ESE 5310: Digital Signal Processing

Lecture 20: April 6, 2023

Fast Fourier Transform
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Fast Fourier Transtform Algorithms

a0 We are interested in efficient computing methods
for the DFT and inverse DFT:

N—-1

X[k] = x[n]WK",  k=0,...,N—1
n=0
N—-1

x[n] = X[kKWyk,  n=0,...,N—1
k=0

WN r— e_f(ﬁ),
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: Computation Order

a Fast Fourier transform algorithms enable computation of
an N-point DFT (or inverse DFT) with the order of
just N log, N complex multiplications.

= This can represent a huge reduction in computational

load, especially for large N.

2
N N2 N -log, N N-I,cygz =
16 256 64 4.0
128 16,384 896 18.3
1,024 | 1,048,576 | 10,240 102.4
8,192 | 67,108,864 | 106,496 630.2
6 x 10 | 36 x 1012 | 135 x 10° | 2.67 x 10°

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Figenfunction Properties

0 Most FFT algorithms exploit the following

: kn.
properties of W™ W =wl = waN = ...

= Conjugate Symmetry Wyt = Wy

k(N—n —kn n\ *x
u Periodicity nn and k

n k(n+N k+N)n
wir = wilrtN) — k)

s Power

Wy = Wy
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FEFT Algorithms via Decimation

0 Most FFT algorithms decompose the computation of a DFT
into successively smaller DFT computations.

= Decimation-in-time algorithms decompose x[n] into successtvely
smaller subsequences.

= Decimation-in-frequency algorithms decompose X[k] into
successively smaller subsequences.

0 Note: Assume length of x[n] is power of 2 (N = 27). If not,
zero-pad to closest power of 2.

Penn ESE 5310 Spring 2023 — Khanna
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Decimation-in-Time FFT

0 We start with the DFT

N—-1

X[kl =) x[nWg", k

n=0

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 We start with the DFT

N—-1
X[kl =) x[nW§', k=0,...,N—1

n=0

0 Separate the sum into even and odd terms:

Xkl = ) x[nW§" + ) x[n]Wy"

n even n odd

= These are two DFTs, each with half the number of
samples (N/2)
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Decimation-in-Time FFT

X[kl = > x[n]Wx"+ ) x[n]Wg

n even n odd

Let n =2r (n even) and n =2r + 1 (n odd):

Penn ESE 5310 Spring 2023 — Khanna
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Decimation-in-Time FFT

X[k] = Z x[n] W™ + Z x[n] W

n even n odd

Let n =2r (n even) and n =2r + 1 (n odd):

(N/2)-1 (N/2)-1
Xkl = Y xRAWE*+ S x2r+ 1wtk
r=0 r=0

Penn ESE 5310 Spring 2023 — Khanna
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Decimation-in-Time FFT

X[k] = Z x[n] W™ + Z x[n] W

n even n odd

Let n =2r (n even) and n =2r + 1 (n odd):

(N/2)-1 (N/2)-1
Xkl = Y xRAWE*+ S x2r+ 1wtk
r=0 r=0
(N/2)—1 (N/2)—1
= E x[2r]WE™ + WS Z x[2r + 1) W3
r=0 r=0

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Let n = 2r (n even) and n =2r + 1 (n odd):

(N/2)-1 (N/2)-1
Xkl = Y xRAWE*+ S xer+ 1wtk
r=0 r=0
(N/2)—1 (N/2)-1
= > xAWFF+ W > x[2r + WL
r=0 r=0
(N/2)—1 (N/2)-1
X[k] = z x[2r] N/2+WN Z x[2r +1]W, N/2
r=0 r=0

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Hence:
(N/2)—1

Xkl = ) x[2r]W, + Wy
r=0

>

where we have defined:

(N/2)-1

Glk] £ > xrwg,
r=0
(N/2)-1

Hi 2y xfer+ Wi,
r=0

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

(N/2)-1

Z x[2r 4 1] W,(,k/2
r=0

G[k] + WHI[K], k=0,...,N—1

= DFT of even samples

= DFT of odd samples

12



Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as

x[0]
X[2]
X[4]
x[6]
X[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

| N/2 - Point
DET

X[k] = G[k] + W HIK]

G[0]

