ESE 5310: Digital Signal Processing

Lec 26: April 25, 2023

Review

Course Content

- Introduction
- Discrete Time Signals & Systems
- Discrete Time FourierTransform
- Z-Transform
- □ Inverse Z-Transform
- Sampling of Continuous Time Signals
- □ Frequency Domain of Discrete
 Time Series
- Downsampling/Upsampling
- Data Converters, Sigma DeltaModulation

- Oversampling, Noise Shaping
- Frequency Response of LTI Systems
- Basic Structures for IIR and FIR Systems
- Design of IIR and FIR Filters
- Filter Banks
- Computation of the DiscreteFourier Transform
- □ Fast Fourier Transform
- Adaptive Filters
- Spectral Analysis
- Wavelet Transform
- Compressive Sampling

Digital Signal Processing

- Represent signals by a sequence of numbers
 - Sampling and quantization (or analog-to-digital conversion)
- Perform processing on these numbers with a digital processor
 - Digital signal processing
- Reconstruct analog signal from processed numbers
 - Reconstruction or digital-to-analog conversion

- Analog input → analog output
 - Eg. Digital recording music
- Analog input → digital output
 - Eg. Touch tone phone dialing, speech to text
- Digital input → analog output
 - Eg. Text to speech
- Digital input → digital output
 - Eg. Compression of a file on computer

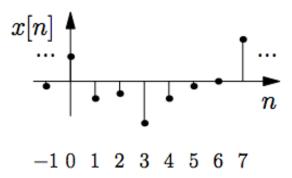
Discrete Time Signals and Systems

Signals are Functions

DEFINITION

A signal is a function that maps an independent variable to a dependent variable.

- Signal x[n]: each value of n produces the value x[n]
- In this course, we will focus on discrete-time signals:
 - Independent variable is an **integer**: $n \in \mathbb{Z}$ (will refer to as time)
 - Dependent variable is a real or complex number: $x[n] \in \mathbb{R}$ or \mathbb{C}



Discrete Time Systems

DEFINITION

A discrete-time system ${\cal H}$ is a transformation (a rule or formula) that maps a discrete-time input signal x into a discrete-time output signal y

$$y = \mathcal{H}\{x\}$$

$$x \longrightarrow \mathcal{H} \longrightarrow y$$

- Systems manipulate the information in signals
- Examples:
 - · A speech recognition system converts acoustic waves of speech into text
 - · A radar system transforms the received radar pulse to estimate the position and velocity of targets
 - A functional magnetic resonance imaging (fMRI) system transforms measurements of electron spin into voxel-by-voxel estimates of brain activity
 - A 30 day moving average smooths out the day-to-day variability in a stock price

System Properties

- Causality
 - y[n] only depends on x[m] for $m \le n$
- Linearity
 - Scaled sum of arbitrary inputs results in output that is a scaled sum of corresponding outputs
 - $Ax_1[n] + Bx_2[n] \rightarrow Ay_1[n] + By_2[n]$
- Memoryless
 - y[n] depends only on x[n]
- Time Invariance
 - Shifted input results in shifted output
 - $x[n-q] \rightarrow y[n-q]$
- BIBO Stability
 - A bounded input results in a bounded output (ie. max signal value exists for output if max)

LTI Systems

DEFINITION

A system \mathcal{H} is linear time-invariant (LTI) if it is both linear and time-invariant

LTI system can be completely characterized by its impulse response

 $\delta \longrightarrow \hspace{0.5cm} \mathcal{H} \longrightarrow h$

 Then the output for an arbitrary input is a sum of weighted, delay impulse responses

$$x \longrightarrow h \longrightarrow y \qquad y[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

$$y[n] = x[n] * h[n]$$

Discrete Time Fourier Transform

DTFT Definition

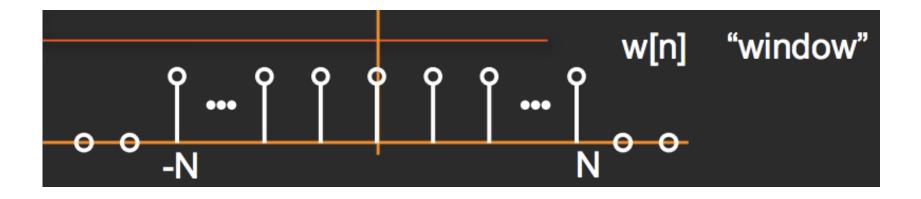
$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Alternate
$$X(f) = \sum_{k=-\infty}^{\infty} x[k]e^{-j2\pi fk}$$

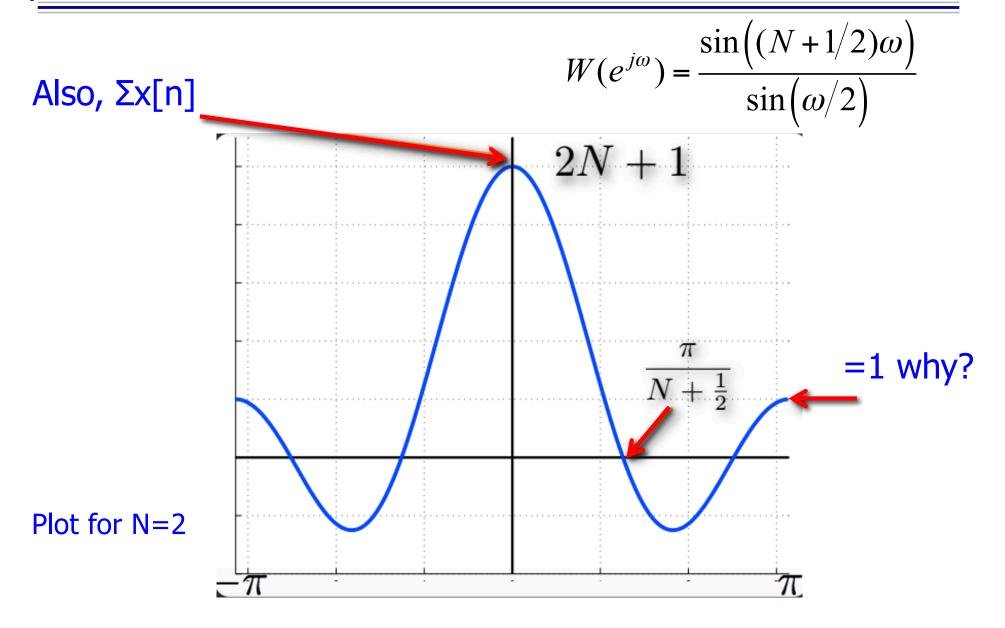
$$x[n] = \int_{-0.5}^{0.5} X(f)e^{j2\pi fn}df$$

