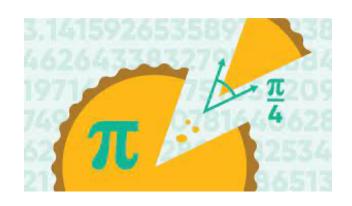
ESE 5310: Digital Signal Processing

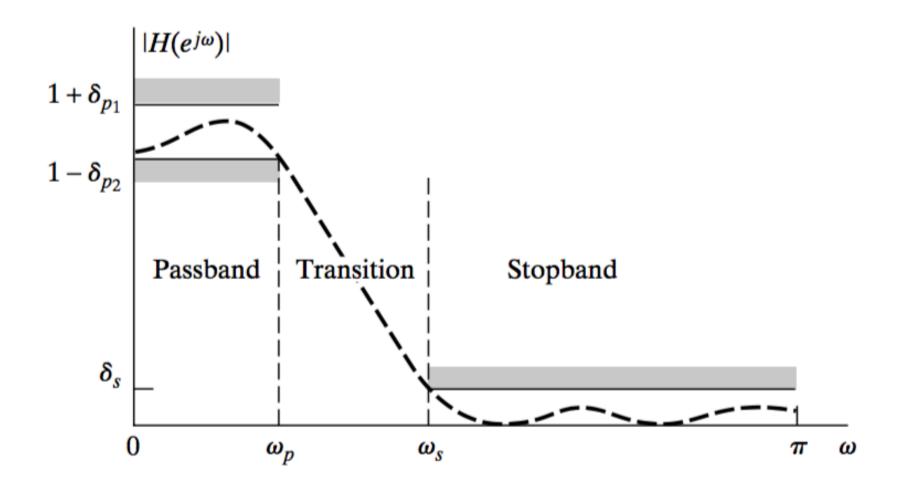
Lecture 16: March 14, 2023 Design of IIR Filters



- Used to be an ambiguous process
 - Now, lots of tools to design optimal filters
- □ For DSP there are two common classes
 - Infinite impulse response IIR
 - Finite impulse response FIR
- Both classes use finite order of parameters for design
 - Filter order (ie. Length) restricts filter design

- Attenuates certain frequencies
- Passes certain frequencies
- Affects both phase and magnitude
- What does it mean to design a filter?
 - Determine the parameters of a transfer function or difference equation that approximates a desired impulse response (h[n]) or frequency response (H($e^{j\omega}$)).

Filter Specifications



What is a Linear Filter?

- Attenuates certain frequencies
- Passes certain frequencies
- Affects both phase and magnitude

□ IIR

- Mostly non-linear phase response
- Could be linear over a range of frequencies

□ FIR

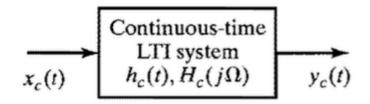
- Much easier to control the phase
- Both non-linear and linear phase

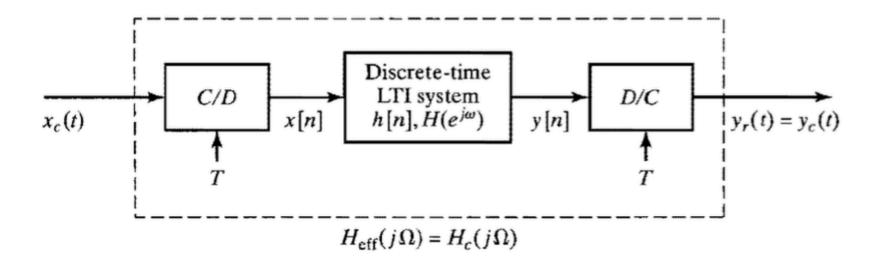
- IIR Filter Design
 - Impulse Invariance
 - Bilinear Transformation
- □ Transformation of DT Filters

IIR Filter Design

- Transform continuous-time filter into a discretetime filter meeting specs
 - Pick suitable transformation from s (Laplace variable) to z
 (or t to n)
 - Pick suitable analog $H_{c}(s)$ allowing specs to be met, transform to H(z)
- □ We've seen this before... impulse invariance

