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Discrete Time-Dependent Fourier Transform
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X [n,λ) = x[n+m]w[m]e− jλm
m=−∞

∞

∑

X [rR,k]= X [rR,2πk / N ) = x[rR+m]w[m]e− j(2π /N )km
m=0

L−1

∑

Xr[k]= x[rR+m]w[m]e− j(2π /N )km
m=0

L−1

∑



Spectrogram
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Spectrogram
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Application – Frequency Shift Keying

 FSK Communications
 Spectrogram transmitting ‘H’ (ASCII H = 01001000)

5Penn ESE 5310 Spring 2023 - Khanna



STFT Reconstruction
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 If  R ≤ L ≤ N, then we can recover x[n] block-by-
block from Xr[k]

 For non-overlapping windows, R=L

xr[m]=
1
N

Xr[k]
k=0

N−1

∑ e j2πkm/N



STFT Reconstruction
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 If  R ≤ L ≤ N, then we can recover x[n] block-by-
block from Xr[k]

 For non-overlapping windows, R=L

x[n]=
xr[n− rR]
w[n− rR]

xr[m]=
1
N

Xr[k]
k=0

N−1

∑ e j2πkm/N

∀  rR ≤ n ≤ (r +1)R−1



SFTF Reconstruction with overlap

 Practically make R<L<N
 If we choose R, L, and N appropriately with 

window, the overlap-add will negate the window 
effects
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Discrete Cosine Transform

 Similar to the discrete Fourier transform (DFT), but 
using only real numbers

 Widely used in lossy compression applications (eg. 
Mp3, JPEG)

 Why use it?
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DFT Problems

 For processing 1-D or 2-D signals (especially coding), a 
common method is to divide the signal into “frames” and 
then apply an invertible transform to each frame that 
compresses the information into few coefficients.

 The DFT has some problems when used for this purpose:
 N real x[n] ↔ N complex X[k] : 2 real, N/2 − 1 conjugate pairs
 DFT is of the periodic signal formed by replicating x[n] 
⇒ Spurious frequency components from boundary discontinuity
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The Discrete Cosine Transform (DCT) overcomes these problems.



Basis Functions
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DFT of Sine Wave
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DCT of Sine Wave
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Wavelet Transform
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Motivation

 Some signals obviously have spectral characteristics 
that vary with time
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Criticism of Fourier Spectrum

 It’s giving you the spectrum of the ‘whole time-
series’

 Which is OK if the time-series is stationary.  But 
what if it’s not?

 We need a technique that can “march along” a time 
series and that is capable of:
 Analyzing spectral content in different places
 Detecting sharp changes in spectral character
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Transform Comparison
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Transform Comparison
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Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)
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Windowed Sampled CT Signal Example

 As before, the sampling rate is Ωs/2π=1/T=20Hz
 Hamming Window, L = 32 vs. L = 64
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Uncertainty Principle
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https://youtu.be/MBnnXbOM5S4?t=49



Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

22Penn ESE 5310 Spring 2023 - Khanna

s

τ



Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

 Make the window smaller
 Better localization in time
 Less spectral resolution
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Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

 Make the window larger
 Worse localization in time
 More spectral resolution
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Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

 Use a big window for low frequency content that is not 
localized in time

 Use a small window for high frequency content that is 
localized in time
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Transform Comparison
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Fourier vs. Wavelet

 Fourier Analysis is based on an indefinitely long 
cosine wave of a specific frequency

 Wavelet Analysis is based on a short duration 
wavelet of a specific center frequency
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Wavelet Transform

 All wavelets derived from mother wavelet
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Example: Haar Wavelet
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1
1

-1

t

ψ(t) = ψ1,0(t)



Example: Haar Wavelet
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1
1

-1

t

ψ(t) = ψ1,0(t)

ψ1/2,2(t)

s=1/2, τ=2

2

2.5

τ

s



Examples of Wavelets
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Ricker SymletsBiorthogonal

Morlet Daubechles Coiflets



Ingrid Daubechies

 Defined worldwide standard for image compression
 https://www.fi.edu/en/laureates/ingrid-

daubechies#:~:text=Her%20contributions%20have%20revol
utionized%20and,the%20JPEG2000%20image%20processing
%20standard.
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https://www.fi.edu/en/laureates/ingrid-daubechies


change in scale

normalization

wavelet with
scale, s and 

translation, t

shift in time

Mother wavelet

Wavelet – Scaled and Shifted
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wavelet with
scale, s, and shift, t

time-series

coefficient of wavelet 
with

scale, s and time, t

Continuous Wavelet Transform

γ (s,τ ) = f (t)Ψs,τ∫ (t)dt
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wavelet with
scale, s and time, t

time-series

coefficients
of wavelets

Inverse Wavelet Transform

 Build up a time-series as sum of wavelets of 
different scales, s, and positions, t 
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Wavelet Basis Functions

36Penn ESE 5310 Spring 2023 - Khanna



Wavelet reconstruction demo 
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https://demonstrations.wolfram.com/ProjectionIntoSpacesGeneratedByHaarAndDaubechiesScalingFunct/



Discrete wavelets:

 Scale wavelets only by integer powers of 2
 sj= 2j

 And shifting by integer multiples of sj for 
each successive scale
 τj,k = k2j

 Then γ(sj, τj,k) = γjk
 where j = 1, 2, …∞, and k = - ∞ … -2, -1, 0, 1, 2, … ∞

γ j ,k =
1

2 j
f (t)Ψ∫ t − k2 j

2 j
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟dt
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DWT vs CWT
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Wavelet Transform

