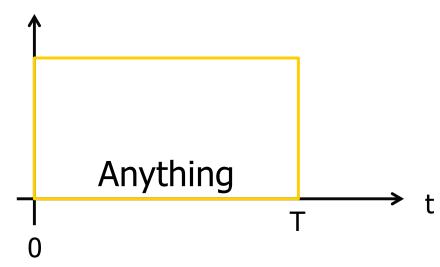
ESE 5310: Digital Signal Processing

Lecture 25: April 20, 2023

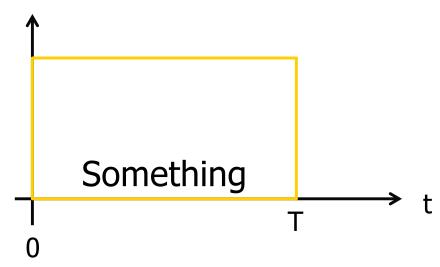
Compressive Sensing

Today

- Compressive Sampling/Sensing
 - Hot topic in DSP!

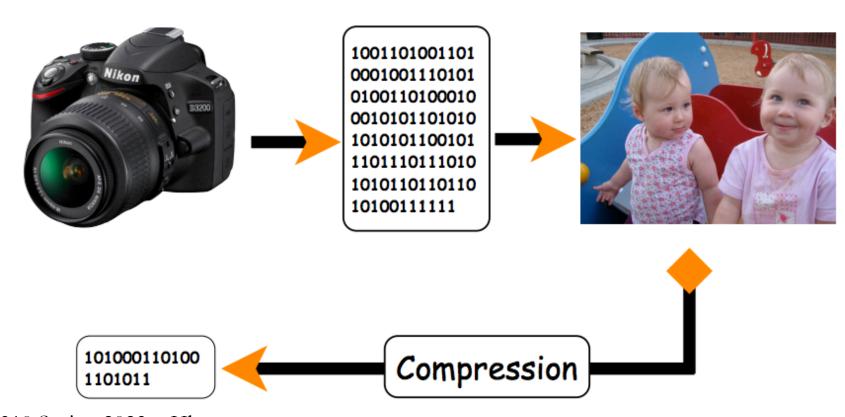


- What is the rate you need to sample at?
 - At least Nyquist



- □ What is the rate you need to sample at?
 - Maybe less than Nyquist...

- Standard approach
 - First collect, then compress
 - Throw away unnecessary data



Examples

- Audio 10x
 - Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
 - MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec
- Images -22x
 - Raw image (RGB): 24bit/pixel
 - JPEG: 1280x960, normal = 1.09bit/pixel
- Videos -75x
 - Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz
 x 16b x 2 = 98,578 Kbit/s
 - MPEG4: 1300 Kbit/s

- Almost all compression algorithm use transform coding
 - mp3: DCT
 - JPEG: DCT
 - JPEG2000: Wavelet
 - MPEG: DCT & time-difference

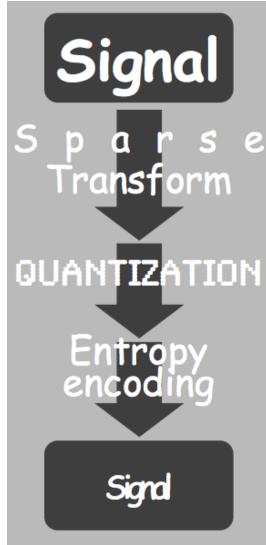
Almost all compression algorithm use transform coding

■ mp3: DCT

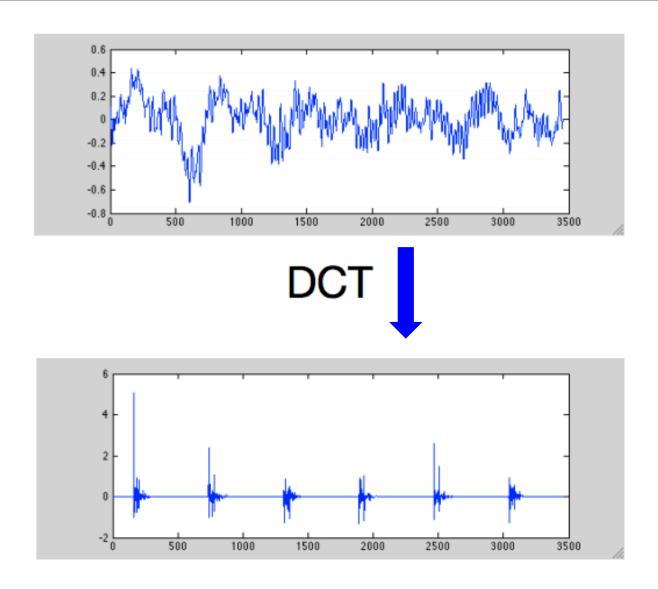
JPEG: DCT

■ JPEG2000: Wavelet

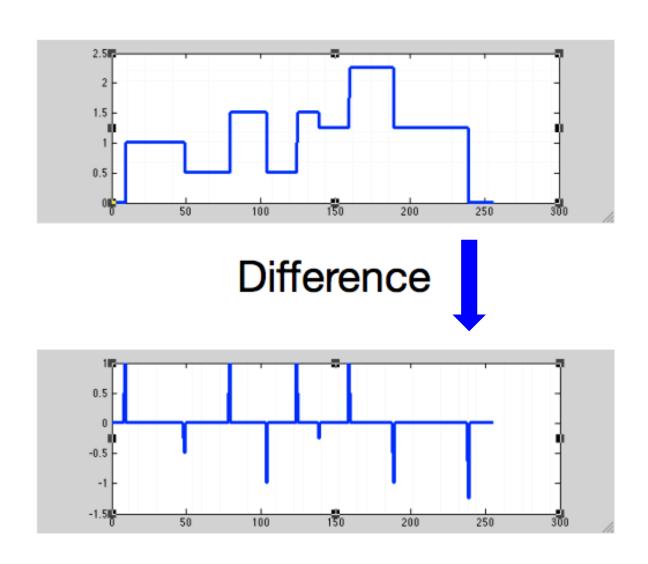
MPEG: DCT & time-difference



Sparse Transform



Sparse Transform



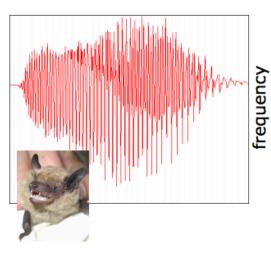
Sparsity

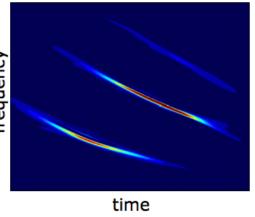
N pixels

 $K \ll N$ large wavelet coefficients

(blue = 0)