Example: Window DTFT



$$W(e^{j\omega}) = \sum_{k=-\infty}^{\infty} w[k]e^{-j\omega k}$$
$$= \sum_{k=-N}^{N} e^{-j\omega k}$$

Example: Window DTFT



LTI System Frequency Response

□ Fourier Transform of impulse response

$$x[n]=e^{j\omega n}$$
 \longrightarrow LTI System \longrightarrow $y[n]=H(e^{j\omega n})e^{j\omega n}$

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k}$$

z-Transform

- □ The z-transform generalizes the Discrete-Time Fourier Transform (DTFT) for analyzing infinite-length signals and systems
- Very useful for designing and analyzing signal processing systems
- Properties are very similar to the DTFT with a few caveats

$$H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n}$$

Region of Convergence (ROC)

Given a time signal x[n], the **region of convergence** (ROC) of its z-transform X(z) is the set of $z \in \mathbb{C}$ such that X(z) converges, that is, the set of $z \in \mathbb{C}$ such that $x[n] z^{-n}$ is absolutely summable

$$\sum_{n=-\infty}^{\infty} |x[n] z^{-n}| < \infty$$

Inverse z-Transform

- Ways to avoid it:
 - Inspection (known transforms)
 - Properties of the z-transform
 - Partial fraction expansion

$$X(z) = \frac{b_0}{a_0} \frac{\prod_{k=1}^{M} (1 - c_k z^{-1})}{\prod_{k=1}^{N} (1 - d_k z^{-1})} = \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}}$$

Power series expansion

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$= \dots + x[-2]z^{2} + x[-1]z + x[0] + x[1]z^{-1} + x[2]z^{-2} + \dots$$

Difference Equation to z-Transform

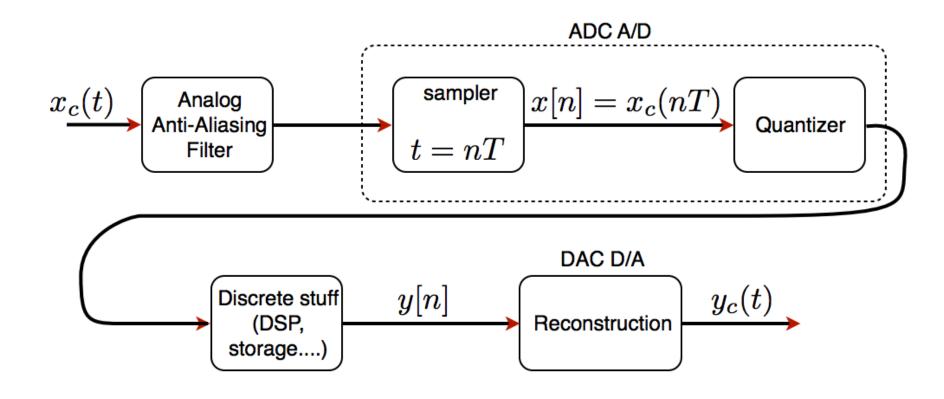
$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m]$$

$$H(z) = \frac{\sum_{m=0}^{M} (b_k) z^{-k}}{\sum_{k=0}^{N} (a_k) z^{-k}}$$

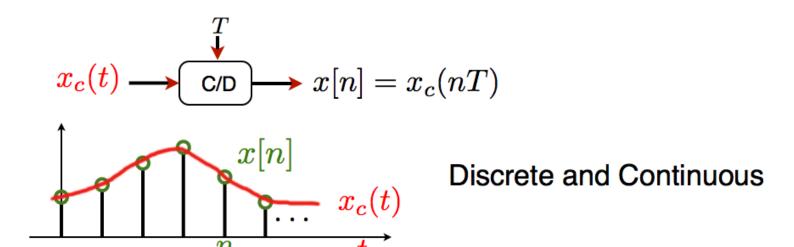
- Difference equations of this form behave as causal LTI systems
 - when the input is zero prior to n=0
 - Initial rest equations are imposed prior to the time when input becomes nonzero
 - i.e $y[-N] = y[-N+1] = \dots = y[-1] = 0$

Sampling and Reconstruction

DSP System

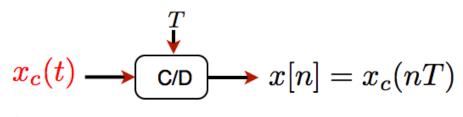


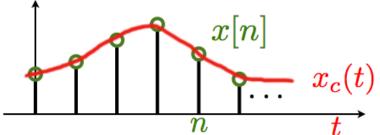
Ideal Sampling Model



- □ Ideal continuous-to-discrete time (C/D) converter
 - T is the sampling period
 - $f_s = 1/T$ is the sampling frequency
 - $\Omega_{\rm s}=2\pi/{\rm T}$

