ESE 5310: Digital Signal Processing

Lecture 25: April 20, 2023

Compressive Sensing
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Today

0 Compressive Sampling/Sensing
= Hot topic in DSP!
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Compressive Sampling

Anythin
: ything —
0
0 What 1s the rate you need to sample at?
= At least Nyquist
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Compressive Sampling

Something
1 T ot
0
0 What 1s the rate you need to sample at?
= Maybe less than Nyquist...
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First: Compression

0 Standard approach

= First collect, then compress

s Throw away unnecessary data

4 D
1001101001101
0001001110101
0100110100010
0010101101010
1010101100101
1101110111010
1010110110110

10100111111
. J

19101 | CoMprESSion
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First: Compression

a0 Examples

= Audio — 10x
= Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
« MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec

= Images — 22x
= Raw image (RGB): 24bit/pixel
= JPEG: 1280x960, normal = 1.09bit/pixel

s Videos — 75x

= Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz
x 16b x 2 = 98,578 Kbit/s

« MPEGH4: 1300 Kbit/s
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First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT
= JPEG2000: Wavelet
= MPEG: DCT & time-difference
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First: Compression

0 Almost all compression algorithm use transform
coding
= mp3: DCT
= JPEG: DCT

= JPEG2000: Wavelet -
s MPEG: DCT & time-difference
TrC
todl
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Sparse Transform
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Sparse Transform

2,58 = n
2t
I.Sl; _l ;I
0.5}
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Difference
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1.5% 50 700 %5 200 250 i
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K <N

large
wavelet
coefficients
(blue = 0)
N | tHHM g K <K N
wldeband M’ 5 large
signal ' lififhs Gabor (TF)
samples coefficients
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Signal Processing Trends

0 Traditional DSP = sample first, ask questions later
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Signal Processing Trends

0 Traditional DSP = sample first, ask questions later

0 Explosion in sensor technology/ubiquity has caused
two trends:

= Physical capabilities of hardware are being stressed,
increasing speed/resolution becoming expensive

= gigahertz+ analog-to-digital conversion
= accelerated MRI
= industrial imaging

= Deluge of data

= camera arrays and networks, multi-view target databases,
streaming video...
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Signal Processing Trends

0 Traditional DSP = sample first, ask questions later

0 Explosion in sensor technology/ubiquity has caused
two trends:

= Physical capabilities of hardware are being stressed,
increasing speed/resolution becoming expensive

= gigahertz+ analog-to-digital conversion
m accelerated MRI
= industrial imaging

= Deluge of data

= camera arrays and networks, multi-view target databases,
streaming video...

no Compressive Sensing =2 sample smarter, not faster
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Compressive Sensing/Sampling

0 Standard approach

= First collect, then compress

s Throw away unnecessary data

4 D
1001101001101
0001001110101
0100110100010
0010101101010
1010101100101
1101110111010
1010110110110

10100111111
.

101000110100
1101011

(—[Compr‘ession
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Compressive Sensing

a Shannon/Nyquist theorem is pessimistic

= 2 X bandwidth is the worst-case sampling rate — holds
uniformly for any bandlimited data

= sparsity/compressibility is irrelevant

= Shannon sampling based on a linear model, compression
based on a nonlinear model

0 Compressive sensing

= new sampling theory that leverages compressibility

= key roles played by new uncertainty principles and
randomness

Penn ESE 5310 Spring 2023 - Khanna
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Sensing to Data

Data
Converter

ADS5485

3 TEXAS
INSTRUMENTS

sensor “fast” ADC data compression

Data
Converter

i3 TEXAS
INSTRUMENTS

“compressive” “slow” ADC
sensor
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Penn ESE 5310 Spring 2023 - Khanna
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Sparse signal in time Frequency spectrum

|

0 10 20 30 40 50 60 0 0.5 1 15 2 2.5 3 3.5 4
Time (s) Frequency (Hz)
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in time

Penn ESE 5310 Spring 2023 - Khanna
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in time

A

0 10 20 30 40 50 60

Time (s) 0 0.5 1 1.5 2 2.5 3 3.5
Frequency (Hz)
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in frequency

Undersampled in time (reconstructed in time with IFFT)

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)
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Compressive Sampling

0 Sample at lower than the Nyquist rate and still
accurately recover the signal, and in most cases
exactly recover

Undersampled in frequency

Undersampled in time (reconstructed in time with IFFT)

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)

Requires sparsity and incoherent sampling
Penn ESE 5310 Spring 2023 - Khanna
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Compresstve Sampling: Simple Example

0.715
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Compressive Sampling

Input signal with undersampled measurements circled (~17.5% of Myquist samples)
4 T T T T T T T !