N wideband signal samples





 $K \ll N$ large Gabor (TF) coefficients

Signal Processing Trends

□ Traditional DSP → sample first, ask questions later

Signal Processing Trends

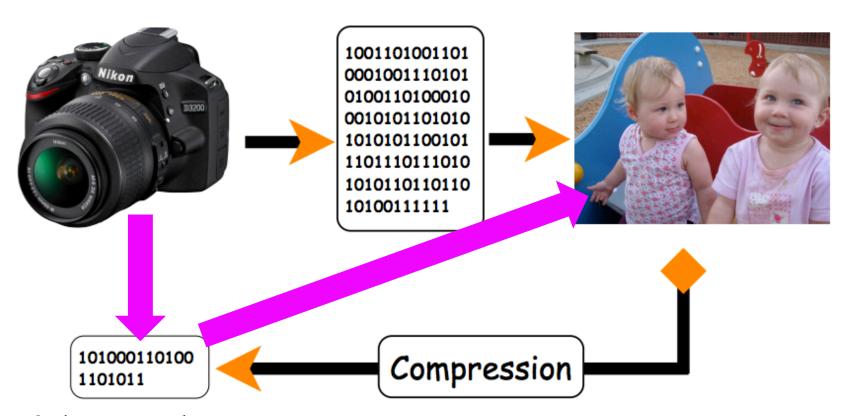
- \square Traditional DSP \rightarrow sample first, ask questions later
- Explosion in sensor technology/ubiquity has caused two trends:
 - Physical capabilities of hardware are being stressed, increasing speed/resolution becoming expensive
 - gigahertz+ analog-to-digital conversion
 - accelerated MRI
 - industrial imaging
 - Deluge of data
 - camera arrays and networks, multi-view target databases, streaming video...

Signal Processing Trends

- □ Traditional DSP → sample first, ask questions later
- Explosion in sensor technology/ubiquity has caused two trends:
 - Physical capabilities of hardware are being stressed, increasing speed/resolution becoming expensive
 - gigahertz+ analog-to-digital conversion
 - accelerated MRI
 - industrial imaging
 - Deluge of data
 - camera arrays and networks, multi-view target databases, streaming video...
- □ Compressive Sensing → sample smarter, not faster

Compressive Sensing/Sampling

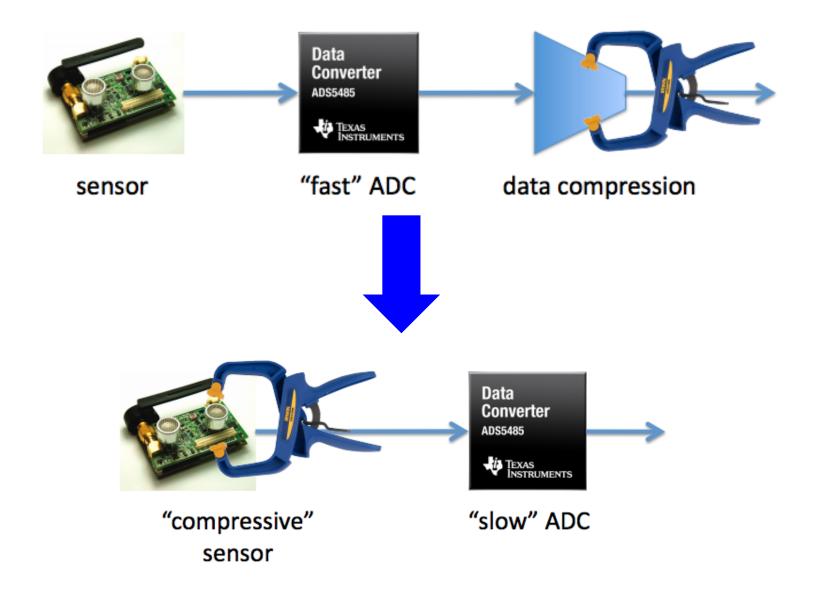
- Standard approach
 - First collect, then compress
 - Throw away unnecessary data



Compressive Sensing

- Shannon/Nyquist theorem is pessimistic
 - 2 × bandwidth is the worst-case sampling rate holds uniformly for any bandlimited data
 - sparsity/compressibility is irrelevant
 - Shannon sampling based on a linear model, compression based on a nonlinear model
- Compressive sensing
 - new sampling theory that leverages compressibility
 - key roles played by new uncertainty principles and randomness

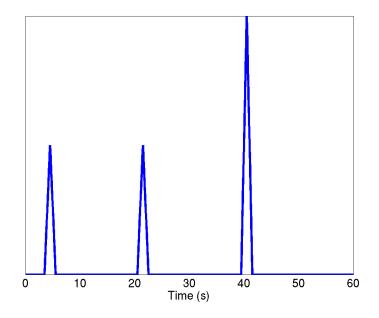
Sensing to Data



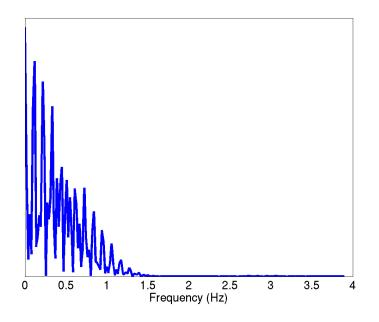
■ Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases *exactly* recover

Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases exactly recover

Sparse signal in time

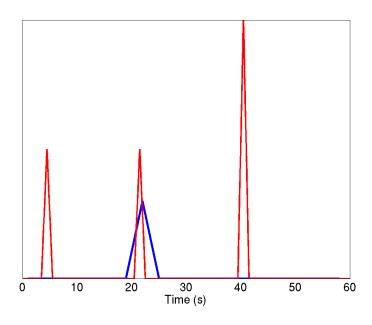


Frequency spectrum



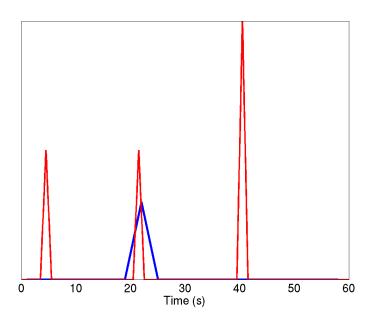
■ Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases *exactly* recover

