ESE 2023: Digital Signal Processing

Lecture 22: April 11, 2023
Adaptive Filters
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Example 2:

A sequence x ={x[n], n=0,1,..., N -1} is given; let X(ej‘”) be its DTFT.

(a) Suppose N =10. You want to evaluate both X(e/**”"'?) and X (e’***'*). The only

computation you can perform is one DFT, on any one input sequence of your choice.
Can you find the desired DTFT values? (Show your analysis and explain clearly.)
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Example 2:

A sequence x ={x[n], n=0,1,...,N -1} is given; let X(ej‘”) be its DTFT.

(b) Suppose N is large. You want to obtain X (e’®) at the following 2M frequencies:
wzz—”m, m=0,1,...M -1 and a)=2—”m+2—”, m=0,1,...M-1.
M M N

Here M =2« N=2"

A standard radix-2 FFT algorithm is available. You may execute the FFT algorithm
once or more than once, and multiplications and additions outside of the FFT are
allowed, if necessary.

(1) You want to get the 2M DTFT values with as few total multiplications as possible
(including those in the FFT). Give explicitly the best method you can find for this,
with an estimate of the total number of multiplications needed in terms of M and N .

Penn ESE 5310 Spring 2023 - Khanna



Example 2:

A sequence x ={x[n], n=0,1,...,N -1} is given; let X(ej‘”) be its DTFT.

(b) Suppose N is large. You want to obtain X (e’®) at the following 2M frequencies:

wzz—”m, m=0,1,...M -1 and a)=2—”m+2—”, m=0,1,...M-1.
M N

Here M =2« N=2"

A standard radix-2 FFT algorithm is available. You may execute the FFT algorithm
once or more than once, and multiplications and additions outside of the FFT are
allowed, if necessary.

(1) You want to get the 2M DTFT values with as few total multiplications as possible
(including those in the FFT). Give explicitly the best method you can find for this,
with an estimate of the total number of multiplications needed in terms of M and N .

(i) Does your result change if extra multiplications outside of FFTs are not allowed?
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Chirp Transtorm Algorithm
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Chirp Transtform Algorithm

0 Uses convolution to evaluate the DFT

0 'This algorithm is not optimal 1n minimizing any
measure of computational complexity, but it has
been useful in a variety of applications, particularly
when implemented in technologies that are well
suited to doing convolution with a fixed, pre-
specified impulse response.

0 The CTA 1s also more flexible than the FFT, since it

can be used to compute any set ot equally spaced
samples of the Fourier transform on the unit circle.
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Chirp Transtform Algorithm

For M points of DTFT
uniformly spaced on a Im z-plane
sector of unit-circle

Unit
circle (M — 1 )4

W, =0, +kAw, k=0,1,....M -1

W

Re

When wy,=0 and M=N,
we just get the DFT

Penn ESE 5310 Spring 2023 - Khanna



® Chirp Transform Algorithm

X(e/@K) = Je~J@onynk Vk=0.,M-1

||I_\42
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Chirp Transtform Algorithm

X(ej(’)n)

W—nz/Z _ ejAa)nz/Z

'(Awn/?2
:ej( wn/2)n

W}72/2

e—j(x)()n W112/2

linearly increasing

frequency "chirp"
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Causal FIR CTA

w-=N+D*2 01, ... M+N—2,
0, otherwise.

hiln] = {

o —J®n N2 W (n—N+1)22

X (e/“) = yi[n + N —1], n=0,1,...,M—1.
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Example: Chirp Transform Parameters

0 We have a finite-length sequence x[n] that is
nonzero only on the interval n = 0, ..., 25, (Length

N=26) and we wish to compute 16 samples of the
DTFT X(e¥) at the frequencies w, = 2n/27 +
21k/1024 fork =0, ..., 15.

For M points of DTFT
uniformly spaced on a Im z-plane
sector of unit-circle

Unit
circle M-1)4

w, =0, + kAo, k=0,1,..,M -1

\wo

Re
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. Discrete Cosine Transform

0 Similar to the discrete Fourier transtorm (DFT), but
using only real numbers

0 Widely used in lossy compression applications (eg.
Mp3, JPEG)

2 Why use 1t?

Penn ESE 5310 Spring 2023 - Khanna
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DFT Problems

0 For processing 1-D or 2-D signals (especially coding), a
common method 1s to divide the signal into “trames” and
then apply an invertible transform to each frame that
compresses the information into few coetficients.