 Determining the wavelet coefficients for a fixed 
scale, s, can be thought of as a filtering operation

 where

Ψs (t) =
1
s
Ψ( t
s
)
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𝛾 𝑠, 𝜏 = &𝑓 𝑡 Ψ!,# 𝑡 𝑑𝑡

𝛾! 𝜏 = &𝑓 𝑡 Ψ! 𝑡 − 𝜏 𝑑𝑡 = 𝑓 𝜏 ∗ Ψ!(−𝜏)

If wavelet is even,
Ψ −𝜏 = Ψ 𝜏



mother wavelet

t=5, s=2

time

Shannon Wavelet

 Y(t) = 2 sinc(2t) – sinc(t)
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frequency, w

Fourier spectrum of Shannon Wavelet

 Wavelet coefficients are a result of bandpass
filtering
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Ψs(jΩ)

Ω



Discrete Wavelet Transform

 The coefficients of Ψ is just the band-pass filtered 
time-series, where Ψ is the wavelet, now viewed as 
the impulse response of a bandpass filter.
 Discrete wavelet  s = 2j
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Discrete Wavelet Transform

 The coefficients of Ψ is just the band-pass filtered 
time-series, where Ψ is the wavelet, now viewed as 
the impulse response of a bandpass filter.
 Discrete wavelet  s = 2j 

44Penn ESE 5310 Spring 2023 - Khanna



Discrete Wavelet Transform

 The coefficients of Ψ is just the band-pass filtered 
time-series, where Ψ is the wavelet, now viewed as 
the impulse response of a bandpass filter.
 Discrete wavelet  s = 2j
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Digital Wavelet as Multirate Filter Bank
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 Repeat recursively!



time-series of length N

HP LP

¯2 ¯2

HP LP

¯2 ¯2

HP LP

¯2 ¯2

…

g(s1,t)

g(s2,t)

g(s3,t)

g(s1,t): N/2 coefficients

g(s2,t): N/4 coefficients

g(s2,t): N/8 coefficients

Total: N coefficients

Digital Wavelet as Multirate Filter Bank
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Coiflet low pass filter

Coiflet high-pass filter

time, t

time, t

Impulse Responses
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Spectrum of low pass filter

frequency, w
Spectrum of high pass filter

frequency, w

Filter Responses

49Penn ESE 5310 Spring 2023 – Khanna



stage 1 - hi

time-series

stage 1 - lo

Downsample x2

Downsample x2

Level 1 ϒ
coefficients

(256)



stage 2 - hi

Stage 1 lo

stage 2 - lo

Downsample x2

Downsample x2

Level 2 ϒ
coefficients

(128)



stage 3 - hi

Stage 2 lo

stage 3 - lo

Downsample x2

Downsample x2

Level 3 ϒ
coefficients

(64)



stage 4 - hi

Stage 3 lo

stage 4 - lo

Downsample x2

Downsample x2

Level 4 ϒ
coefficients

(32)



stage 5 - hi

Stage 4 lo

Stage 5 - lo

Downsample x2

Downsample x2

Level 5 ϒ
coefficients

(16)



Stage 6 - hi

Stage 5 lo

stage 6 - lo

Downsample x2

Downsample x2

Level 6 ϒ
coefficients

(8)

Level 7 ϒ
coefficients

(8)



Putting it all together …

time, t

sc
al

e

long
wavelengths

short
wavelengths

|g(sj,t)|2



Expanding to Two Dimensions

 In two dimensions, a 2D scaling 
function 𝜙(𝑥, 𝑦) and 3 2D wavelet functions 
𝜓𝐻(𝑥, 𝑦), 𝜓𝑉(𝑥, 𝑦), 𝜓𝐷 𝑥, 𝑦 are required

 We can create these from the 1D scaling and
wavelet functions:
 𝜙 𝑥, 𝑦 = 𝜙(𝑥)𝜙(𝑦)
 𝜓$ 𝑥, 𝑦 = 𝜓(𝑥)𝜙(𝑦)
 𝜓% 𝑥, 𝑦 = 𝜙 𝑥 𝜓 𝑦
 𝜓& 𝑥, 𝑦 = 𝜓 𝑥 𝜓 𝑦
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Expanding to Two Dimensions
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Expanding to Two Dimensions
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Expanding to Two Dimensions
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Expanding to Two Dimensions
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Big Ideas
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 Wavelet transform
 Capture temporal data with fewer coefficients than STFT
 Use scaling and translation to get different resolution at 

different levels



Admin

 Project 2
 Due 4/26

 Final Exam – 5/1
 Covers lec 1-23*

 Doesn’t include lecture 12 (Data converters and noise shaping)

 All old exams online
 Disclaimers: old exams had different coverage for different years
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Admin

 TA Office hour schedule for Zhihan and Jiyue
 https://edstem.org/us/courses/33619/discussion/2954005
 18th (Tue): 

 Jiyue He, 10-noon
 Jiyue He, 7-9 pm

 19th (Wed): 
 Jiyue He, 7-9 pm 

 24th (Mon): 
 Zhihan Xu, 10-11:30 am

 25th (Tue): 
 Zhihan Xu, 10-11:30 am
 Zhihan Xu, 7-8:30 pm 

 Shuang and my office hours as usual
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