■ Want to implement continuous-time system in discrete-time





 \square With $H_c(j\Omega)$ bandlimited, choose

$$H(e^{j\omega}) = H_c(j\frac{\omega}{T}), \quad |\omega| < \pi$$

■ With the further requirement that T be chosen such that

$$H_c(j\Omega) = 0, \quad |\Omega| \ge \pi / T$$

 \square With $H_c(j\Omega)$ bandlimited, choose

$$H(e^{j\omega}) = H_c(j\frac{\omega}{T}), \quad |\omega| < \pi$$

■ With the further requirement that T be chosen such that

$$H_c(j\Omega) = 0, \quad |\Omega| \ge \pi / T$$

$$h[n] = Th_c(nT)$$

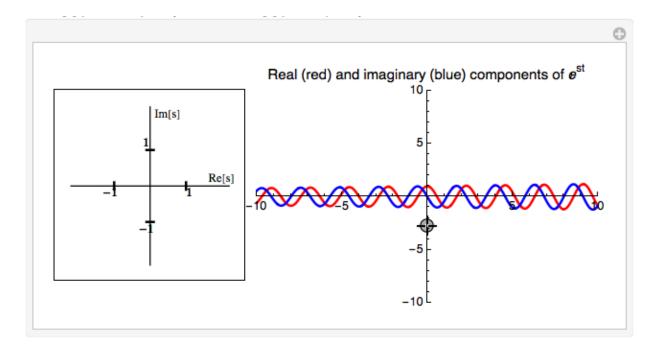
Laplace Transform

- □ The Laplace transform takes a function of time, t, and transforms it to a function of a complex variable, s.
- Because the transform is invertible, no information is lost and it is reasonable to think of a function f(t) and its Laplace transform F(s) as two views of the same phenomenon.
- Each view has its uses and some features of the phenomenon are easier to understand in one view or the other.

S-Plane

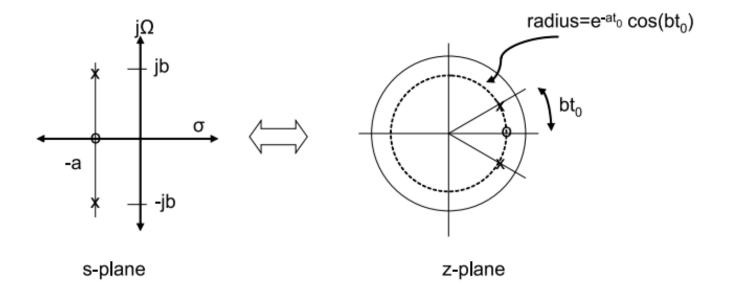
$$\circ$$
 s= σ +j Ω

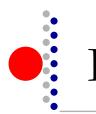
Wolfram Demo



http://pilot.cnxproject.org/content/collection/col10064/latest/module/m10060/latest

S-Plane Mapping to Z-Plane





Example

Example: If
$$H_c(s) = \frac{A_k}{s - p_k}$$

$$e^{at} \overset{L}{\longleftrightarrow} \frac{1}{s-a}$$

Z-transform:
$$a^n u[n] \stackrel{Z}{\longleftrightarrow} \frac{1}{1 - az^{-1}}$$

Example

Example: If
$$H_c(s) = \frac{A_k}{s - p_k}$$
 (e.g. one term in PF expansion)

$$h_c(t) = A_k e^{p_k t}, \quad t \ge 0; \quad h[n] = T_d A_k e^{p_k T_d n} = T_d A_k \left(e^{p_k T_d}\right)^n$$

$$\therefore H(z) = T_d A_k \frac{1}{1 - e^{p_k T_d} z^{-1}} \quad \text{Pole mapping is } z \leftarrow e^{sT_d}$$