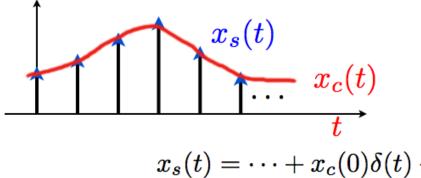
Ideal Sampling Model





Discrete and Continuous

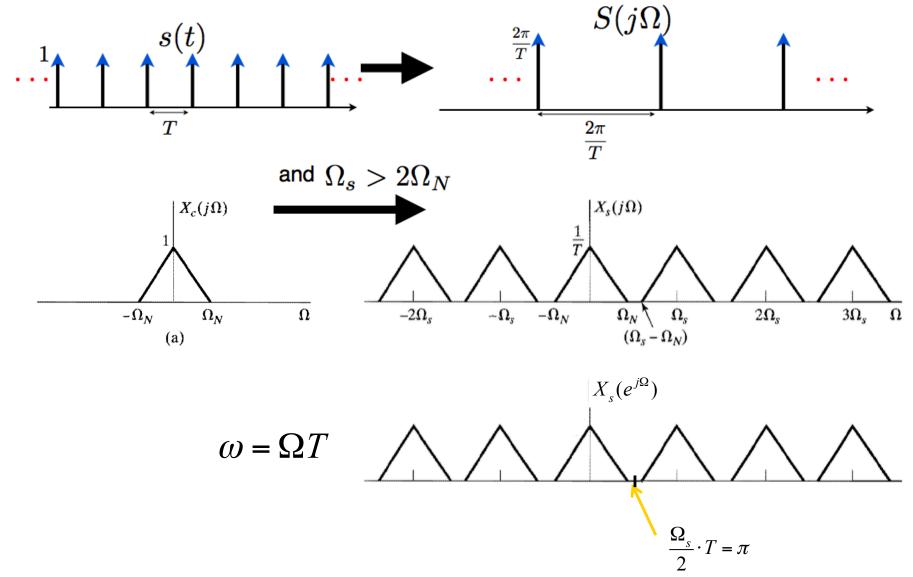
define impulsive sampling:



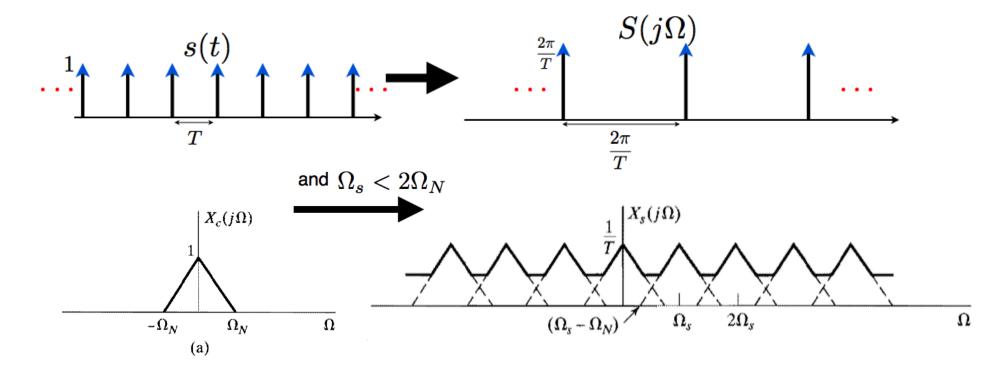
Continuous

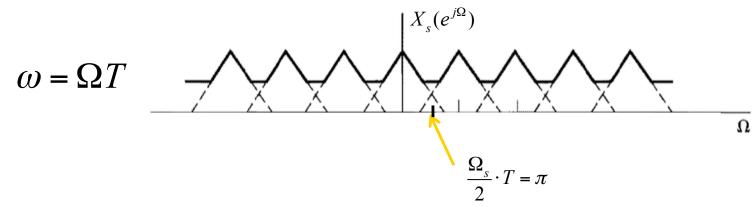
$$x_s(t) = \dots + x_c(0)\delta(t) + x_c(T)\delta(t - T) + \dots$$
$$x_s(t) = x_c \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

Frequency Domain Analysis



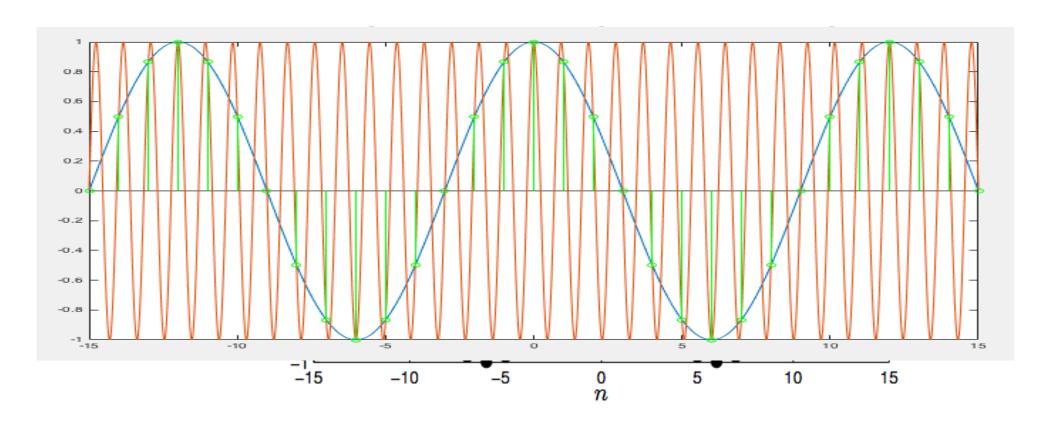
Frequency Domain Analysis





Aliasing Example

$$x_1[n] = \cos\left(\frac{\pi}{6}n\right)$$

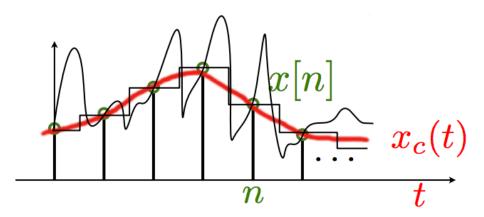


Reconstruction of Bandlimited Signals

■ Nyquist Sampling Theorem: Suppose $x_c(t)$ is bandlimited. I.e.