0 The DFT has some problems when used for this purpose:

= N real x[n] © N complex X[k] : 2 real, N/2 — 1 conjugate pairs
= DFT is of the periodic signal formed by replicating x[n]

[

Penn ESE 5310 Spring 2023 - Khanna 13
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DFT Problems

0 For processing 1-D or 2-D signals (especially coding),
common method is to divide the signal into “frames”
then apply an invertible transform to each frame that
compresses the information into few coetficients.

a
and

0 The DFT has some problems when used for this purpose:

= N real x[n] © N complex X[k] : 2 real, N/2 — 1 conjugate pairs

= DFT is of the periodic signal formed by replicating x[n]

= Spurious frequency components from boundary discontinuity

(o]

mT@l ?THTT —

N=20

=0.08 lmé bll TI [T952989032911]

o}

|

The Discrete Cosine Transform (DCT) overcomes these problems.
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Discrete Cosine Transform

Forward DCT: X¢|k] = Zg;ol

Inverse DCT: z[n] = + X [0] +

Penn ESE 5310 Spring 2023 - Khanna

z|n| cos

21t VR fork = 0: N — 1

4N

2 N—lX[k] COS 2 (2n+1)k

N k=1

AN
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Basis Functions

kn

DFT basis functions: z[n] = + N_Ol X|kle?*™ N
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DFT of Sine Wave
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17



DFT of Sine Wave

f % f#%
z(n] U;?g?l léT qvll 6T Uo;l . T61
[ X F k]| |
F N . T‘ [ttesssppeatl] 1

DFT: Real—Complex; Freq range [0, 1]; Poorly localized unless
f="2|Xplkllck Mfor Nf <k < &
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DCT of Sine Wave

T {n] 'v'lul § 'JJ le

Xk |
X lk]| ‘ [

DFT. Real—>Complex; Freq range [0, 1]; Poorly localized unless
fooomXpk] xk Mor Nf <k < &

DCT: Real—Real; Freq range (0, 0.5]; Well localized V f;
X(Ik]l x k=2 for 21’Vf < k< N

Penn ESE 5310 Spring 2023 - Khanna
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Adaptive Filters
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Application Areas

g

Speech coding

Speech enhancement (hands-free systems, hearing aids,
public address systems)

Equalization (sending antennas, radar, loudspeakers)
Anti-noise systems (cars and airplanes)

Multi-channel signal processing (beamforming, submarine
localization, layer of earth analysis)

Missile control

Medical applications (fetal heart rate monitoring, dialysis)
Processing of video signals (cancellation of distortions, image
analysis)

Antenna arrays
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Adaptive Filters

0 An adaptive filter is an adjustable filter that

X[n]

processes in time

= [t adapts...

d[n]
Adaptive y[n] " /"\+
Filter NI
Update
Coefficients

Penn ESE 5310 Spring 2023 - Khanna
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Adaptive Filter Applications

a System Identification

u

System

Adaptive
filter

mput
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Unknown
System

_/Jj

+I(I

System
output
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Adaptive Filter Applications

0 Identification of inverse system

System
input

— Delay

e.g. comm. !
channel

Unknown [ ¥
System

/

Adaptive
filter

~ A

Penn ESE 5310 Spring 2023 - Khanna
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Adaptive Filter Applications

0 Adaptive Interference Cancellation

Primary

signal

Reference

u

/

signal

Penn ESE 5310 Spring 2023 - Khanna

Adaptive
filter

/

System
output
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Automotive Hands-Free System

e
h(n)

Echo
cancellation
filter

Noise

suppression

filter

5(n) y(n)
w(n)

Penn ESE 5310 Spring 2023 - Khanna
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Adaptive Filter Applications

0 Adaptive Prediction

System
output 2

u ,
— Delay | Aq_upm-c
' filter

/

Random System

signal

output 1
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Stochastic Gradient Approach

0 Most commonly used type of Adaptive Filters

0 Define cost function as mean-squared error

= Eg. Difference between filter output and desired response

0 Based on the method of steepest descent
= Move towards the minimum on the error surface to get to minimum

= Requires the gradient of the error surface to be known

Penn ESE 5310 Spring 2023 - Khanna
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Stochastic Gradient Approach

0 Most commonly used type of Adaptive Filters

0 Define cost function as mean-squared error

= Eg. Difference between filter output and desired response

0 Based on the method of steepest descent

m Move towards the minimum on the error surface to get to minimum

= Requires the gradient of the error surface to be known

Gradient Descent

Gr.ms

Penn ESE 5310 Spring 2023 - Khanna

Grus = e%(n)

()

Gradient: IV{yugs

v ih(n)
'.’. ._-‘:. e Ah. = —‘MV(IL\{Q
T 0
% % R h(n + l)

- .-'
..............
N
N
‘e
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Least-Mean-Square (LMS) Algorithm

a0 The LMS Algorithm consists of two basic processes

- Fﬂtering process

= Calculate the output of FIR filter by convolving input and taps

= Calculate estimation error by comparing the output to desired signal

= Adaptation process

= Adjust tap weights based on the estimation error

[nput vector

Y

uin)

| %

:>

N
Transversal filter - wi(n — Lu(n)
win — 1)
Adaptive Error ¥+
weight-control &n)
mechanism
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Desired

response

(a) d(n)

» Output
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Adaptive FIR Filter: LMS

FIR
x[n] *| Filter
hn
. _
. Update " ﬁ l\
Coefficients \‘d
desired
output d,,

Penn ESE 5310 Spring 2023 - Khanna

T
y[n]A= h,x,

X, =(x[n],x[n-1]...,x[n -M)'

h, =(#,[0,4,[1]..... 1, [M])'
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Adaptive FIR Filter: LMS

