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Discrete Time-Dependent Fourier Transform
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X [n,λ) = x[n+m]w[m]e− jλm
m=−∞

∞

∑

X [rR,k]= X [rR,2πk / N ) = x[rR+m]w[m]e− j(2π /N )km
m=0

L−1

∑

Xr[k]= x[rR+m]w[m]e− j(2π /N )km
m=0

L−1

∑



Spectrogram
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Spectrogram
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Application – Frequency Shift Keying

 FSK Communications
 Spectrogram transmitting ‘H’ (ASCII H = 01001000)
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STFT Reconstruction
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 If  R ≤ L ≤ N, then we can recover x[n] block-by-
block from Xr[k]

 For non-overlapping windows, R=L

xr[m]=
1
N

Xr[k]
k=0

N−1

∑ e j2πkm/N



STFT Reconstruction

7Penn ESE 5310 Spring 2023 - Khanna

 If  R ≤ L ≤ N, then we can recover x[n] block-by-
block from Xr[k]

 For non-overlapping windows, R=L

x[n]=
xr[n− rR]
w[n− rR]

xr[m]=
1
N

Xr[k]
k=0

N−1

∑ e j2πkm/N

∀  rR ≤ n ≤ (r +1)R−1



SFTF Reconstruction with overlap

 Practically make R<L<N
 If we choose R, L, and N appropriately with 

window, the overlap-add will negate the window 
effects
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Discrete Cosine Transform

 Similar to the discrete Fourier transform (DFT), but 
using only real numbers

 Widely used in lossy compression applications (eg. 
Mp3, JPEG)

 Why use it?
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DFT Problems

 For processing 1-D or 2-D signals (especially coding), a 
common method is to divide the signal into “frames” and 
then apply an invertible transform to each frame that 
compresses the information into few coefficients.

 The DFT has some problems when used for this purpose:
 N real x[n] ↔ N complex X[k] : 2 real, N/2 − 1 conjugate pairs
 DFT is of the periodic signal formed by replicating x[n] 
⇒ Spurious frequency components from boundary discontinuity
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The Discrete Cosine Transform (DCT) overcomes these problems.



Basis Functions

11Penn ESE 5310 Spring 2023 - Khanna



DFT of Sine Wave
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DCT of Sine Wave
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Wavelet Transform
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Motivation

 Some signals obviously have spectral characteristics 
that vary with time
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Criticism of Fourier Spectrum

 It’s giving you the spectrum of the ‘whole time-
series’

 Which is OK if the time-series is stationary.  But 
what if it’s not?

 We need a technique that can “march along” a time 
series and that is capable of:
 Analyzing spectral content in different places
 Detecting sharp changes in spectral character
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Transform Comparison
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Transform Comparison
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Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

19Penn ESE 5310 Spring 2023 - Khanna



Windowed Sampled CT Signal Example

 As before, the sampling rate is Ωs/2π=1/T=20Hz
 Hamming Window, L = 32 vs. L = 64
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Uncertainty Principle
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https://youtu.be/MBnnXbOM5S4?t=49



Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)
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s

τ



Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

 Make the window smaller
 Better localization in time
 Less spectral resolution

23Penn ESE 5310 Spring 2023 - Khanna



Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

 Make the window larger
 Worse localization in time
 More spectral resolution
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Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

 Use a big window for low frequency content that is not 
localized in time

 Use a small window for high frequency content that is 
localized in time
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Transform Comparison
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Fourier vs. Wavelet

 Fourier Analysis is based on an indefinitely long 
cosine wave of a specific frequency

 Wavelet Analysis is based on a short duration 
wavelet of a specific center frequency
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Wavelet Transform

 All wavelets derived from mother wavelet
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Example: Haar Wavelet
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1
1

-1

t

ψ(t) = ψ1,0(t)



Example: Haar Wavelet
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1
1

-1

t

ψ(t) = ψ1,0(t)

ψ1/2,2(t)

s=1/2, τ=2

2

2.5

τ

s



Examples of Wavelets
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Ricker SymletsBiorthogonal

Morlet Daubechles Coiflets



Ingrid Daubechies

 Defined worldwide standard for image compression
 https://www.fi.edu/en/laureates/ingrid-

daubechies#:~:text=Her%20contributions%20have%20revol
utionized%20and,the%20JPEG2000%20image%20processing
%20standard.
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https://www.fi.edu/en/laureates/ingrid-daubechies


change in scale

normalization

wavelet with
scale, s and 

translation, t

shift in time

Mother wavelet

Wavelet – Scaled and Shifted
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wavelet with
scale, s, and shift, t

time-series

coefficient of wavelet 
with

scale, s and time, t

Continuous Wavelet Transform

γ (s,τ ) = f (t)Ψs,τ∫ (t)dt
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wavelet with
scale, s and time, t

time-series

coefficients
of wavelets

Inverse Wavelet Transform

 Build up a time-series as sum of wavelets of 
different scales, s, and positions, t 
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Wavelet Basis Functions
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Wavelet reconstruction demo 
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https://demonstrations.wolfram.com/ProjectionIntoSpacesGeneratedByHaarAndDaubechiesScalingFunct/



Discrete wavelets:

 Scale wavelets only by integer powers of 2
 sj= 2j

 And shifting by integer multiples of sj for 
each successive scale
 τj,k = k2j

 Then γ(sj, τj,k) = γjk
 where j = 1, 2, …∞, and k = - ∞ … -2, -1, 0, 1, 2, … ∞

γ j ,k =
1

2 j
f (t)Ψ∫ t − k2 j

2 j
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟dt
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DWT vs CWT
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Wavelet Transform