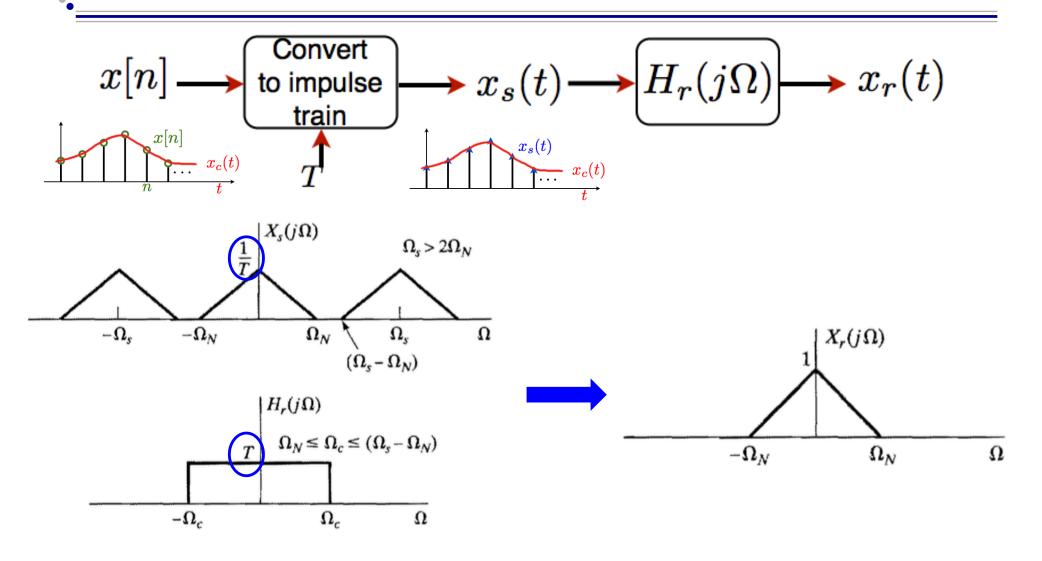
$$X_c(j\Omega) = 0 \ \forall \ |\Omega| \ge \Omega_N$$

- □ If $\Omega_s \ge 2\Omega_N$, then $x_c(t)$ can be uniquely determined from its samples $x[n] = x_c(nT)$
- Bandlimitedness is the key to uniqueness



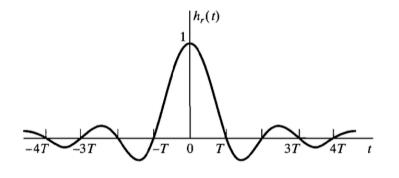
Mulitiple signals go through the samples, but only one is bandlimited within our sampling band

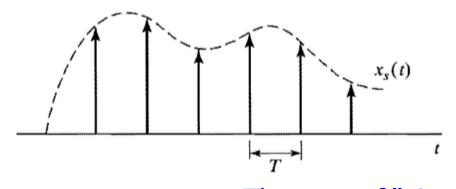
Reconstruction in Frequency Domain

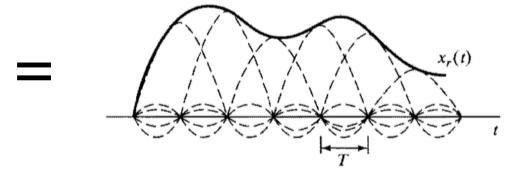


Reconstruction in Time Domain

$$x_r(t) = x_s(t) * h_r(t) = \left(\sum_n x[n]\delta(t - nT)\right) * h_r(t)$$
$$= \sum_n x[n]h_r(t - nT)$$

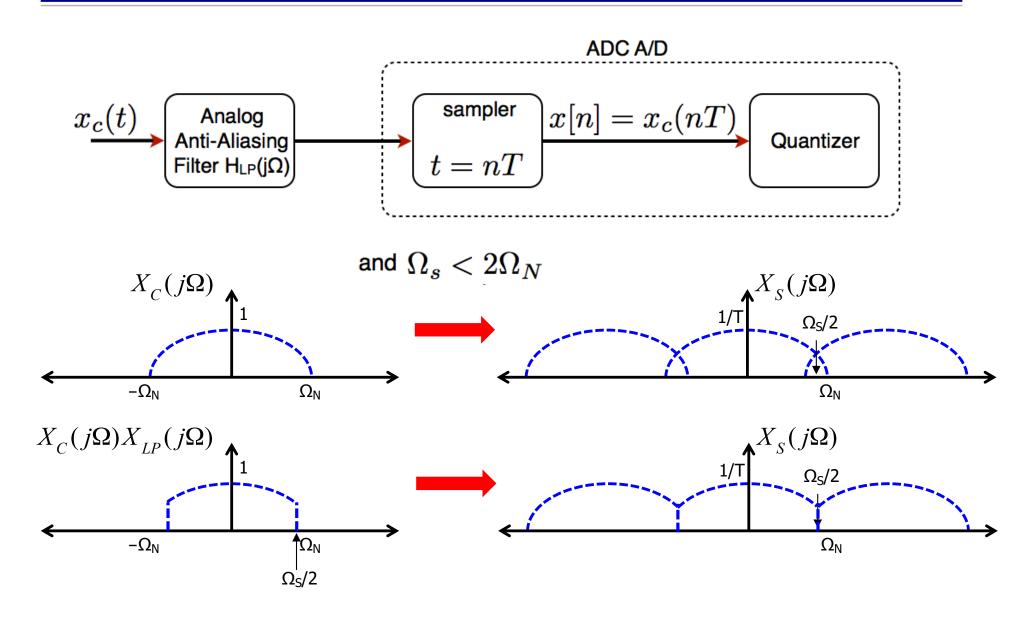






The sum of "sincs" gives $x_r(t) \rightarrow$ unique signal that is bandlimited by sampling bandwidth