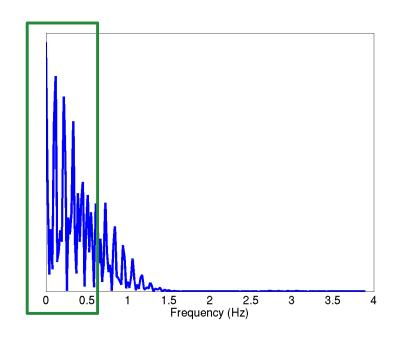
Undersampled in time



Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases exactly recover

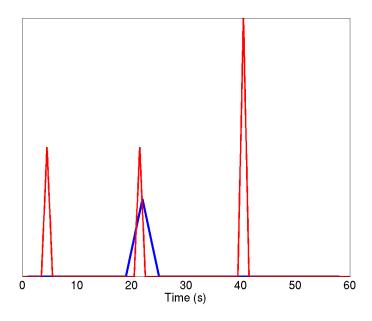
Undersampled in time



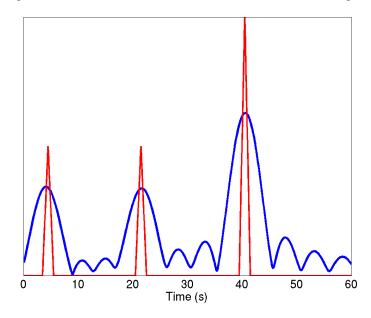


Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases exactly recover

Undersampled in time

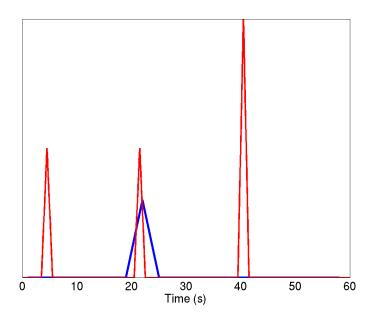


Undersampled in frequency (reconstructed in time with IFFT)

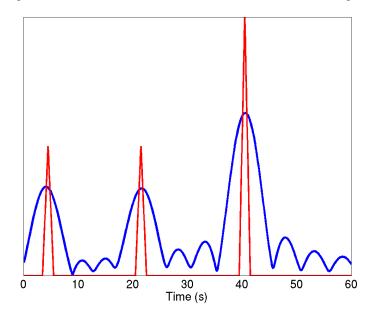


Sample at lower than the Nyquist rate and still accurately recover the signal, and in most cases exactly recover

Undersampled in time

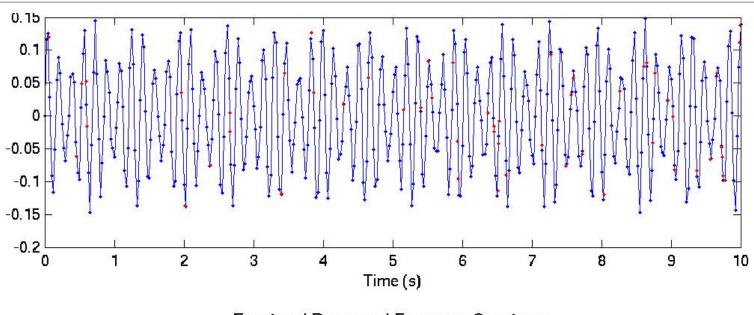


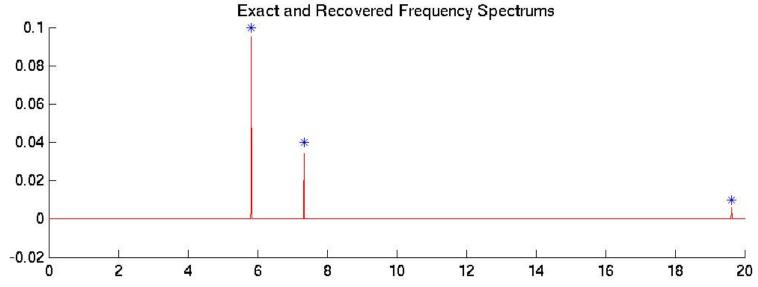
Undersampled in frequency (reconstructed in time with IFFT)

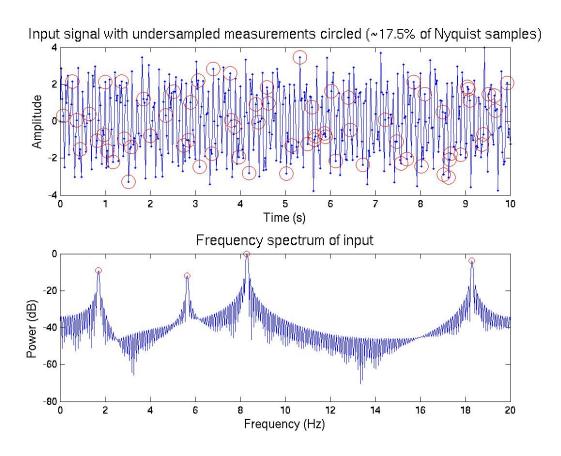


Requires sparsity and incoherent sampling

Compressive Sampling: Simple Example

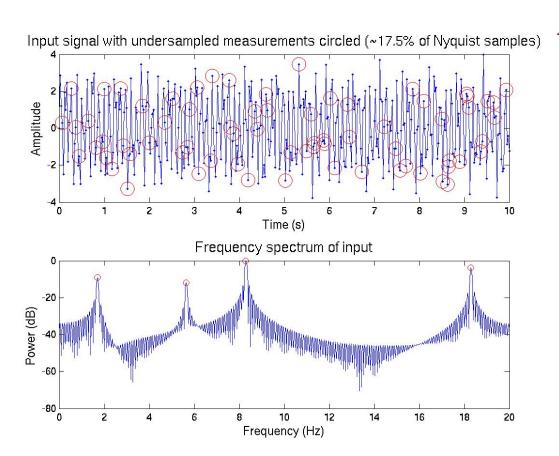






- □ Sense signal M times
- Recover with linear program

$$\min \sum_{\omega} |\hat{g}(\omega)|$$
 subject to $g(t_m) = f(t_m)$, $m = 1, ..., M$