O
G[\-N WNO//

7 O
Gl2] w /
O O

| N/2 - Point
DFT

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as X[k] = G[k] + WIGH[k]

x[0]
x[2]
X[4]
x[6]
x[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

G[0]

o - X[0]
G 1]\ Wi
| : Q o X[1]
N2 Point G[ZN ,\;/
o o X2
G[3]
O X[3]
H[O]
X[4]
H[1]
| . o o X[5]
N/ZD-FPTomt r [3/ N5 \
o o o X[6]
ey N
O —- o X[7]
wy”

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[0] = G[0] + W\ H[0]
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Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as X[k] = G[k] + W,(}H[k]

x[0]
x[2]
X[4]
x[6]
x[1]

Even Samples

x[3]
X[5]
X[7]

Odd Samples

G[0]
o 70 X0
G;’N WN/
| . Q o X[1]
N/2 - Point
DFT X[2]
X[4] | | | |
' N/2 - Point X5
DFT
X[6]
X[7]

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[4] = G[4] + Wy*H[4]
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Decimation-in-Time FFT

Both G[k| and H[k] are periodic, with period N /2. For

example
(N/2)-1
Glk] £ > x[rwg,
r=0

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Both G[k] and H|[k] are periodic, with period N /2. For

example
(N/2)-1
Glkl = ) x[2rwg,
r=0
(N/2)-1
Glk+N/2] = > xlrqwys"?
r=0

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Both G[k] and H|[k] are periodic, with period N /2. For

example

G[]

Glk + N/2]

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

(N/2)—1
Z x[2r]W,(/k/2

r=0

(N/2)—1

r(k+N

Z x[2r]WN(/2+ /2)

r=0

(N/2)-1 1
> AW )
r=>0

(N/2)-1

Z X[Q’]W/(/k/z

r=0

G ]

18



Decimation-in-Time FFT

O So,

Glk+(N/2)] = Glk
Hlk +(N/2)] = HIK]

0 The pertodicity of G[k] and H[k] allows us to
further simplify. For the first N/2 points we
calculate G[k] and Wy*H[k], and then compute the

Suim

X[k] = G[k] + WSHIK] V{k:0< k < g}.

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley 19



Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as X[k] = G[k] + WIGH[k]
N\

x[0]
x[2]
X[4]
x[6]
x[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

G[0]

G;1]\

| N/2 - Point
DET

| N/2 - Point
DFT

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

First N/2 DFTs
0 <k<N/2

20



® Decimation-in-Time FFT

How does periodicity help for § < k < N?
X[k] = G[k] + Wy HI[K] V{k:0< k< g}.

for%§k<N:

WhHN/2)

X[k + (N/2)] =

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

X[k + (N/2)] = G[k] — WSHIK]
0 We previously calculated G[k] and Wy *H[K].

0 Now we only have to compute their difference to
obtain the second half of the spectrum. No
additional multiplies are required.

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley 22



Decimation-in-Time FFT

An 8 sample DFT can then be diagrammed as

x[0]
X[2]
X[4]
x[6]
X[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

\i([k] = G[k] + WSHIK]

G[0]
G}N WN
| . o 7—t7° X[1]
N/2 - Point
G;2]\ /V¢N
DFT & { o X2
G[3] N
X[3]
T H[o] N
o X[4]
H[1] NX = NY,P
| N/2 - Point - e ¢ X
Q S
H[3/ Wy ‘\%/3
O %7

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

=3 X

Wi
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Decimation-in-Time FFT

The N-point DFT has been reduced two N/2-point DFTs,

plus N/2 complex multiplications. The 8 sample DFT is then:

x[0]
x[2]
x[4]
x[6]
x[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

o——

T

G[K]

N/2 - Point
DFT

N/2 - Point |
DFT

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]

24



Decimation-in-Time FFT

The N-point DFT has been reduced two N/2-point DFTs,
plus N/2 complex multiplications. The 8 sample DFT is then:

x[0]
x[2]
x[4]
x[6]
x[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

GlK]
X[0]
N/2 - Point X1
DFT X[2]
X[3]
X[4]
N/2 - Point | X
DFT X(6]
| X[7]

X[0] = G[0] + W\ H[O0]

25



Decimation-in-Time FFT

The N-point DFT has been reduced two N/2-point DFTs,
plus N/2 complex multiplications. The 8 sample DFT is then:

x[0]

X3
—_

Even Samples

x[6]
x[1]
x[3]
x[5]
x[7]

Odd Samples

o—

G[K]

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

/o X[0]

| N/2 - Point ° X
DFT XP2]
X[3]

X[4]

| N/2 - Point X
DFT 6]
X[7]

X[4] = G[0] - W\°H[O]

26



Decimation-in-Time FFT

0 Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

x[0]
xX[2]
x[4]

Even Sam

x[6]
x[1]

X[3]

mples

G[k]

~__ /.