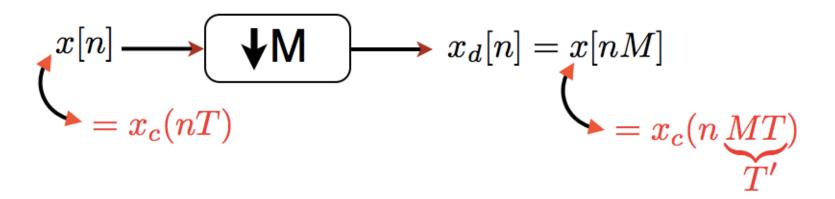
Anti-Aliasing Filter



Rate Re-Sampling

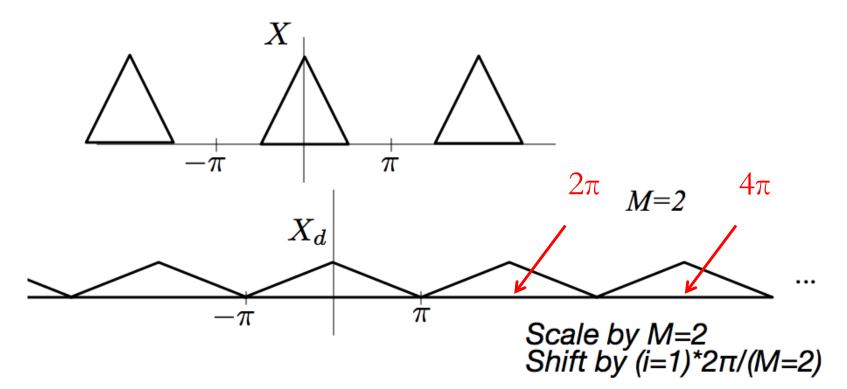
Downsampling

Definition: Reducing the sampling rate by an integer number



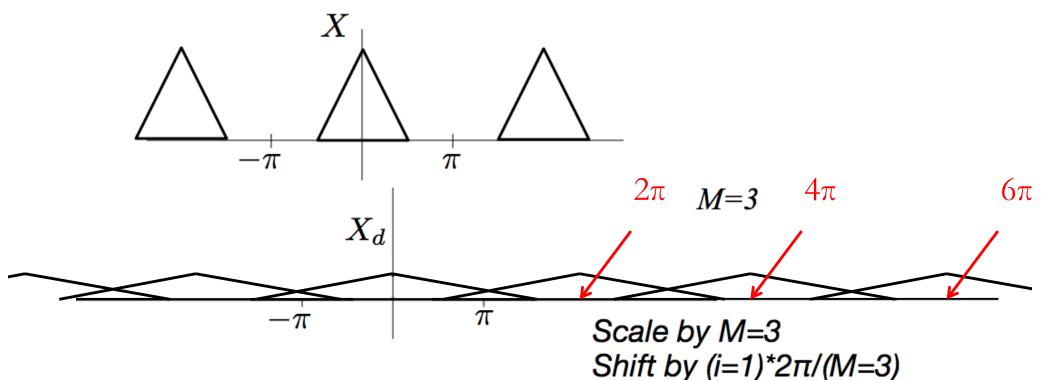
Example: M=2

$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j(\frac{\boldsymbol{w}}{M} - \frac{2\pi}{M}i)}\right)$$



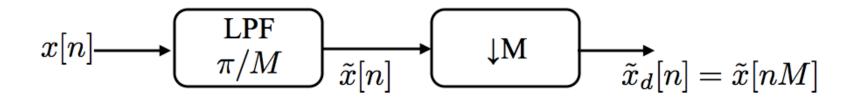
Example: M=3

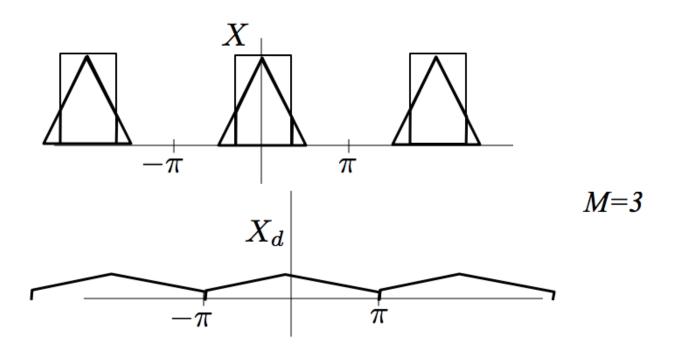
$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j(\frac{\boldsymbol{w}}{M} - \frac{2\pi}{M}i)}\right)$$