] FIR yinl=hyx,
n > . >
Filter x =(x[n],x[n—1]....x[n— M])"
h, b, =(h, [0} A, [T}, [M]Y
. Update “n ﬁl\ 5 ) r )
Coefficients \‘d e,” =(d[n]-y[n])" =(d[n]-h x,)
desired
output d,,
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Adaptive FIR Filter: LMS

T
y[n]~= h,x,

FIR
x{n] " Filter
hn
. e AN
Update
Coefficients \‘d
desired
output d,,
) A ]
—T71 b2
a b=[ a, a, a, a, ] ; =atlbl+612192+cz31)3+a4194
3
b4
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X, =(x[n],x[n-1]...,x[n— M)

h, =(#,[0, 4,[1]..... 1, [M])'

e, =(d[n]-yn])’ =(d[n]-h x,)’

de
dh

n

=-2(d[n]-h’ x,)x, =-2e¢x,
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Adaptive FIR Filter: LMS

y[n]~= hZ;x,z

FIR
x{n] *| Filter
hn
. _
. Update " / l\
Coefficients \‘d
desired
output d,

X, =(x[n],x[n-1]...,x[n— M)

h, =(#,[0, 4,[1]..... 1, [M])'

e, =(d[n]-yn])" =(d[n]-h x,)’

de’
dh

n

=-2(d[n]-h’ x,)x, =-2e¢x,

Coefficient Update: Move in direction opposite to sign of gradient,

proportional to magnitude of gradient h, ,=h +2uex,
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Stochastic Gradient Algorithm
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Adaptive FIR Filter:

Gradient Descent

Grus = e%(n)

Gr.ms

Gradient: IV{yugs

T
- M])
T 2
e h(n) nx")
s _.":. e, /ﬂh = _.NV(ILI\{S
[ h . h(n :I' l)
.................... hy _2enxn

Coefficient Update: Move in direction opposite to sign of gradient,

proportional to magnitude of gradient
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h, ,=h +2uex,

Stochastic Gradient Algorithm




Adaptive Filter Applications

0 Adaptive Interference Cancellation

Primary

signal ‘
/ +Yd

foren o u Adaptive
Reference > aj I

signal filter - output

L .

€ System
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Adaptive Interference Cancellation

x[n]=s[n]+wn] t,(“) Sn]
correlated -

N FIR ~

wn] === Filter W]
winl}, (winl}
uncorrelated h,
with {s[»]} | Update

Coefficients
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Adaptive Interference Cancellation

x[n] = s{n]+win] +<> o]
correlated -

N FIR ~

wn] = Filter wn]
winl}, {(wnl}
uncorrelated h,
with {s[»]} Update

Coefficients

Penn ESE 5310 Spring 2023 - Khanna

N

S[n]=s[n]+w[n]-w[n]

~

= s[n]+w[n]- hnTw
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Adaptive Interference Cancellation

x[n] = s[n]+win] i() S[n]
correlated - §[ nl=s|
~ FIR n -
wn] - Filter Ml = o[
only, vinl; h Minimizing (§[
uncorrelated n
with {s[»]} Update
Coefficients
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]+ wln]-w[n]
1+wln]-h W

1)2 removes noise w[n]
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Adaptive Interference Cancellation

x[n] = s{n]+win] t_() Sln]
correlated — s[n]=s[n]+w[n]-w[n]
Mnl T Filter Hl =s[n]+w|n]- hnTvT/n
winl}, wn]} b Minimizing (S[n])? removes noise w[n]
uncorrelated n
with {s[»]} __,|  Update
Coefficients
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(1n1)’ = (S[n] +wln]- hnTszn)z

95°[n]
oh,

= 2(sTn]+ wln] - B, ) (=3,

= 28[n](-w ) =—23[n]Ww,
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Adaptive Interference Cancellation

S[n]= x{n]—h:ﬁrn

x[n] = s[n]+win] ey St .
lated E/ =s[n]+{w[n]—hnwn}
correlate
~ FIR A \/
n] == Filter win] uncorrelated
~ Minimize instantaneous
(winl}, (i)} -
uncorrelated h, power s “[n] for best
with {s[n]} | Update interference cancellation
Coefficients
2
d@Sm) _ e —
FT LA h . =h +2us[nlw,

n
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Stability of LMS

a0 The LMS algorithm 1s convergent in the mean square if and
only if the step-size parameter satisty

2
O<u<—
A

max

o Here A, is the largest eigenvalue of the correlation matrix
of the input data

0 More practical test for stability 1s
2

O<p<; :
input signal power

o Larger values for step size
= Increases adaptation rate (faster adaptation)

= Increases residual mean-squared error

Penn ESE 5310 Spring 2023 - Khanna
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Adaptive Equalization

Data z[n]
source *
Training

sequence

— -

channel
h[n|
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/

Equaliser
w|n|

Decision

Training
sequence
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Big Ideas

0 Adaptive Filters
= Use LMS algorithm to update filter coetficients

= Applications like system ID, channel equalization, and
signal prediction
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Admin

a Project 2

s Out after lecture

s Due 4/26 (last day of classes)

a0 Final Exam — 5/1
| 6—8pm
= DRI.B A2
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