N/2 - Point
DFT

SN
D XX

N/2 - Point
DFT

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]

27



Decimation-in-Time FFT

0 Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

a0 We can detine a butterfly operation, e.g., the
computation of X[0] and X[4] from G[0] and HJO0]:

G[0] X[0] =G[0] + wNO H[O]

X141 =G[o] - Wy° H[o]

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley 28



Decimation-in-Time FFT

0 Note that the inputs have been reordered so that the
outputs come out in their proper sequence.

a0 We can detine a butterfly operation, e.g., the
computation of X[k] and X[k+N/2] from GJk] and
H[k]:
XIk] = GIk]+WHIK]
X[0] =G[o] + W2 H[o]

G/k] G[0]

X[k+N/2] = Glk]-W,fH[k]

H[k] HIO] X141 =G[o] - Wy° H[o]

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

o Still O(N?) operations. ... What should we do?

x[0]
x[2]
x[4]
x[6]
x[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

G[k]

N/2 - Point
DFT

N/2 - Point
DFT

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]

30



Decimation-in-Time FFT

0 We can use the same approach for each of the N/2
point DFT’s. For the N = 8 case, the N/2 DFT's

look like

0 | a
X011 it - point vc ol
x[4] o— OFT o o G[1]

0
Wi
x[2] o—— . 0 G[2]
N/4 - Point 1 1
pFT | Whe
x[6] © —— > 0 G[3]

-1

*Note that the inputs have been reordered again.

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The fundamental eigenfunction is:

Wijs = Wejg = Wo = e /™ = —1

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 At this point for the 8 sample DFT, we can replace
the N/4 = 2 sample DFT’s with a single butterfly.

The fundamental eigenfunction is:

Wijs = Wejg = Wo = e /™ = —1

x[0] o X[0] = x[0]+x[4]

X[4] - X[1] = x[0]x[4]

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley 33



Decimation-in-Time FFT

a Replace N/2-point DFT with 2-point DFT and butterfly

operations

x[0]
x[2]
x[4]
x[6]
x[1]

Even Samples

x[3]
x[5]
x[7]

Odd Samples

G[K]

N/2 - Point
DFT

N/2 - Point
DFT

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]

34



Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

4 2pt DFTs 2 4pt DFTs 8pt DFT

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]
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Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] X[o]
x[4] X[1]
x[2] X[2]
x[6] X[3]
X[1] X[4]
x[5] X[5]
X[3] X[6]
X[7] X[7]

« 3=log,(N)=log,(8) stages
« 4=N/2=8/2 multiplications in each stage
« 1st stage has trivial multiplication

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

0 In general, there are log,N stages of decimation-in-time.

0 FEach stage requires N/2 complex multiplications, some of
which are trivial.

0 The total number of complex multiplications is (N/2) log,N,
or 1s O(N log,N)

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

0 In general, there are log,N stages of decimation-in-time.

0 FEach stage requires N/2 complex multiplications, some of
which are trivial.

0 The total number of complex multiplications is (N/2) log,N,
or 1s O(N log,N)

0 The order of the input to the decimation-in-time FFT
algorithm must be permuted.

= Net effect is reversing the bit order of indexes

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley 38



Decimation-in-Time FFT

This is illustrated in the following table for N = 8.

Decimal | Binary | Bit-Reversed Binary | Bit-Reversed Decimal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Penn ESE 5310 Spring 2023 — Khanna

Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]
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Decimation-in-Frequency FFT

The DFT s
N—-1

X[kl =) x[n]Wgk

n=0

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

The DFT is
N—1

X[kl =) x[n]Wgk

n=0

If we only look at the even samples of X[k], we can write kK = 2r,

N—-1

X[2r] = 3 x[nwy?"
n=0

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

The DFT s
N—1

X[K] =) x[n]Wgk

n=0

If we only look at the even samples of X[k], we can write kK = 2r,

N—-1

X[2r] = 3 x[nwy?"
n=0

We split this into two sums, one over the first N/2 samples, and
the second of the last N/2 samples.