Shift by $(i=2)*2\pi/(M=3)$

Example: M=3 w/ Anti-aliasing





Upsampling

Definition: Increasing the sampling rate by an integer number

$$x[n] = x_c(nT)$$

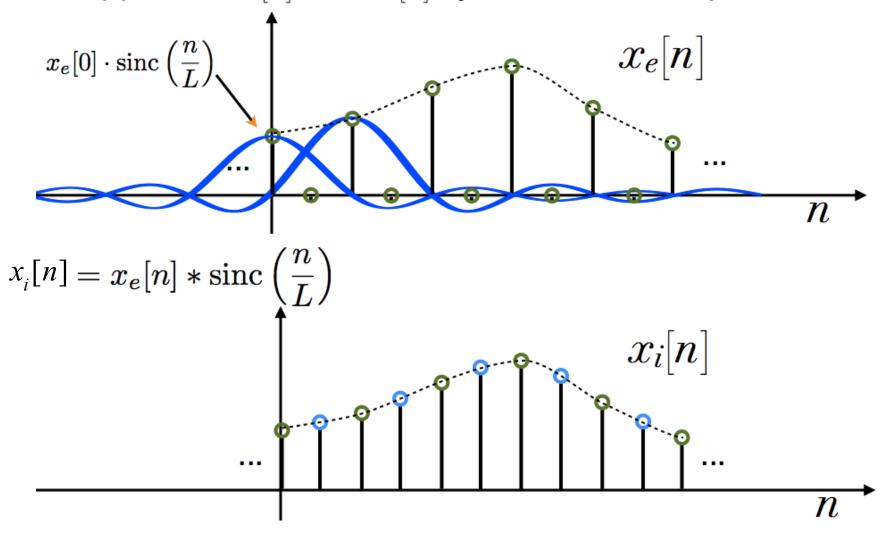
$$x_i[n] = x_c(nT') \quad \text{where} \quad T' = \frac{T}{L} \qquad \quad L \text{ integer}$$

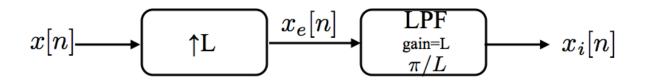
Obtain $x_i[n]$ from x[n] in two steps:

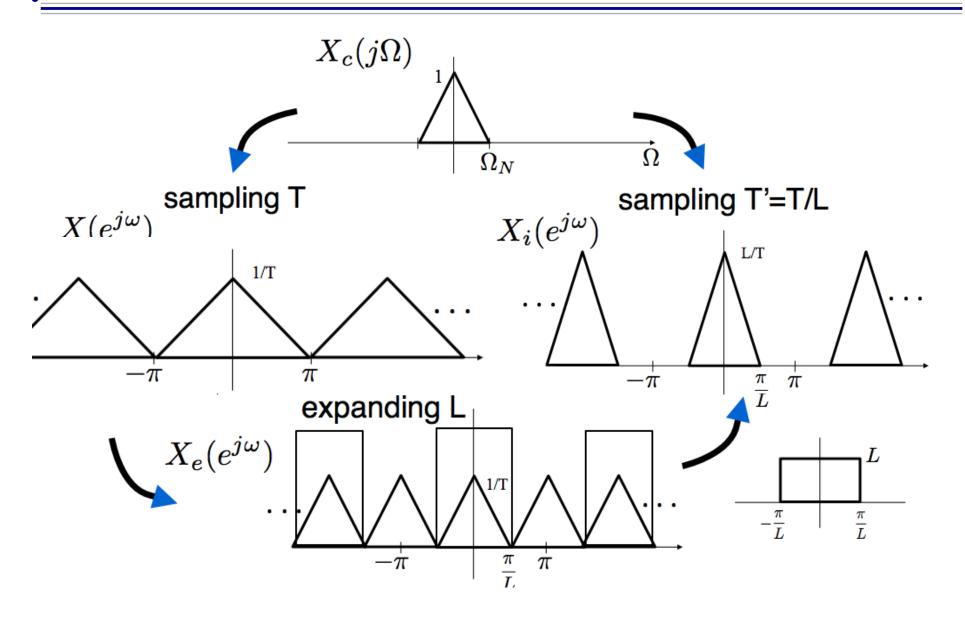
(1) Generate:
$$x_e[n] = \left\{ \begin{array}{ll} x[n/L] & n=0, \pm L, \pm 2L, \cdots \\ 0 & \text{otherwise} \end{array} \right.$$

Upsampling

(2) Obtain $x_i[n]$ from $x_e[n]$ by bandlimited interpolation:

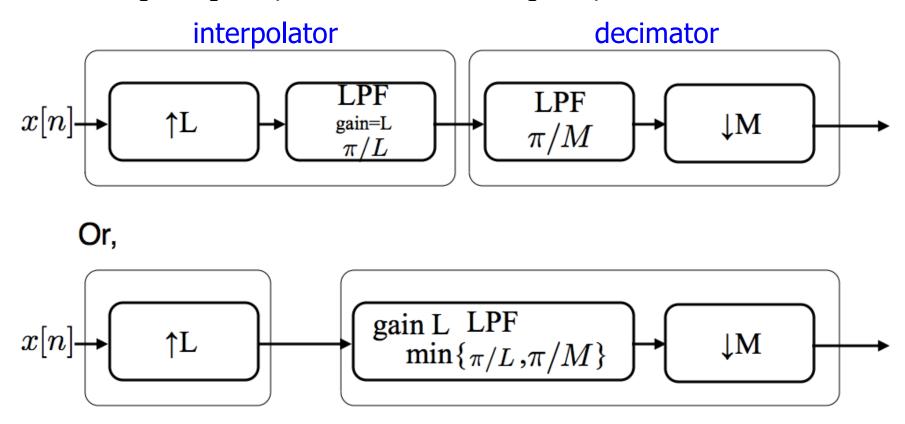




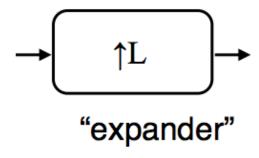


Non-integer Sampling

- □ T'=TM/L
 - Upsample by L, then downsample by M

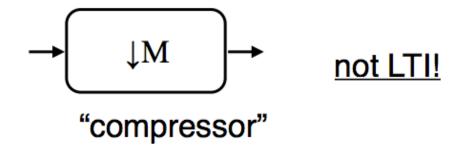


Interchanging Operations



Upsampling

- -expanding in time
- -compressing in frequency



Downsampling

- -compressing in time
- -expanding in frequency

Interchanging Operations - Summary

Filter and expander

Expander and expanded filter*

$$x[n] \rightarrow \underbrace{H(z)} \rightarrow \underbrace{\uparrow L} \rightarrow y[n] \quad \equiv \quad x[n] \rightarrow \underbrace{\uparrow L} \rightarrow \underbrace{H(z^L)} \rightarrow y[n]$$