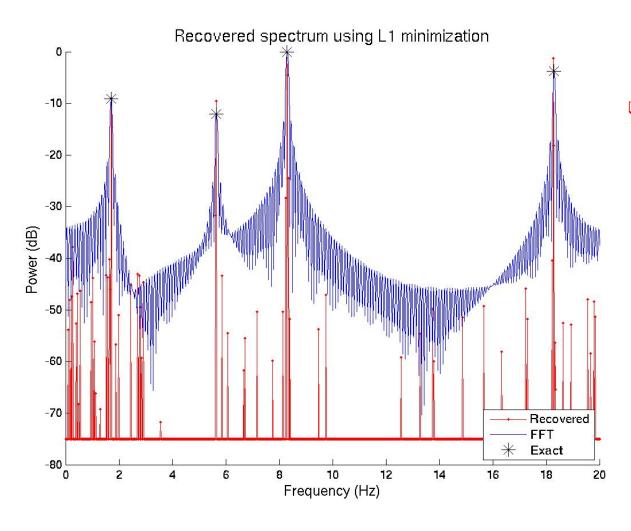


$$\hat{f}(\omega) = \sum_{i=1}^{K} \alpha_i \delta(\omega_i - \omega) \stackrel{\mathcal{F}}{\Leftrightarrow} f(t) = \sum_{i=1}^{K} \alpha_i e^{i\omega_i t}$$

- Sense signal M times
- Recover with linear program

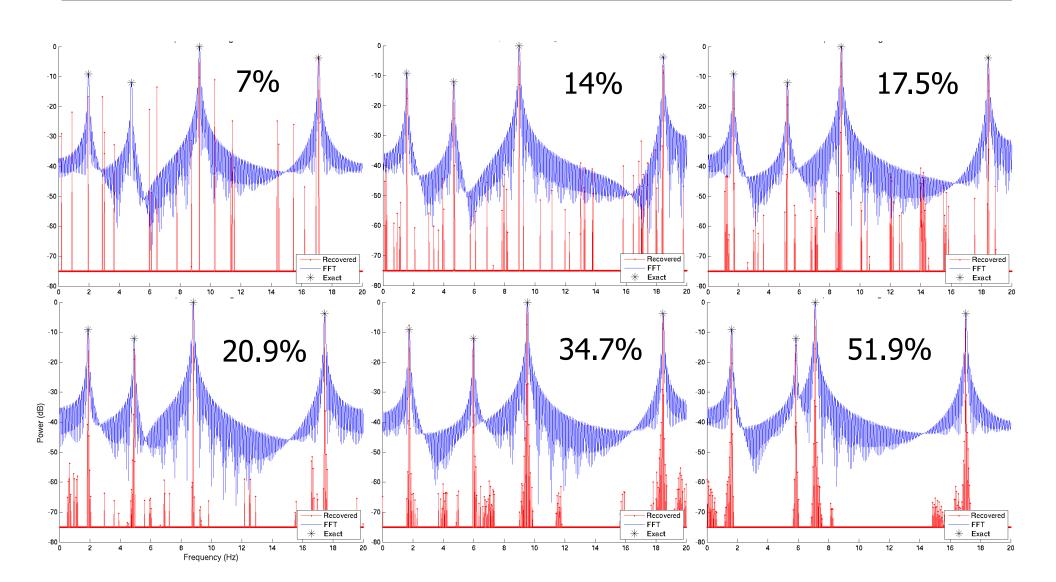
$$\min \sum_{\omega} |\hat{g}(\omega)|$$
 subject to $g(t_m) = f(t_m)$, $m = 1, ..., M$

Example: Sum of Sinusoids

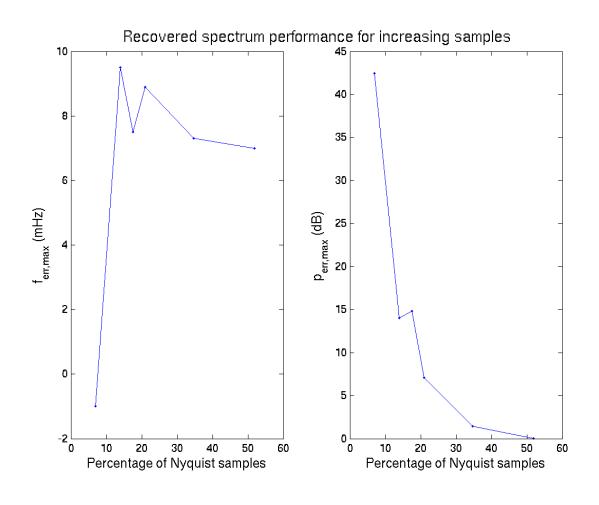


- Two relevant "knobs"
 - percentage of Nyquist samples as altered by adjusting number of samples, M
 - input signal duration, T
 - Data block size