Amplitude

0 Sense signal M times

0 Recover with linear
program

| | | | | |
2 4 6 8 10 12 14 16 18 20
Frequency (Hz)

minZIQ(w)I subjectto g(t,) = f(t,), m=1,..,M
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Compressive Sampling

K K
- F st
flw) = E ab(w; —w) f() = E ae'
Input signal with undersampled measurements circled (~17.5% of Myquist samples) = =
4 T T T T T T T T 1 L= L=
@

Amplitude

0 Sense signal M times

0 Recover with linear

| program
Frequency spectrum of input
D T T T T T l
& G
_20 -
o
2 ol I
5 40
Z
(o]
o
_60 -
-80 | | | | | | |
0 2 4 3 8 10 12 14 16 18 20
Frequency (Hz)

minZIQ(w)I subjectto g(t,) = f(t,), m=1,..,M
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Example: Sum of Sinusoids

Fecovered spectrum using L1 minimization

1 o Two relevant “knobs”

200 = percentage of Nyquist
samples as altered by

30} adjusting number of
M WWW samples, M

-40

Power (dB)

N = 1input signal duration, T
-50 “ ’ | = Data block size

W il Tk

Recovered

—FFT [l
%|6 Exact

-80 | | | | | | | T T

0 2 4 6 8 10 12 14 16 18 20
Frequency (Hz)

-70 ‘
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Example: Increasing M

7% | 1 14% | "] ‘ 17.5%
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Example: Increasing M
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f

err,max

10

@
T

(23}
T

N
T

o
T

Fecovered spectrum performance for increasing samples

T

T

0

1
10

Percentage of Nyquist samples

20

1
30

1
40

1
50

60

(dB)

Penn ESE 5310 Spring 2023 - Khanna

perr,max

45

401

351+

30

nN
o
T

15

10

T

T

T

N

0

1
10

Percentage of Nyquist samples

30

40

50

80

ferrmax Within 10 mHz
Perrmax d€Creasing

29



Example: Increasing T

Power (dB)

Recovered spectrum using L1 minimization

Recovered spectrum using L1 minimization
&

Recovered spectrum using L1 minimization
*
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Example: Increasing T
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Numerical Recovery Curves

0 Sense S-sparse signal of length N randomly M times

100 : ' ' ‘ 1
| N=256 |
| N=512 |

A N=1024 |

3

3

~

% success

8 8 £ 8 8

o

0 0.2 0.4 0.6 0.8 1

S/M

= In practice, perfect recovery occurs when M = 2§ tor N = 7000
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A Non-Linear Sampling Theorem

a0 Exact Recovery Theorem (Candes, R, Tao, 2004):

= Select M sample locations {#,} “at random” with

M > Const-Slog N
0 Take time-domain samples (measurements)

Ym = T0 (tm)
0 Solve

rr;in |Z|le, subjectto z(tm)=ym, m=1,...,. M

0 Solution 1s exactly recovered signal with extremely

high probability

Penn ESE 5310 Spring 2023 - Khanna 33



A Non-Linear Sampling Theorem

a0 Exact Recovery Theorem (Candes, R, Tao, 2004):

= Select M sample locations {#,} “at random” with

M > Const-SlogN
0 Take time-domain samples (measurements)

Ym = Zo(tm)
0 Solve

n%cin |Z||e, subjectto z(tm)=ym, m=1,...,.M

0 Solution 1s exactly recovered signal with extremely

high probability

| M > Cp,9)Slog N
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Biometric Example: Parkinson’s Tremors