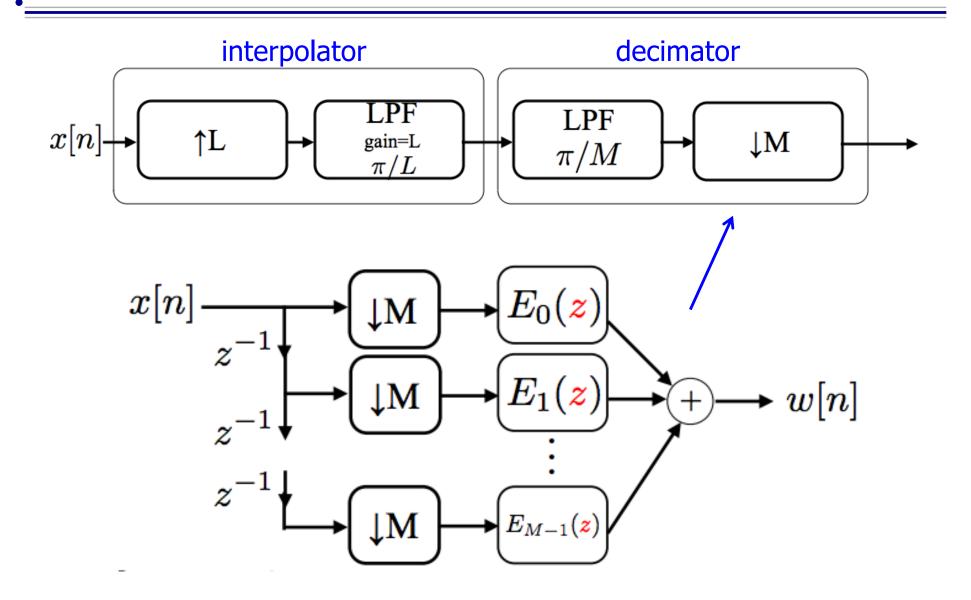
$$x[n] \longrightarrow \underbrace{\downarrow \mathbf{M}} \longrightarrow \underbrace{H(z)} \longrightarrow y[n] \qquad \equiv \qquad x[n] \longrightarrow \underbrace{H(z^M)} \longrightarrow \underbrace{\downarrow \mathbf{M}} \longrightarrow y[n]$$