Example: Increasing M

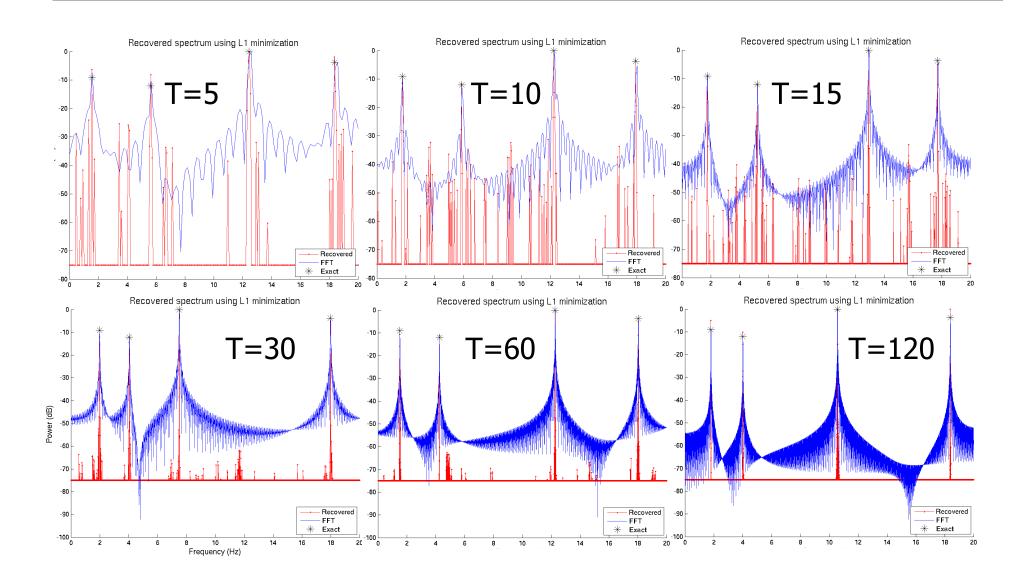


Example: Increasing M

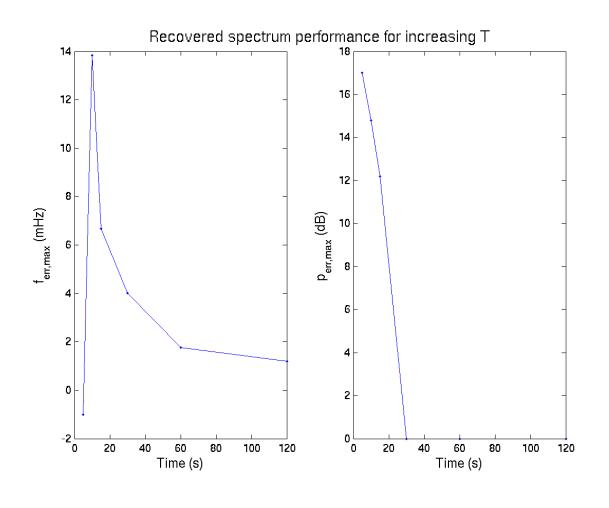


- f_{err,max} within 10 mHz
- p_{err,max} decreasing

Example: Increasing T



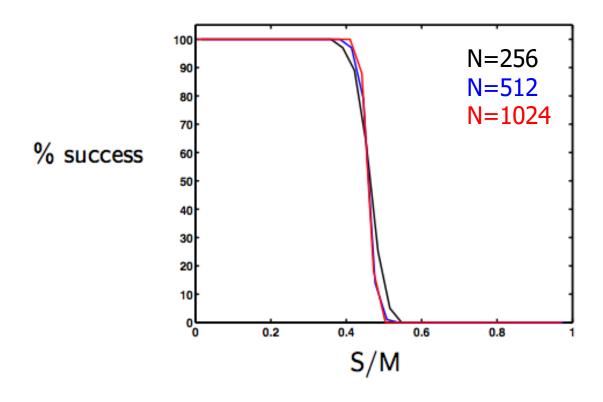
Example: Increasing T



- f_{err,max} decreasing
- p_{err,max} decreasing

Numerical Recovery Curves

Sense S-sparse signal of length N randomly M times



■ In practice, perfect recovery occurs when $M \approx 2S$ for $N \approx 1000$

A Non-Linear Sampling Theorem

- Exact Recovery Theorem (Candès, R, Tao, 2004):
 - Select M sample locations $\{t_m\}$ "at random" with

$$M \geq \operatorname{Const} \cdot S \log N$$

□ Take time-domain samples (measurements)

$$y_m = x_0(t_m)$$

Solve

$$\min_x \|\hat{x}\|_{\ell_1}$$
 subject to $x(t_m) = y_m, \ m = 1, \dots, M$

□ Solution is exactly recovered signal with extremely high probability

A Non-Linear Sampling Theorem

- Exact Recovery Theorem (Candès, R, Tao, 2004):
 - Select M sample locations $\{t_m\}$ "at random" with

$$M \geq \operatorname{Const} \cdot S \log N$$

□ Take time-domain samples (measurements)

$$y_m = x_0(t_m)$$

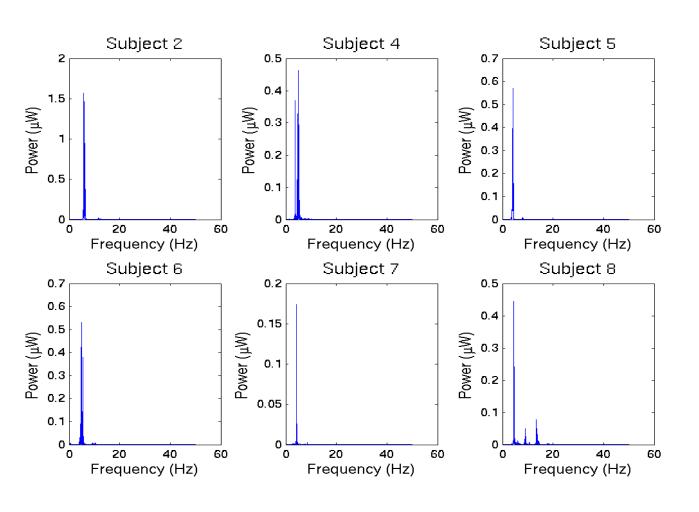
Solve

$$\min_x \|\hat{x}\|_{\ell_1}$$
 subject to $x(t_m) = y_m, \ m = 1, \dots, M$

□ Solution is exactly recovered signal with extremely high probability

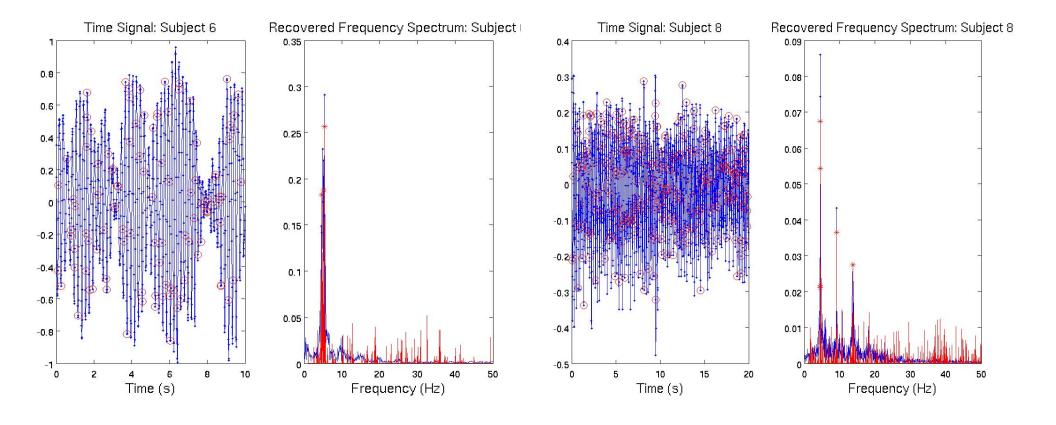
 $M > C \cdot \mu^2(\Phi, \Psi) \cdot S \cdot \log N$