Suhject 2 Suhbject 4
2 0.5
1.5 0.4
3 = 03
5 >
= = 0.2
o o
o o
0.5 :
0-1 i
0 0
0 20 40 60 0 20 40 60
Frequency (Hz) Frequency (Hz)
Subject B Suhject 7
0.7 0.2
0.6}
05l 0.15
= 04 !
> s 07
= 0.3 =
o o
0.2 0.05
0.1} .
0 -L 04
0 20 40 60 0 20 40 60

Frequency (Hz) Frequency (Hz)
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W)

Power (

0
0

Suhbject 5

20 40 60
Frequency (Hz)

Suhbject 8

0

L
20 40 60
Frequency (Hz)

0 6 Subjects of real tremor
data

= collected using low intensity
velocity-transducing laser
recording aimed at reflective
tape attached to the subjects’
finger recording the finger
velocity

= All show Parkinson’s tremotr
in the 4-6 Hz range.

= Subject 8 shows activity at
two higher frequencies

= Subject 4 appears to have two
tremors very close to each
other in frequency




Real Data

Compressive Sampling

Recovered Frequency Spectrum; Subject 8

Time Signal: Subject &

Recovered Frequency Spectrum: Subject |

Time Signal: Subject &

0.09

0.4

0.35

031

021

0.15

10

Frequency (Hz)

Time (s)

Frequency (Hz)
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: Biometric Example: Parkinson’s Tremors

Recovered Frequency Spectrum: Subject 5

vvvvvvvvvvvvvvvvv

M W M 1 i L ' }u MM‘[\ n } M | l m “ M
’

.........

il i 'M M“WM

'C 10.5, T=30
20% Nyquist required samples

: i
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Biometric Example: Parkinson’s Tremors

Freguency error in tremor detection

< (mHz)

©
Eq0-

Subject Number

Tremors detected
within 100 mHz

randomly sample
20% of the
Nyquist required
samples

Requires post processing to randomly sample!

Penn ESE 5310 Spring 2023 - Khanna
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Implementing Compressive Sampling

0 Devised a way to randomly sample 20% of the Nyquist

required samples and still detect the tremor frequencies
within 100mHz

= Requires post processing to randomly sample!

0 Implement hardware on chip to “choose” samples in real
time
= Only write to memory the “chosen” samples
= Design random-like sequence generator
= Only convert the “chosen” samples

= Design low energy ADC

Penn ESE 5310 Spring 2023 - Khanna
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CS Theory

Why does it work?

o 40
S 'enn.
[
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Sampling

e Signal x is K-sparse in basis/dictionary W/
- WLOG assume sparse in space domain VU =]

e Sampling
b =]

N x 1

sparse
signal

N x 1

measurements

K

nonzero
entries

T TTTT T
EEE EEEEE EEYEEERY

N x N
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Compressive Sampling

e When data is sparse/compressible, can directly
acquire a condensed representation with
no/little information loss through

linear dimensionality reduction y = Px
Yy b x

M x 1 — H N X1
measurements - Sparse
O signal
MxN H K

H nonzero

K< MKN N entries
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How Can It Work?

e Projection @

Y b
not full rank... i — -
M < N

... and so
loses information in general

EEE EEEEEEESEEERS

e Ex: Infinitely many s map to the same Yy
(null space)
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How Can It Work?

e Projection @
not full rank...

M < N

... and so K columns
loses information in general

XL

e But we are only interested in sparse vectors

Penn ESE 5310 Spring 2023 - Khanna
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How Can It Work?

<

b
e Projection @
not full rank... % I
M < N

... and so K columns
loses information in general

e But we are only interested in sparse vectors

e P is effectively MxK
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How Can It Work?

e Projection
not full rank...

M < N

... and so K columns
loses information in general

e But we are only interested in sparse vectors

e Design @ so that each of its MxK submatrices
are full rank (ideally close to orthobasis)

- Restricted Isometry Property (RIP)

Penn ESE 5310 Spring 2023 - Khanna
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Restricted Isometric Property (RIP)

D
e Draw ¢ at random il
o . |
!!d Gaussuar-1 m I. il
- iid Bernoulli =1 .