(N/2)-1 (N/2)—1
X2 = Y xWEm+ 3 xin+ N/2wy V)
n=0 n=0

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

But Wﬁ’("+N/2) — W/%/rn WICNz Wﬁlm
We can then write

(N/2)-1 (N/2)-1
XPrl = > x(Wgm+ Y xin+ Ny2w NP
n=0 n=0
(N/2)-1 (N/2)-1
= ) x[AW§"+ D> x[n+ N/2QWR"
n=0 n=0

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

But W2r(n+N/2) W2rn WI\rIN_ W2rn — WI(,n/2
We can then write

(N/2)-1 (N/2)-1
Xl = 3 x(WEm+ Y xin+ Ny2w NP
n=0 n=0
(N/2)-1 (N/2)-1
= ) x[AW§"+ D> x[n+ N/2QWR"
n=0 n=0
(N/2)-1

Z (x[n] + x[n+ N/2]) W,
n=0
This is the N/2-length DFT of first and second half of x[n]

summed.

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

X[2r] = DFT% {(x[n] + x[n+ N/2])}
X[2r+1] = DFTg {(x[n] — x[n+ N/2]) Wy}

(By a similar argument that gives the odd samples)

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

X[2r] = DFT% {(x[n] + x[n+ N/2])}
X[2r+1] = DFT% {(x[n] — x[n+ N/2]) Wy}

(By a similar argument that gives the odd samples)

0 Continue the same approach on the N/2 DFTs, and N/4
DFTs until we reach the 2-point DFT, which is a simple
butterfly operation

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley
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Decimation-in-Frequency FFT

The diagram for and 8-point decimation-in-frequency DFT is as
follows

X[0]

X[4]

X[2]

X[6]

o X[1]

o X[5]

X[3]

X[7]

This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley



Decimation-in-Time FFT

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] X[o]
x[4] X[1]
x[2] X[2]
x[6] X[3]
X[1] X[4]
x[5] X[5]
X[3] X[6]
X[7] X[7]

« 3=log,(N)=log,(8) stages
« 4=N/2=8/2 multiplications in each stage
« 1st stage has trivial multiplication

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley



Non-Power-of-2 FFT's

0 A similar argument applies for any length DFT, where the
length N 1s a composite number

0 For example, if N=0, with decimation-in-frequency you
could compute three 2-point DFTs followed by two 3-point

DFTs

X[0] 9| 2.point ©  X[0]
DFT 3-Point

oS/ oFr [© X2

X[1] 9 2-point ___I° XM]
DFT

x[4] © b X[1]

X[2] 9| 2.point orr e X[
DFT

x[5] © o X5]

Penn ESE 5310 Spring 2023 — Khanna
Adapted from M. Lustig, EECS Berkeley



: Example: Non-Power-of-2 FFTs

X X X X X X
Iml ILI le INI IHI Iol

Penn ESE 5310 Spring 2023 - Khanna

6-pt DFT

XSS X
g 5 WU N =9

51



: Example: Non-Power-of-2 FFTs

x[0].

x[1],

x[2].

3-pt
DFT

X[3]

x[4]

\
\5\

X[5]

3-pt
DFT

Penn ESE 5310 Spring 2023 - Khanna
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: Example: Non-Power-of-2 FFTs

<L) X[0:

X[1] \ / %ﬁ X[2:

a X 17|
(.

X[3] X[ 1

Wil - -
X414, o 2PC X3!
(5] _/a_1 \\ We X[5:

Penn ESE 5310 Spring 2023 - Khanna



: Example: Non-Power-of-2 FFTs

<L) X[0:

X[1] \ / gﬁ X[2:

a N\ X 17|
<

X[3] = X[ 1

Wl - -
X[4].-4 . 2PC X3!
X[5]4 \vg; X[5.

Penn ESE 5310 Spring 2023 - Khanna
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: Example: Non-Power-of-2 FFTs

X101 2-pt ? X10]
x[3] | DFT aw, %ﬁ X[2:
X [, X[4
xia] | DFT it
e B e
x[5] | DFI X5

Penn ESE 5310 Spring 2023 - Khanna



: Example: Non-Power-of-2 FFTs

ON T o —— X[O.
x[3] | DFT aw, %ﬁ X[2:
X [, g X[4
xj4] | DFT % -
Xlel 2-pt 1 %Fq XIBI
(5] | DFT = 7
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Non-Power-of-2 FFT's

0 Good component DFTs are available for lengths up to
20(1sh). Many of these exploit the structure for that specific
length

= For example, a factor of

WN/4 = e_-l%(N/4) = e—j% =

N —J

Just swaps the real and imaginary components of a complex number.