Biometric Example: Parkinson's Tremors

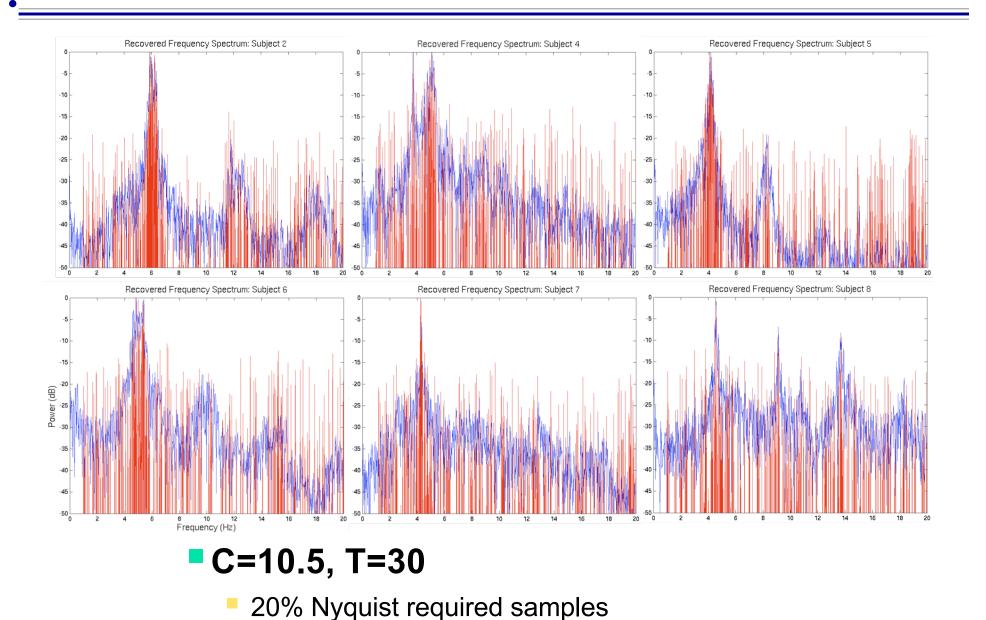


- 6 Subjects of real tremor data
 - collected using low intensity velocity-transducing laser recording aimed at reflective tape attached to the subjects' finger recording the finger velocity
 - All show Parkinson's tremor in the 4-6 Hz range.
 - Subject 8 shows activity at two higher frequencies
 - Subject 4 appears to have two tremors very close to each other in frequency

Compressive Sampling: Real Data

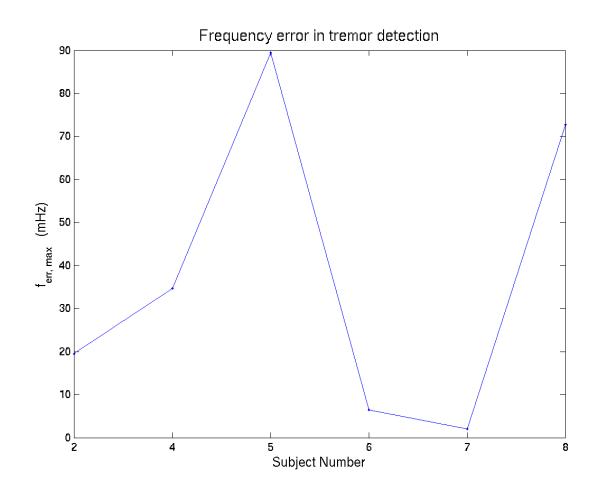


Biometric Example: Parkinson's Tremors



Penn ESE 5310 Spring 2023 - Khanna

Biometric Example: Parkinson's Tremors



- Tremors detected within 100 mHz
- randomly sample 20% of the Nyquist required samples

Requires post processing to randomly sample!

Implementing Compressive Sampling

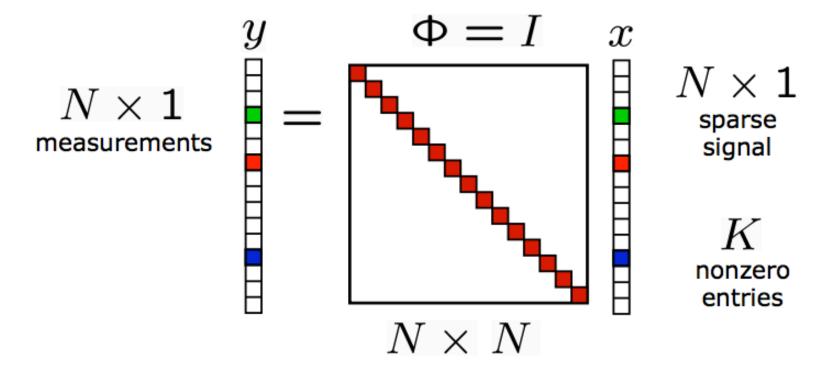
- Devised a way to randomly sample 20% of the Nyquist required samples and still detect the tremor frequencies within 100mHz
 - Requires post processing to randomly sample!
- Implement hardware on chip to "choose" samples in real time
 - Only write to memory the "chosen" samples
 - Design random-like sequence generator
 - Only convert the "chosen" samples
 - Design low energy ADC

CS Theory

Why does it work?

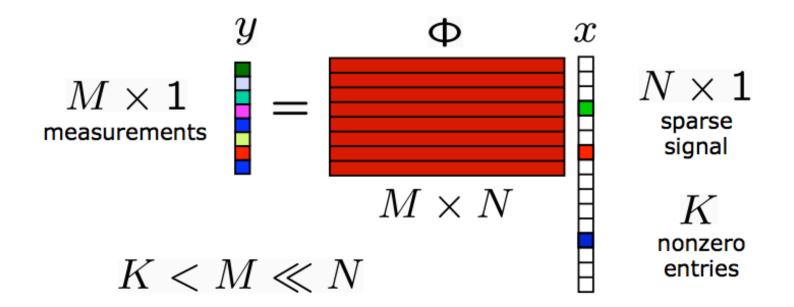
Sampling

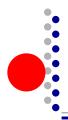
- Signal x is K-sparse in basis/dictionary Ψ WLOG assume sparse in space domain $\Psi = I$
- Sampling



Compressive Sampling

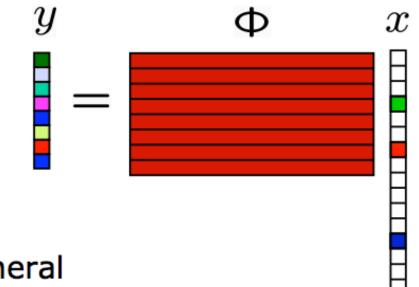
• When data is sparse/compressible, can directly acquire a *condensed representation* with no/little information loss through linear *dimensionality reduction* $y = \Phi x$





 Projection Φ not full rank...