Zeros do not map the same way; not the general mapping of s to z

Example

Example: If
$$H_c(s) = \frac{A_k}{s - p_k}$$
 (e.g. one term in PF expansion)

$$h_c(t) = A_k e^{p_k t}, \quad t \ge 0; \qquad h[n] = T_d A_k e^{p_k T_d n} = T_d A_k \left(e^{p_k T_d}\right)^n$$

$$\therefore H(z) = T_d A_k \frac{1}{1 - e^{p_k T_d} z^{-1}} \quad \text{Pole mapping is } z \leftarrow e^{sT_d}$$

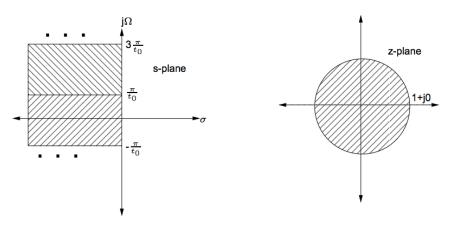
Zeros do not map the same way; not the general mapping of s to z

- Stability, causality, preserved.
- jΩ axis mapped linearly to unit-circle, with aliasing
- No control of zeros or of phase

- Sampling the impulse response is equivalent to mapping the s-plane to the z-plane using:
 - $z = e^{sTd} = r e^{j\omega}$
- The entire Ω axis of the s-plane wraps around the unit circle of the z-plane an infinite number of times

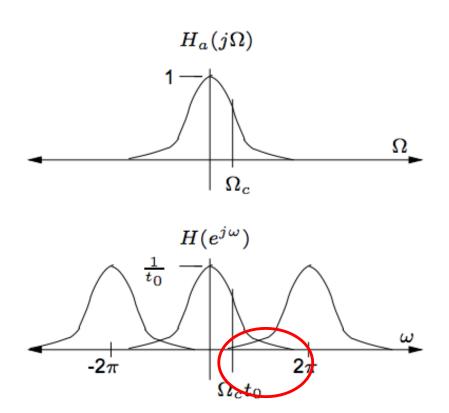
- Sampling the impulse response is equivalent to mapping the s-plane to the z-plane using:
 - $z = e^{sTd} = r e^{j\omega}$
- The entire Ω axis of the s-plane wraps around the unit circle of the z-plane an infinite number of times
- □ The left half s-plane maps to the interior of the unit circle and the right half plane to the exterior

Mapping



- Sampling the impulse response is equivalent to mapping the s-plane to the z-plane using:
 - $z = e^{sTd} = r e^{j\omega}$
- The entire Ω axis of the s-plane wraps around the unit circle of the z-plane an infinite number of times
- □ The left half s-plane maps to the interior of the unit circle and the right half plane to the exterior
- □ This means stable analog filters (poles in LHP) will transform to stable digital filters (poles inside unit circle)
- □ This is a many-to-one mapping of strips of the s-plane to regions of the z-plane
 - Not a conformal mapping
 - The poles map according to $z = e^{sTd}$, but the zeros do not always

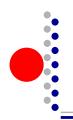
□ Limitation of Impulse Invariance: overlap of images of the frequency response. This prevents it from being used for high-pass filter design



The technique uses an algebraic transformation between the variables s and z that maps the entire $j\Omega$ -axis in the s-plane to one revolution of the unit circle in the z-plane.

$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right);$$

$$H(z) = H_c \left(\frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \right).$$



$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right);$$

□ Substituting $s = \sigma + j \Omega$ and $z = e^{j\omega}$

$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right);$$

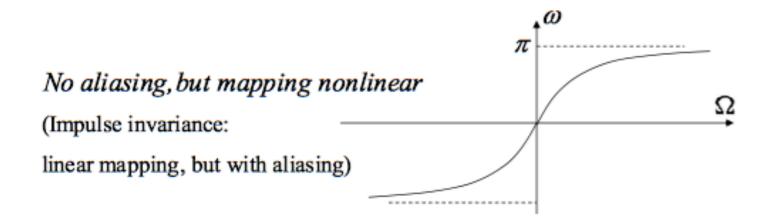
□ Substituting $s = \sigma + j \Omega$ and $z = e^{j\omega}$

$$s = \frac{2}{T_d} \left(\frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} \right),$$

$$s = \sigma + j\Omega = \frac{2}{T_d} \left[\frac{2e^{-j\omega/2}(j\sin\omega/2)}{2e^{-j\omega/2}(\cos\omega/2)} \right] = \frac{2j}{T_d} \tan(\omega/2).$$

$$\Omega = \frac{2}{T_d} \tan(\omega/2),$$

$$\omega = 2 \arctan(\Omega T_d/2)$$
.





