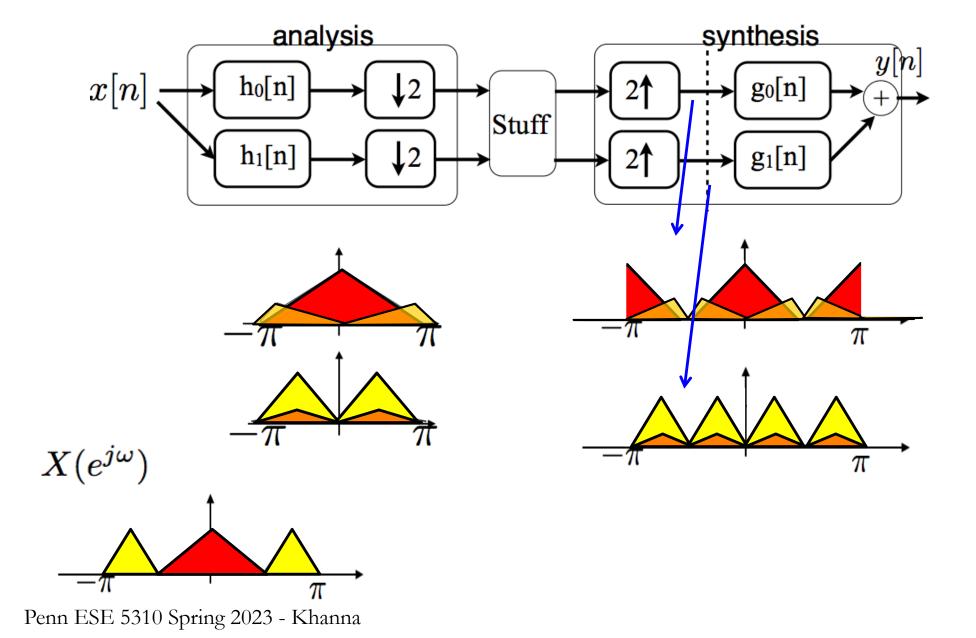






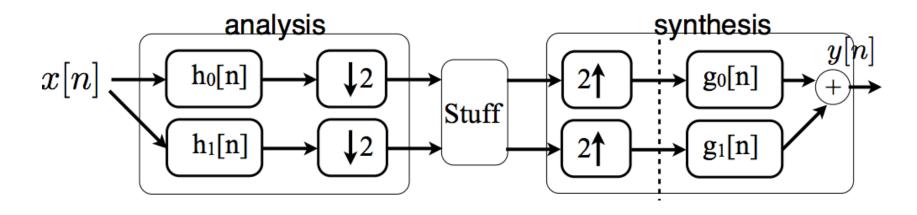
Penn ESE 5310 Spring 2023 - Khanna





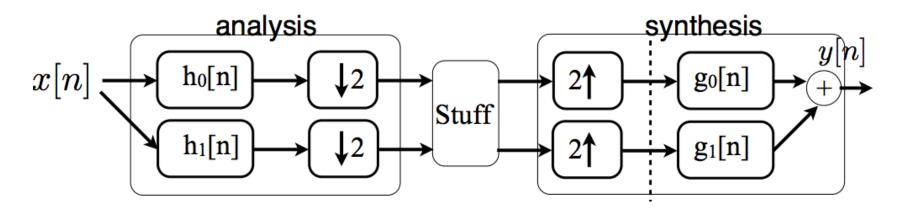


## Perfect Reconstruction non-Ideal Filters



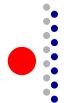
$$\begin{array}{lcl} Y(e^{j\omega}) & = & \frac{1}{2} \left[ G_0(e^{j\omega}) H_0(e^{j\omega}) + G_1(e^{j\omega}) H_1(e^{j\omega}) \right] X(e^{j\omega}) \\ & & + \frac{1}{2} \left[ G_0(e^{j\omega}) H_0(e^{j(\omega-\pi)}) + G_1(e^{j\omega}) H_1(e^{j(\omega-\pi)}) \right] X(e^{j(\omega-\pi)}) \\ & & \uparrow \\ & \text{aliasing} \\ & \text{need to cancel!} \end{array}$$

## Quadrature Mirror Filters

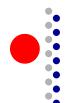


#### Quadrature mirror filters

$$H_1(e^{j\omega}) = H_0(e^{j(\omega-\pi)})$$
  
 $G_0(e^{j\omega}) = 2H_0(e^{j\omega})$   
 $G_1(e^{j\omega}) = -2H_1(e^{j\omega})$ 



# Perfect Reconstruction non-Ideal Filters



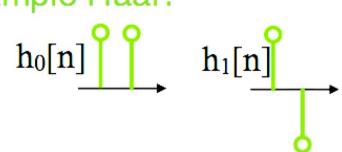
# Haar Filter Example

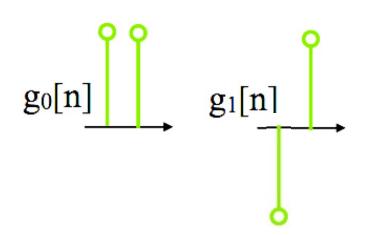
$$H_1(e^{j\omega}) = H_0(e^{j(\omega-\pi)})$$

$$G_0(e^{j\omega}) = 2H_0(e^{j\omega})$$

$$G_1(e^{j\omega}) = -2H_1(e^{j\omega})$$

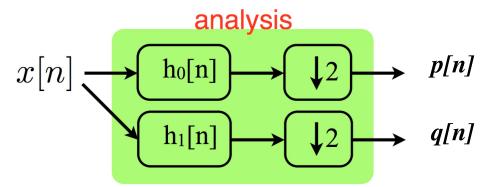
#### Example Haar:

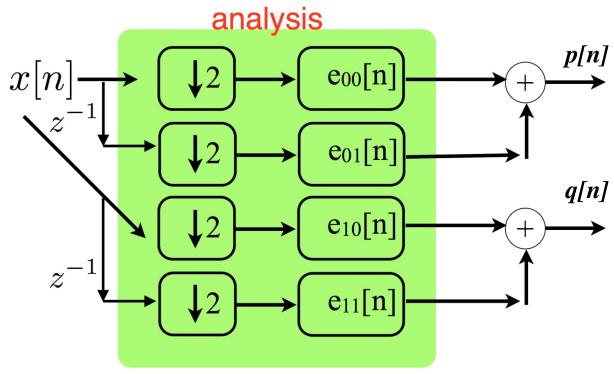






# Polyphase Filter Bank





# Polyphase Decomposition

$$h_{k}[n] \longrightarrow \downarrow M \longrightarrow e_{k}[n]$$

$$e_{k}[n] = h_{k}[nM]$$

$$\downarrow h_{[n]} \longrightarrow \downarrow h_{1}[n]$$

$$\downarrow h_{0}[n] \downarrow h_{1}[n]$$

$$\downarrow h_{1}[n]$$

$$\downarrow h_{1}[n]$$

$$\downarrow h_{1}[n]$$

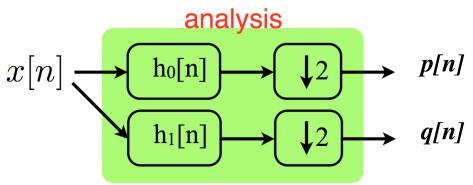
$$\downarrow h_{1}[n]$$

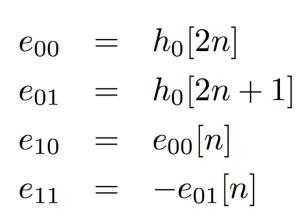
$$\downarrow h_{2}[n]$$

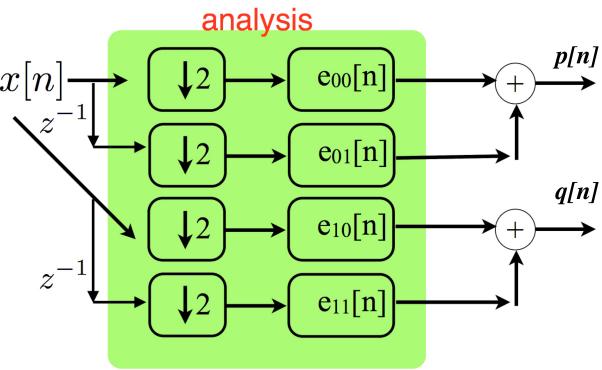
$$\downarrow h_{3}[n]$$

$$\downarrow h_{4}[n]$$

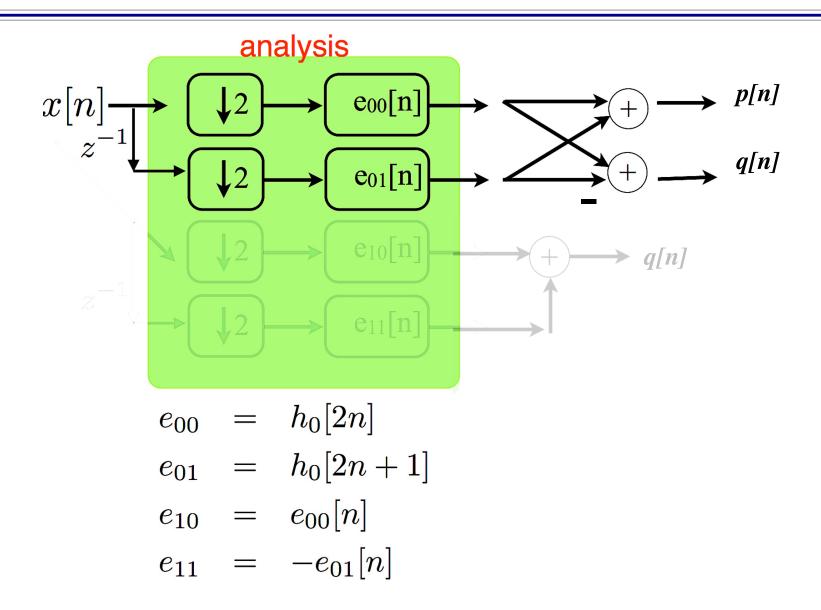
## Polyphase Filter Bank







# Polyphase Filter Bank

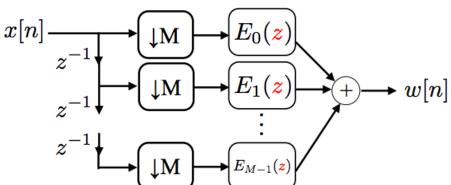


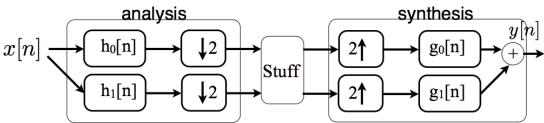
## Big Ideas

- Multi-rate systems enable more efficient processing
  - Interchanging Operations
  - Polyphase Decomposition
  - Multi-Rate Filter Banks









## Admin

HW 4 due Sunday