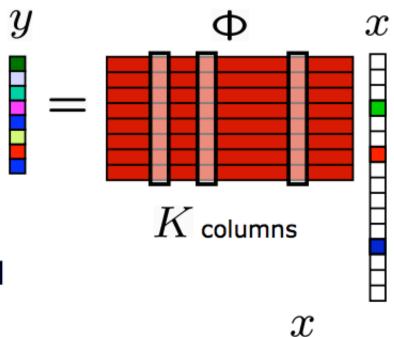
... and so loses information in general



• Ex: Infinitely many x's map to the same y (null space)

 Projection Φ not full rank...

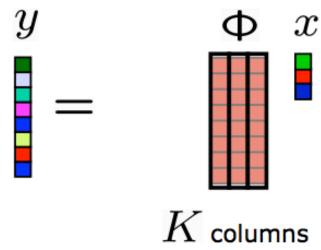
... and so loses information in general



But we are only interested in sparse vectors

 Projection Ф not full rank...

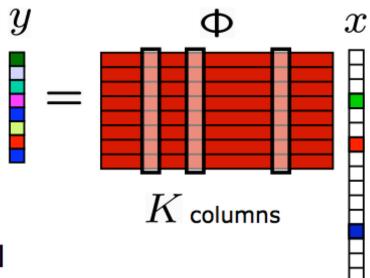
... and so loses information in general



- But we are only interested in sparse vectors
- Φ is effectively MxK

 Projection Φ not full rank...

... and so loses information in general

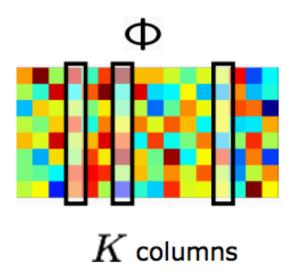


- But we are only interested in sparse vectors
- Design Φ so that each of its MxK submatrices are full rank (ideally close to orthobasis)
 - Restricted Isometry Property (RIP)

Restricted Isometric Property (RIP)

- Draw Φ at random
 - iid Gaussian
 - iid Bernoulli ± 1

...



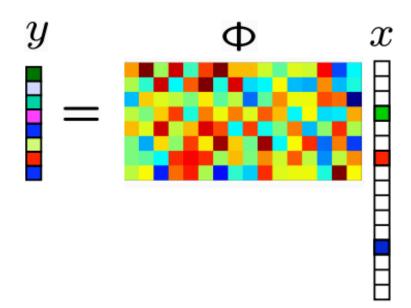
Then

 has the RIP with high probability provided

$$M = O(K \log(N/K)) \ll N$$

CS Signal Recovery

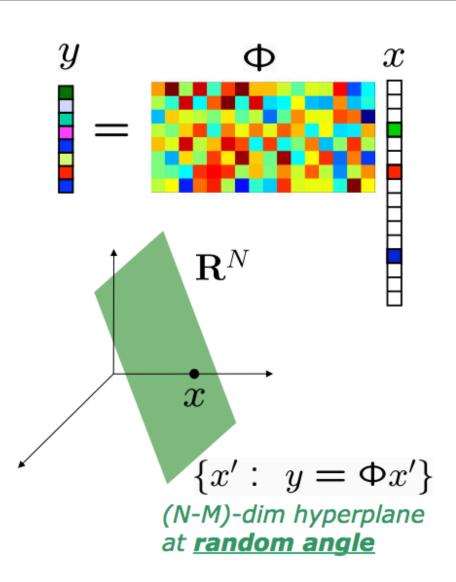
• Goal: Recover signal x from measurements y



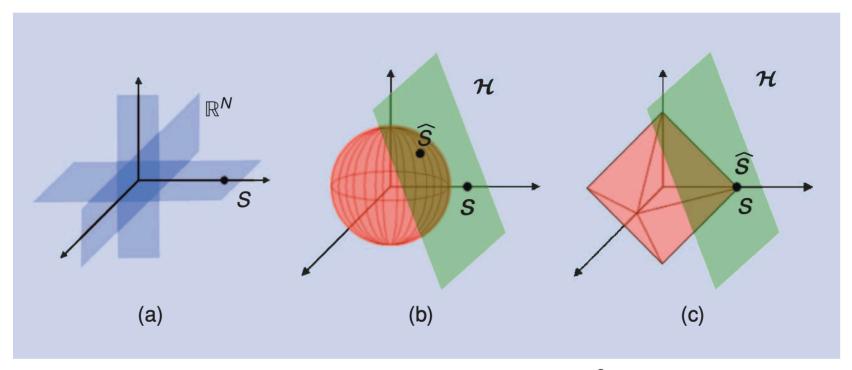
 Solution: Exploit the sparse/compressible geometry of acquired signal x

CS Signal Recovery

- Random projection Φ not full rank
- Recovery problem: given $y = \Phi x$ find x
- Null space
- Search in null space for the "best" x according to some criterion
 - ex: least squares



CS Recovery



[FIG2] (a) The subspaces containing two sparse vectors in \mathbb{R}^3 lie close to the coordinate axes. (b) Visualization of the ℓ_2 minimization (5) that finds the nonsparse point-of-contact \widehat{s} between the ℓ_2 ball (hypersphere, in red) and the translated measurement matrix null space (in green). (c) Visualization of the ℓ_1 minimization solution that finds the sparse point-of-contact \widehat{s} with high probability thanks to the pointiness of the ℓ_1 ball.

Baraniuk, Richard. "Compressive Sensing [Lecture Notes]." IEEE Signal Processing Magazine 24 (2007): 118-121.

L₂ Signal Recovery

- Recovery:

 (ill-posed inverse problem)
- Optimization:
- Closed-form solution:
- Wrong answer!