Hence a DFT of length 4 doesn’t require any complex multiples.

= Half of the multiples of an 8-point DFT also don’t require
multiplication

= Composite length FFTs can be very efficient for any length that
factors into terms of this order
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Adapted from M. Lustig, EECS Berkeley

57



Non-Power-of-2 FFT's

0 Historically, the power-of-two FFT's were much
faster (better written and implemented).

0 For non-power-of-two length, it was faster to zero
pad to power of two.

0 Recently this has changed. The free FFTW package
implements very etficient algorithms for almost any
filter length. Matlab has used FF'T'W since version 6

Penn ESE 5310 Spring 2023 — Khanna
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FEF'T Computation Time

FFT computation time (Matlab FFTW) on MacBookPro

el

0.015

0.01

run time [ms]

0.005

|
50 100 150 200 250
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Run Time (sec)

Beyond NlogNN

0 What 1f the signal x|n] has a k sparse frequency
= A. Gilbert et. al, “Near-optimal sparse Fourier representations via
sampling
= H. Hassanieh et. al, “Nearly Optimal Sparse Fourier Transform”
m  Others...
= O(K Log N) instead of O(N Log N)

s : : . . . 22
Run Time vs Signal Size (k=50) Run Time vs Signal Sparsity (N=2%)
10 F
ISFFT 3.0 (Exact) 10
i 5 1) A SR SEEE RS SIHETHE T BRI -
T AAFFTOS -
. 0
i i -~ 1 /
0.1 f Frg § -
c”- ~—
» @ 0.1
0.01 i ¥ g
. b ~
000%: bttt o 5 0.01
g e et = FEEE - sFFT 3.0 (Exact)
0.0001 F ot FFTW ~=e=
; % 0.001 AAFFT 0.9
1e-os i 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 26 27 28 29 210 211 212 213 214 215 216 217 218
Signal Size (n) Sparsity (K)

From: http://groups.csail.mit.edu/netmit/sFFT/paper.html 60



Example 1:

A long periodic sequence x of period N =2’ (r is an integer) is to be convolved with a
finite-length sequence A of length K.

(a) Show that the output y of this convolution (filtering) is periodic; what is its period?

Penn ESE 5310 Spring 2023 - Khanna
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Example 1:

A long periodic sequence x of period N =2 (r is an integer) is to be convolved with a
finite-length sequence 4 of length K.

(a) Show that the output y of this convolution (filtering) is periodic; what is its period?

(b) Let K =mN where m is an integer; N is large. How would you implement this
convolution efficiently? Explain your analysis clearly.

Compare the fotal number of multiplications required in your scheme to that in the
direct implementation of FIR filtering. (Consider the case »=10, m=10).

N sample
o ﬁ period

N 2N 3N
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Example 1:

A long periodic sequence x of period N =2 (r is an integer) is to be convolved with a
finite-length sequence 4 of length K.

(a) Show that the output y of this convolution (filtering) is periodic; what is its period?

(b) Let K =mN where m is an integer; N is large. How would you implement this
convolution efficiently? Explain your analysis clearly.
Compare the fotal number of multiplications required in your scheme to that in the
direct implementation of FIR filtering. (Consider the case »=10, m=10).

N sample

period
.ll”""hh.

afl
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Example 1:

A long periodic sequence x of period N =2 (r is an integer) is to be convolved with a
finite-length sequence 4 of length K.

(a) Show that the output y of this convolution (filtering) is periodic; what is its period?

(b) Let K =mN where m is an integer; N is large. How would you implement this
convolution efficiently? Explain your analysis clearly.

Compare the fotal number of multiplications required in your scheme to that in the
direct implementation of FIR filtering. (Consider the case »=10, m=10).

N sample
o ﬁ period

e
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Example 2:

A sequence x ={x[n], n=0,l,..., N -1} is given; let X(ej‘”) be its DTFT.

(a) Suppose N =10. You want to evaluate both X(e/**”"'?) and X (e’?**'*). The only

computation you can perform is one DFT, on any one input sequence of your choice.
Can you find the desired DTFT values? (Show your analysis and explain clearly.)
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Example 2:

A sequence x ={x[n], n=0,1,..., N -1} is given; let X(ej‘”) be its DTFT.

(b) Suppose N is large. You want to obtain X (') at the following 2M frequencies:

wzz—”m, m=0,1,...M -1 and a)=2—”m+2—”, m=0,1...M-1.
M M N

Here M =2« N=2"

A standard radix-2 FFT algorithm is available. You may execute the FFT algorithm
once or more than once, and multiplications and additions outside of the FFT are
allowed, if necessary.