K columns

e Then ® has the RIP with high probability

provided
M = O(Klog(N/K)) < N
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CS Signal Recovery

b

from measurements Y

a

Y
e Goal: Recover signal & E i g B

e Problem: Random

projection @ not full rank
(ill-posed inverse problem)

e Solution: Exploit the sparse/compressible
geometry of acquired signal &

Penn ESE 5310 Spring 2023 - Khanna
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o
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CS Signal Recovery

e Random projection P
not full rank

e Recovery problem:
given y = Pz
find @

e Null space

e Search in null space
for the “best” &
according to some
criterion

- ex: least squares

Penn ESE 5310 Spring 2023 - Khanna
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{2/ y= da')
(N-M)-dim hyperplane
at random angle
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CS Recovery

(a) (b) (c)

[FIG2] (a) The subspaces containing two sparse vectors in R? lie close to the
coordinate axes. (b) Visualization of the £, minimization (5) that finds the non-
sparse point-of-contact’s between the £, ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the ¢,
minimization solution that finds the sparse point-of-contact’s with high probability
thanks to the pointiness of the £, ball.

Baraniuk, Richard. “Compressive Sensing [Lecture Notes].” IEEE Signal Processing Magazine 24 (2007): 118-121.
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L, Signal Recovery

e Recovery: given y = Pz
(ill-posed inverse problem) find x (sparse)
e Optimization: x = arg min ||z||»
y=>x
e Closed-form solution: z = (dTd) 1oty

e Wrong answer! RN
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L, Signal Recovery

e Recovery:
(ill-posed inverse problem)

e Optimization:
e Correct!

||||\, N

e But NP-Complete alg

Penn ESE 5310 Spring 2023 - Khanna

given vy = Px
find € (sparse)

T = arg min ||z|o
y=>dx

“find sparsest vector
in translated nullspace”

' RN

/ 7
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L, Signal Recovery

e Recovery: given y = Pz
(ill-posed inverse problem) find X (sparse)
e Optimization: T = arg min ||z||1
y=>x

e Convexify the £ optimization
e Correct!

e Polynomial time alg
(linear programming)

e Much recent alg progress
- greedy, Bayesian approaches, ...
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Universality

e Random measurements can be used for signals
sparse in any basis

r = WV«

8

|1|l11|1l1l|1|Q
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Universality

e Random measurements can be used for signals
sparse in any basis

y = b = PV

|1|l11|1l|l11|Q
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Universality

e Random measurements can be used for signals
sparse in any basis

y=dPr =PVa =P«

b/

N x 1

sparse
coefficient
vector

K

nonzero
entries

g

Ill.llll.l.lllQ
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Reference Slide
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Big Ideas

0 Compressive Sampling
= Integrated sensing/sampling, compression and processing

= Based on sparsity and incoherency

Penn ESE 5310 Spring 2023 - Khanna
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Admin

a Project 2
s Due 4/26

o Final Exam —5/1

= Review Session 4/28 1-2pm
= Location TBD. Watch Ed.

m Covers lec 1-23*

= Doesn’t include lecture 12 (Data converters and noise shaping)

s All old exams online

= Disclaimers: old exams had different coverage for different years

Penn ESE 5310 Spring 2023 — Khanna
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Admin

0 Office hour schedule for rest of semester
(See Ed for zoom links)

s 20™ Th - Shuang 5-7:30pn (LRSM 208)

s 215°F - Shuang 3-4pm

n 24" M - Zhihan, 10-11:30 am

s 2507 - Zhihan, 10-11:30 am and 7-8:30 pm

m 26" W — Tania, 1-2:30 pm (Levine 262)

n 27" Th — Tania 12-1pm, Shuang 5-7:30pm (LLRSM 208)
s 28™ F - Shuang 3-4pm

m 29% Sa - Shuang 2-4pm zoom

s 15°M - Zhihan, 10-11:30 am

Penn ESE 5310 Spring 2023 — Khanna
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