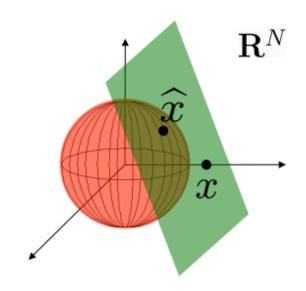
$$\widehat{x}$$

given
$$y = \Phi x$$

find x (sparse)

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$$

$$\widehat{x} = (\Phi^T \Phi)^{-1} \Phi^T y$$



L₀ Signal Recovery

- Recovery:

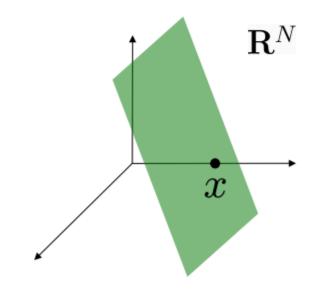
 (ill-posed inverse problem)
- Optimization:
- Correct!

• But NP-Complete alg

given
$$y = \Phi x$$
 find x (sparse)

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0$$

"find sparsest vector in translated nullspace"



L₁ Signal Recovery

Recovery:

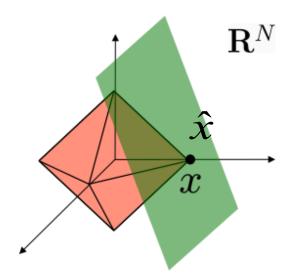
 (ill-posed inverse problem)

given
$$y = \Phi x$$
 find x (sparse)

· Optimization:

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_1$$

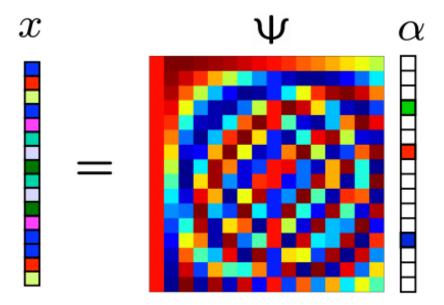
- Convexify the ℓ_0 optimization
- Correct!
- Polynomial time alg (linear programming)
- Much recent alg progress
 greedy, Bayesian approaches, ...



Universality

 Random measurements can be used for signals sparse in any basis

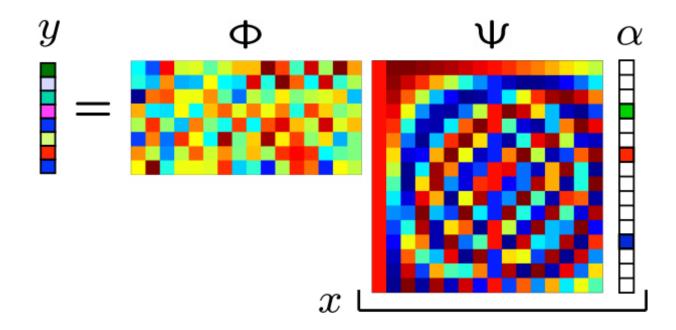
$$x = \Psi \alpha$$



Universality

 Random measurements can be used for signals sparse in any basis

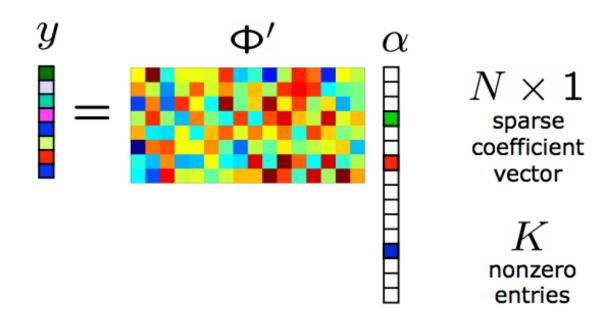
$$y = \Phi x = \Phi \Psi \alpha$$



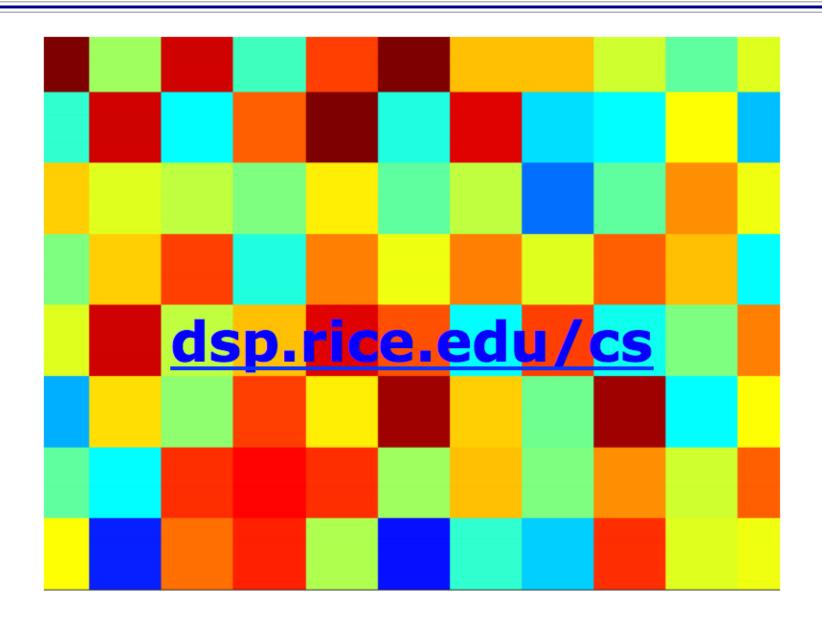
Universality

 Random measurements can be used for signals sparse in any basis

$$y = \Phi x = \Phi \Psi \alpha = \Phi' \alpha$$



Reference Slide



Big Ideas

- Compressive Sampling
 - Integrated sensing/sampling, compression and processing
 - Based on sparsity and incoherency

Admin

- Project 2
 - Due 4/26
- □ Final Exam -5/1
 - Review Session 4/28 1-2pm
 - Location TBD. Watch Ed.
 - Covers lec 1-23*
 - Doesn't include lecture 12 (Data converters and noise shaping)
 - All old exams online
 - Disclaimers: old exams had different coverage for different years

Admin

- Office hour schedule for rest of semester (See Ed for zoom links)
 - 20th Th Shuang 5-7:30pn (LRSM 208)
 - 21st F Shuang 3-4pm
 - 24th M Zhihan, 10-11:30 am
 - 25th T Zhihan, 10-11:30 am and 7-8:30 pm
 - 26th W Tania, 1-2:30 pm (Levine 262)
 - 27th Th Tania 12-1pm, Shuang 5-7:30pm (LRSM 208)
 - 28th F Shuang 3-4pm
 - 29th Sa Shuang 2-4pm zoom
 - 1st M Zhihan, 10-11:30 am