(1) You want to get the 2M DTFT values with as few total multiplications as possible
(including those in the FFT). Give explicitly the best method you can find for this,

with an estimate of the total number of multiplications needed in terms of M and N .

Penn ESE 5310 Spring 2023 - Khanna
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Example 2:

A sequence x ={x[n], n=0,1,..., N -1} is given; let X(ej‘”) be its DTFT.

(b) Suppose N is large. You want to obtain X (') at the following 2M frequencies:

w=2—”m, m=0,1,...,M -1 and a)=2—”m+2—”, m=0,1,...M-1.
M M N

Here M =2 < N=2"

A standard radix-2 FFT algorithm is available. You may execute the FFT algorithm
once or more than once, and multiplications and additions outside of the FFT are
allowed, if necessary.

(1)

Penn ESE 5310 Spring 2023 - Khanna
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Example 2:

A sequence x ={x[n], n=0,1,..., N -1} is given; let X(ej‘”) be its DTFT.

(b) Suppose N is large. You want to obtain X (') at the following 2M frequencies:

wzz—”m, m=0,1,...M -1 and a)=2—”m+2—”, m=0,1...M-1.
M N

Here M =2« N=2"

A standard radix-2 FFT algorithm is available. You may execute the FFT algorithm
once or more than once, and multiplications and additions outside of the FFT are
allowed, if necessary.

(1) You want to get the 2M DTFT values with as few total multiplications as possible
(including those in the FFT). Give explicitly the best method you can find for this,

with an estimate of the total number of multiplications needed in terms of M and N .

(i) Does your result change if extra multiplications outside of FFTs are not allowed?

Penn ESE 5310 Spring 2023 - Khanna
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Chirp Transfer Algorithm

mRyn
SHrenn
040
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Chirp Transtform Algorithm

0 Uses convolution to evaluate the DFT

0 'This algorithm is not optimal 1n minimizing any
measure of computational complexity, but it has
been useful in a variety of applications, particularly
when implemented in technologies that are well
suited to doing convolution with a fixed, pre-
specified impulse response.

0 The CTA 1s also more flexible than the FFT, since it

can be used to compute any set ot equally spaced
samples of the Fourier transform on the unit circle.
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Chirp Transtform Algorithm

For M points of DTFT
uniformly spaced on a
sector of unit-circle

Unit
circle

Im

—1 )4

z-plane

W, =0, +kAw, k=0,1,....M -1

W

Penn ESE 5310 Spring 2023 - Khanna

Re

When wy,=0 and M=N,
we just get the DFT
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Example: Chirp Transform Parameters

0 We have a finite-length sequence x[n] that is
nonzero only on the interval n = 0, ..., 25, (Length

N=26) and we wish to compute 16 samples of the
DTFT X(e¥) at the frequencies w, = 2n/27 +
21k/1024 fork =0, ..., 15.

For M points of DTFT
uniformly spaced on a Im z-plane
sector of unit-circle

Unit
circle M-1)4

w, =0, + kAo, k=0,1,..,M -1

\wo

Re
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Chirp Transtform Algorithm

W—nz/Z _ ejAa)nz/Z

'(Awn/?2
:ej( wn/2)n

e—j(x)()n W112/2

linearly increasing

frequency "chirp"

Penn ESE 5310 Spring 2023 - Khanna

X(ej(’)n)

W}72/2
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Causal FIR CTA

w-=N+D*2 01, ... M+N—2,
0, otherwise.

hiln] = {

—joonyyn?l2 (n-N+1)%22
e /Po"W %4

X (e/“) = yi[n + N —1], n=0,1,...,M—1.
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Big Ideas

0 Fast Fourier Transform

= Enable computation of an N-point DFT (or DFT"!) with
the order of just N log, N complex multiplications.

= Most FFT algorithms decompose the computation of a DFT into
successively smaller DFT computations.
s Decimation-in-time algorithms

= Decimation-in-frequency
= Historically, power-of-2 DFTs had highest efficiency

= Modern computing has led to non-power-of-2 FFT's with
high efficiency

= Sparsity leads to reduced computation on order K- logN

0 Design DSP methods to minimize computations!
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Admin

0 HW 8 due 4/11
a Project 2 posted on 4/11

= Can work 1n pairs
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