Example: Notch Filter

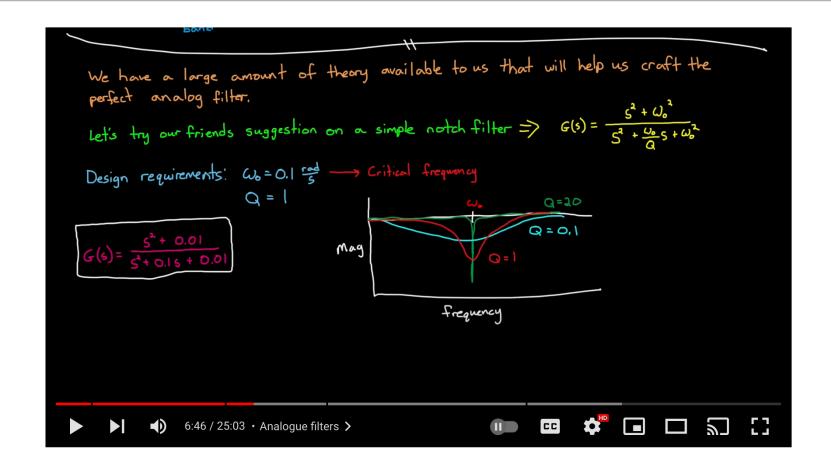
□ The continuous time filter with:

$$H_a(s) = \frac{s^2 + \Omega_0^2}{s^2 + \frac{\Omega_0}{Q} + \Omega_0^2}$$

$$\Omega = \frac{2}{T_d} \tan(\omega/2),$$

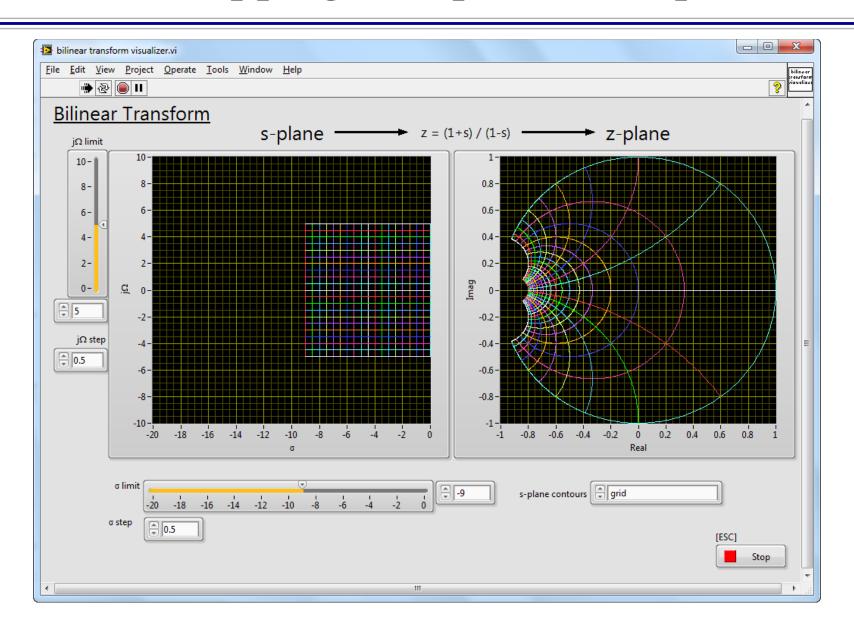
$$\omega = 2 \arctan(\Omega T_d/2).$$

Matlab Demo

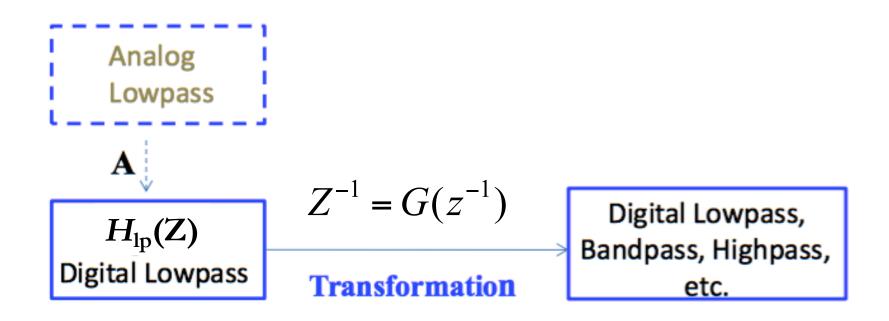


https://www.youtube.com/watch?v=NRbGPgcLhU0

Bilinear Mapping of S-plane to Z-plane

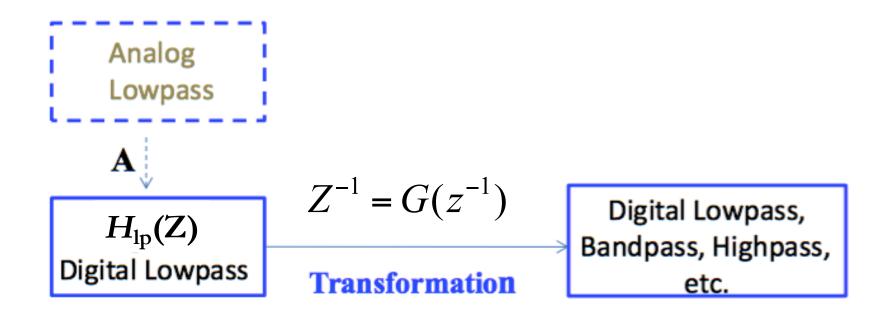


Transformation of DT Filters



- \square Z complex variable for the LP filter
- ightharpoonup z complex variable for the transformed filter
- □ Map Z-plane \rightarrow z-plane with transformation G

Transformation of DT Filters



□ Map Z-plane → z-plane with transformation G

$$H(z) = H_{lp}(Z)|_{Z^{-1}=G(z^{-1})}$$

Example 1:

- Lowpass → highpass
 - Shift frequency by π

so $\omega \rightarrow \omega - \pi$ (Lowpass to highpass)

Example 1:

- Lowpass → highpass
 - Shift frequency by π

so
$$\omega \rightarrow \omega - \pi$$
 (Lowpass to highpass)

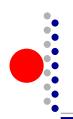
$$G(z^{-1}) = -z^{-1}$$
 or $e^{-j\omega} \rightarrow e^{-j(\omega-\pi)}$

Example 1:

- Lowpass → highpass
 - Shift frequency by π

$$G(z^{-1}) = -z^{-1}$$

ω	Z	$ H_{lp}(z) = \left \frac{0.1}{1 - 0.9z^{-1}} \right $	$ H_{hp}(z) = \left \frac{0.1}{1 + 0.9z^{-1}} \right $
0			
$\frac{\pi}{2}$			
π			
$\frac{3\pi}{2}$			
2π			



Example 2:

■ Lowpass → bandpass

$$G(z^{-1}) = -z^{-2}$$

Example 2:

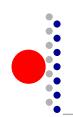
■ Lowpass → bandpass

$$G(z^{-1}) = -z^{-2}$$

$$H_{lp}(z) = \frac{1}{1 - az^{-1}} \longrightarrow H_{bp}(z) = \frac{1}{1 + az^{-2}}$$

Pole at z=a

Pole at $z=\pm j\sqrt{a}$



Example 2:

■ Lowpass → bandpass

$$G(z^{-1}) = -z^{-2}$$

ω	Z	$ H_{lp}(z) = \left \frac{0.1}{1 - 0.9z^{-1}} \right $	$ H_{hp}(z) = \left \frac{0.1}{1 + 0.9z^{-2}} \right $
0	1	1	
$\frac{\pi}{2}$	j	0.074	
π	-1	0.05	
$\frac{3\pi}{2}$	- j	0.074	
2π	1	1	

Example 3:

■ Lowpass → bandstop

$$Z^{-1} = G(z^{-1}) = z^{-2}$$

$$H_{lp}(z) = \frac{1}{1 - az^{-1}} \longrightarrow H_{bs}(z) = \frac{1}{1 - az^{-2}}$$
Pole at $z = \pm \sqrt{a}$

- If $H_{lp}(Z)$ is the rational system function of a causal and stable system, we naturally require that the transformed system function H(z) be a rational function and that the system also be causal and stable.
 - $G(Z^{-1})$ must be a rational function of z^{-1}
 - The inside of the unit circle of the Z-plane must map to the inside of the unit circle of the z-plane
 - The unit circle of the Z-plane must map onto the unit circle of the z-plane.

Transformation Constraints on $G(z^{-1})$

Respective unit circles in both planes

$$Z = e^{j\theta}$$
 and $z = e^{j\omega}$

Transformation Constraints on G(z⁻¹)

Respective unit circles in both planes

$$Z = e^{j\theta} \text{ and } z = e^{j\omega}$$

$$Z^{-1} = G(z^{-1})$$

$$e^{-j\theta} = G(e^{-j\omega})$$

$$e^{-j\theta} = |G(e^{-j\omega})| e^{j\angle G(e^{-j\omega})}$$

Transformation Constraints on G(z⁻¹)

Respective unit circles in both planes

$$Z = e^{j\theta} \text{ and } z = e^{j\omega}$$

$$Z^{-1} = G(z^{-1})$$

$$e^{-j\theta} = G(e^{-j\omega})$$

$$e^{-j\theta} = |G(e^{-j\omega})| e^{j\angle G(e^{-j\omega})}$$

$$1 = \left| G(e^{-j\omega}) \right| \qquad -\theta = \angle G(e^{-j\omega})$$

Transformation Constraints on G(z⁻¹)

- □ General form that meets all constraints:
 - \bullet a_k real and $|a_k| < 1$

$$G(z^{-1}) = \pm \prod_{k=1}^{N} \frac{z^{-1} - \alpha_k}{1 - \alpha_k z^{-1}}$$

General Transformation

□ Lowpass → lowpass

$$G(z^{-1}) = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$$

Changes passband/stopband edge frequencies

General Transformation

■ Lowpass → lowpass

$$G(z^{-1}) = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$$

Changes passband/stopband edge frequencies

From
$$e^{-j\theta} = \frac{e^{-j\omega} - \alpha}{1 - \alpha e^{-j\omega}}$$
, get
$$\omega(\theta) = \tan^{-1} \left(\frac{(1 - \alpha^2)\sin(\theta)}{2\alpha + (1 + \alpha^2)\cos(\theta)} \right)$$

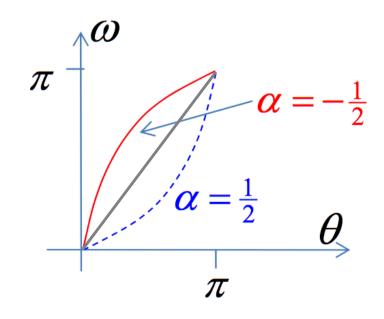
General Transformation

□ Lowpass → lowpass

$$G(z^{-1}) = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$$

Changes passband/stopband edge frequencies

From
$$e^{-j\theta} = \frac{e^{-j\omega} - \alpha}{1 - \alpha e^{-j\omega}}$$
, get
$$\omega(\theta) = \tan^{-1} \left(\frac{(1 - \alpha^2)\sin(\theta)}{2\alpha + (1 + \alpha^2)\cos(\theta)} \right)$$