 Determining the wavelet coefficients for a fixed 
scale, s, can be thought of as a filtering operation

 where

Ψs (t) =
1
s
Ψ( t
s
)
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𝛾 𝑠, 𝜏 = &𝑓 𝑡 Ψ!,# 𝑡 𝑑𝑡

𝛾! 𝜏 = &𝑓 𝑡 Ψ! 𝑡 − 𝜏 𝑑𝑡 = 𝑓 𝜏 ∗ Ψ!(−𝜏)

If wavelet is even,
Ψ −𝜏 = Ψ 𝜏



mother wavelet

t=5, s=2

time

Shannon Wavelet

 Y(t) = 2 sinc(2t) – sinc(t)
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frequency, w

Fourier spectrum of Shannon Wavelet

 Wavelet coefficients are a result of bandpass
filtering
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Ψs(jΩ)

Ω



Discrete Wavelet Transform

 The coefficients of Ψ is just the band-pass filtered 
time-series, where Ψ is the wavelet, now viewed as 
the impulse response of a bandpass filter.
 Discrete wavelet  s = 2j
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Discrete Wavelet Transform

 The coefficients of Ψ is just the band-pass filtered 
time-series, where Ψ is the wavelet, now viewed as 
the impulse response of a bandpass filter.
 Discrete wavelet  s = 2j 
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Discrete Wavelet Transform

 The coefficients of Ψ is just the band-pass filtered 
time-series, where Ψ is the wavelet, now viewed as 
the impulse response of a bandpass filter.
 Discrete wavelet  s = 2j
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Digital Wavelet as Multirate Filter Bank

46Penn ESE 5310 Spring 2023 - Khanna

 Repeat recursively!



time-series of length N

HP LP

¯2 ¯2

HP LP

¯2 ¯2

HP LP

¯2 ¯2

…

g(s1,t)

g(s2,t)

g(s3,t)

g(s1,t): N/2 coefficients

g(s2,t): N/4 coefficients

g(s2,t): N/8 coefficients

Total: N coefficients

Digital Wavelet as Multirate Filter Bank
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Coiflet low pass filter

Coiflet high-pass filter

time, t

time, t

Impulse Responses
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Spectrum of low pass filter

frequency, w
Spectrum of high pass filter

frequency, w

Filter Responses
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stage 1 - hi

time-series

stage 1 - lo

Downsample x2

Downsample x2

Level 1 ϒ
coefficients

(256)



stage 2 - hi

Stage 1 lo

stage 2 - lo

Downsample x2

Downsample x2

Level 2 ϒ
coefficients

(128)



stage 3 - hi

Stage 2 lo

stage 3 - lo

Downsample x2

Downsample x2

Level 3 ϒ
coefficients

(64)



stage 4 - hi

Stage 3 lo

stage 4 - lo

Downsample x2

Downsample x2

Level 4 ϒ
coefficients

(32)



stage 5 - hi

Stage 4 lo

Stage 5 - lo

Downsample x2

Downsample x2

Level 5 ϒ
coefficients

(16)



Stage 6 - hi

Stage 5 lo

stage 6 - lo

Downsample x2

Downsample x2

Level 6 ϒ
coefficients

(8)

Level 7 ϒ
coefficients

(8)



Putting it all together …

time, t

sc
al

e

long
wavelengths

short
wavelengths

|g(sj,t)|2



Expanding to Two Dimensions

 In two dimensions, a 2D scaling 
function 𝜙(𝑥, 𝑦) and 3 2D wavelet functions 
𝜓𝐻(𝑥, 𝑦), 𝜓𝑉(𝑥, 𝑦), 𝜓𝐷 𝑥, 𝑦 are required

 We can create these from the 1D scaling and
wavelet functions:
 𝜙 𝑥, 𝑦 = 𝜙(𝑥)𝜙(𝑦)
 𝜓$ 𝑥, 𝑦 = 𝜓(𝑥)𝜙(𝑦)
 𝜓% 𝑥, 𝑦 = 𝜙 𝑥 𝜓 𝑦
 𝜓& 𝑥, 𝑦 = 𝜓 𝑥 𝜓 𝑦
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Expanding to Two Dimensions
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Expanding to Two Dimensions
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Expanding to Two Dimensions
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Expanding to Two Dimensions
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Big Ideas
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 Wavelet transform
 Capture temporal data with fewer coefficients than STFT
 Use scaling and translation to get different resolution at 

different levels



Admin

 Project 2
 Due 4/26

 Final Exam – 5/1
 Covers lec 1-23*

 Doesn’t include lecture 12 (Data converters and noise shaping)

 All old exams online
 Disclaimers: old exams had different coverage for different years
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Admin

 TA Office hour schedule for Zhihan and Jiyue
 https://edstem.org/us/courses/33619/discussion/2954005
 18th (Tue): 

 Jiyue He, 10-noon
 Jiyue He, 7-9 pm

 19th (Wed): 
 Jiyue He, 7-9 pm 

 24th (Mon): 
 Zhihan Xu, 10-11:30 am

 25th (Tue): 
 Zhihan Xu, 10-11:30 am
 Zhihan Xu, 7-8:30 pm 

 Shuang and my office hours as usual
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