General Transformations

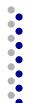
TABLE 7.1 TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPE OF CUTOFF FREQUENCY θ_{p} TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

Filter Type	Transformations	Associated Design Formulas
Lowpass	$Z^{-1} = \frac{z^{-1} - \alpha}{1 - az^{-1}}$	$\alpha = \frac{\sin\left(\frac{\theta_p - \omega_p}{2}\right)}{\sin\left(\frac{\theta_p + \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Highpass	$Z^{-1} = -\frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$	$\alpha = -\frac{\cos\left(\frac{\theta_p + \omega_p}{2}\right)}{\cos\left(\frac{\theta_p - \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Bandpass	$Z^{-1} = -\frac{z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1}z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \cot\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)\tan\left(\frac{\theta_p}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$
Bandstop	$Z^{-1} = \frac{z^{-2} - \frac{2\alpha}{1+k}z^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{1+k}z^{-2} - \frac{2\alpha}{1+k}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \tan\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)\tan\left(\frac{\theta_p}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$

CT F

CT Filters

- Butterworth
 - Monotonic in pass and stop bands
- Chebyshev, Type I
 - Equiripple in pass band and monotonic in stop band
- Chebyshev, Type II
 - Monotonic in pass band and equiripple in stop band
- Elliptic
 - Equiripple in pass and stop bands
- Appendix B in textbook



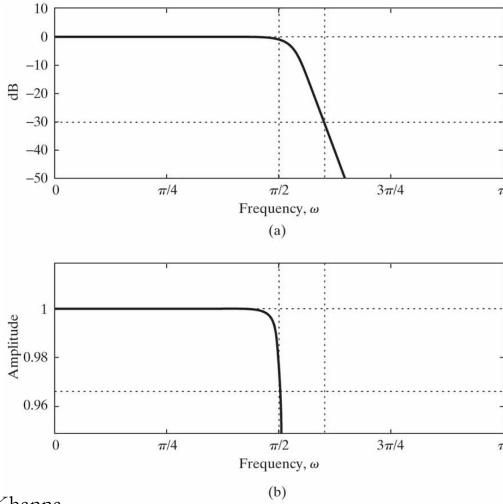
Design Comparison

- Design specifications
 - passband edge frequency $\omega_p = 0.5\pi$
 - stopband edge frequency $\omega_s = 0.6\pi$
 - \blacksquare maximum passband gain = 0 dB
 - minimum passband gain = -0.3dB
 - maximum stopband gain =-30dB
- Use bilinear transformation to design DT low pass filter for each type

Butterworth

Butterworth

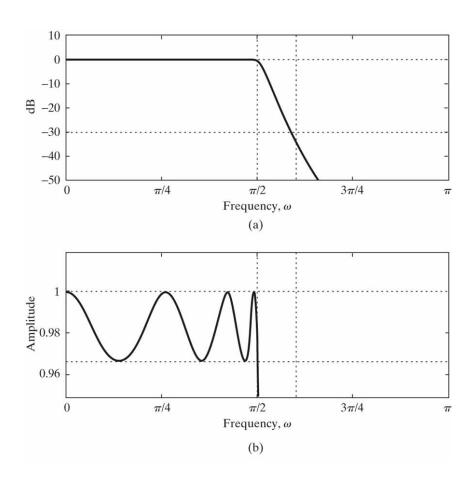
Monotonic in pass and stop bands



Chebyshev

□ Type I

 Equiripple in pass band and monotonic in stop band

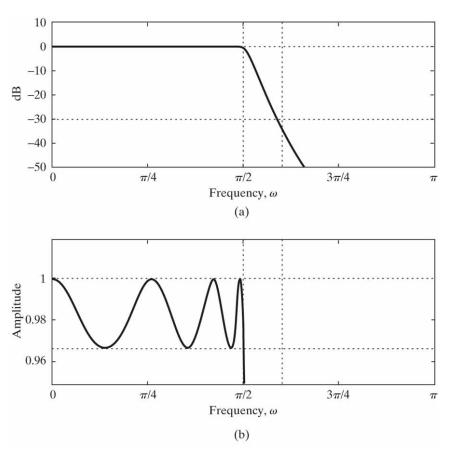


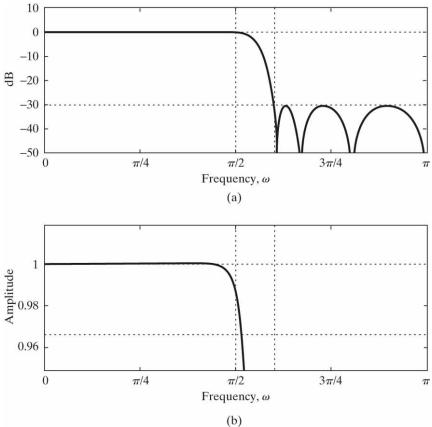
Type I

 Equiripple in pass band and monotonic in stop band

Type II

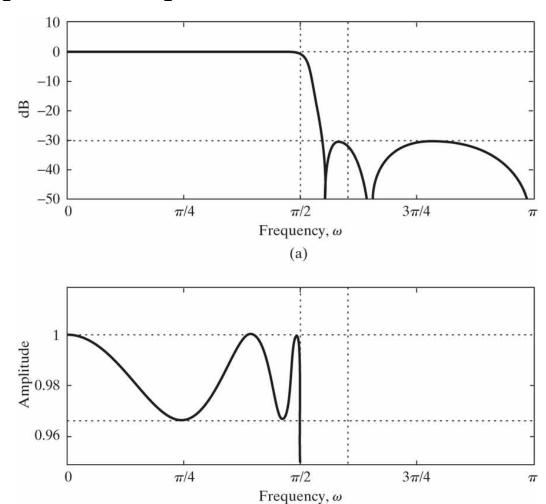
 Monotonic in pass band and equiripple in stop band





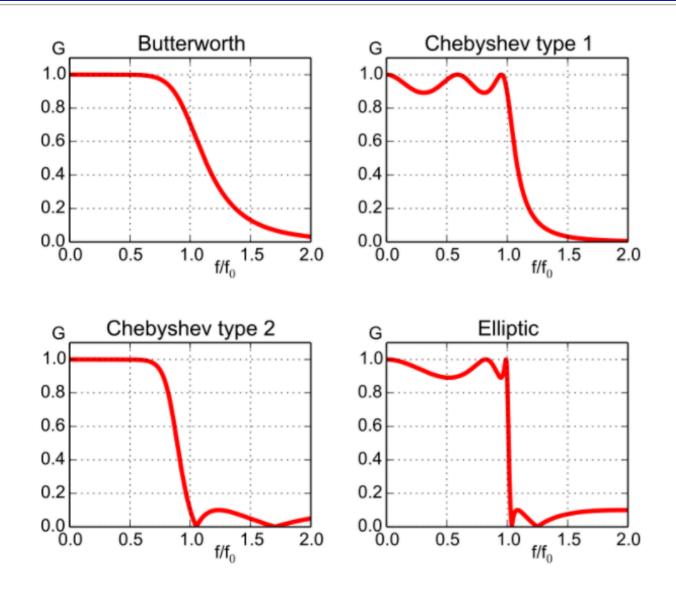
Elliptic

Equiripple in pass and stop bands



(b)

Comparisons



Big Idea

□ IIR

- Design from continuous time filters with mapping of splane onto z-plane
 - Linear mapping impulse invariance
 - Non-linear mapping bilinear transformation
- DT filter transformations
 - Transform z-plane with rational function $G(z^{-1})$
 - Constraints on G for causal/stable systems

Admin

Midterm

- Thursday 3/16 in person during class in DRLB A8
- Covers lectures 1-14
 - Doesn't cover data converters and noise shaping
- Old exams online
 - Disclaimer: 2020/2021 had different exam coverage
- Closed book/notes
- Can bring 1 double-sided 8"x11" cheat sheet and non-cell phone calculator
- □ Will post proj 1 on Thursday 3/16