Compressor and filter

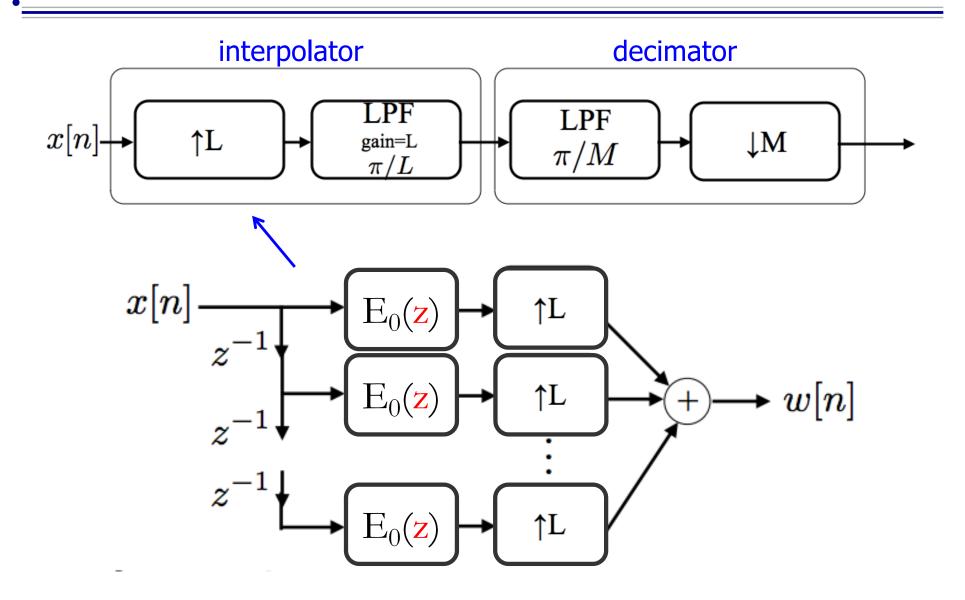
Expanded filter* and compressor

*Expanded filter = expanded impulse response, compressed freq response

Polyphase Implementation of Decimator

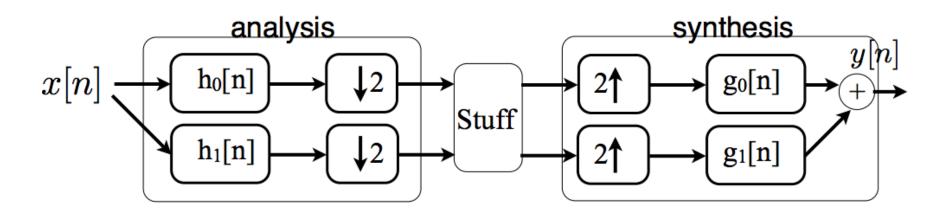


Polyphase Implementation of Interpolation



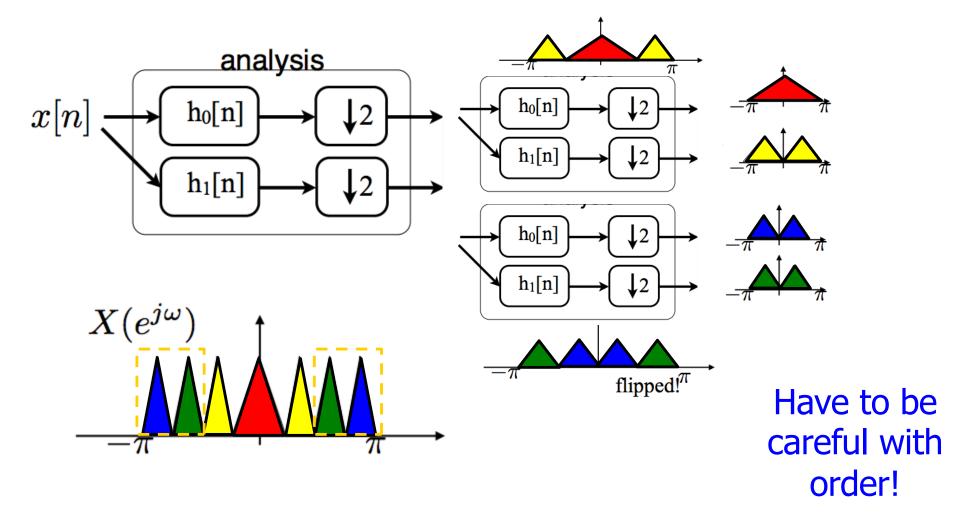
Multi-Rate Filter Banks

- Use filter banks to operate on a signal differently in different frequency bands
 - To save computation, reduce the rate after filtering
- ho h₀[n] is low-pass, h₁[n] is high-pass
 - Often $h_1[n] = e^{j\pi n} h_0[n]$ \leftarrow shift freq resp by π

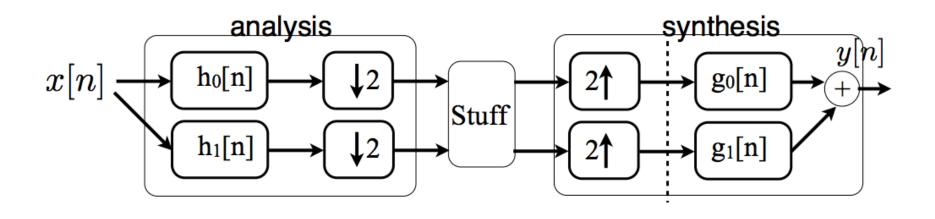


Multi-Rate Filter Banks

□ Assume h_0 , h_1 are ideal low/high pass with $ω_C = π/2$

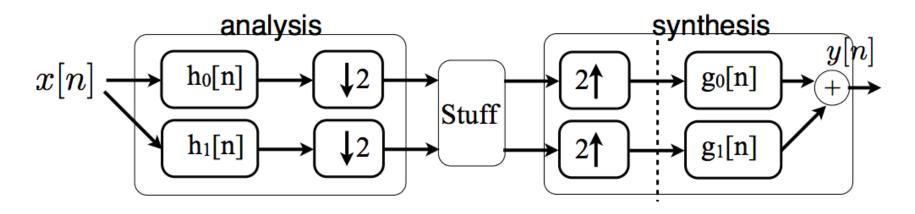


Perfect Reconstruction non-Ideal Filters



$$Y(e^{j\omega}) = \frac{1}{2} \left[G_0(e^{j\omega}) H_0(e^{j\omega}) + G_1(e^{j\omega}) H_1(e^{j\omega}) \right] X(e^{j\omega}) \\ + \frac{1}{2} \left[G_0(e^{j\omega}) H_0(e^{j(\omega-\pi)}) + G_1(e^{j\omega}) H_1(e^{j(\omega-\pi)}) \right] X(e^{j(\omega-\pi)}) \\ \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \qquad \downarrow \qquad$$

Quadrature Mirror Filters



Quadrature mirror filters

$$H_1(e^{j\omega}) = H_0(e^{j(\omega-\pi)})$$

 $G_0(e^{j\omega}) = 2H_0(e^{j\omega})$
 $G_1(e^{j\omega}) = -2H_1(e^{j\omega})$

Frequency Response of Systems

Frequency Response of LTI System

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

■ We can define a magnitude response

$$\left| Y(e^{j\omega}) \right| = \left| H(e^{j\omega}) \right| \left| X(e^{j\omega}) \right|$$

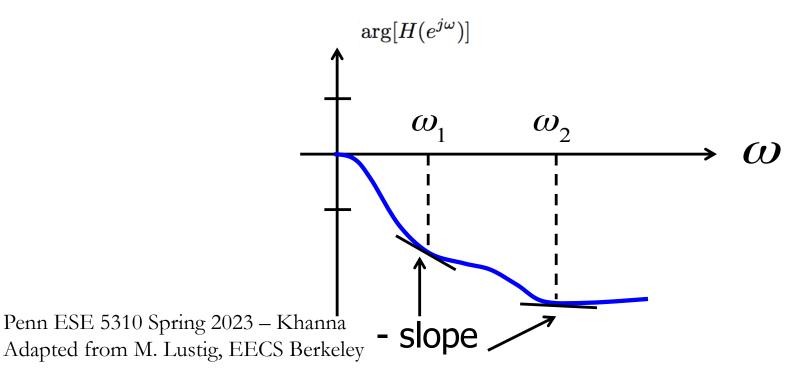
And a phase response

$$\angle Y(e^{j\omega}) = \angle H(e^{j\omega}) + \angle X(e^{j\omega})$$

Group Delay

 General phase response at a given frequency can be characterized with group delay, which is related to phase

$$\operatorname{grd}[H(e^{j\omega})] = -\frac{d}{d\omega} \{ \operatorname{arg}[H(e^{j\omega})] \}$$



LTI System

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

Example: y[n] = x[n] + 0.1y[n-1] | Stable and causal if all poles inside

Stable and causal unit circle

$$H(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \ldots + a_N z^{-N}} = \frac{b_0}{a_0} \frac{\prod_{k=1}^{M} (1 - c_k z^{-1})}{\prod_{k=1}^{N} (1 - d_k z^{-1})}$$

- □ Transfer function is not unique without ROC
 - If diff. eq represents LTI and causal system, ROC is region outside all singularities
 - If diff. eq represents LTI and stable system, ROC includes unit circle in z-plane

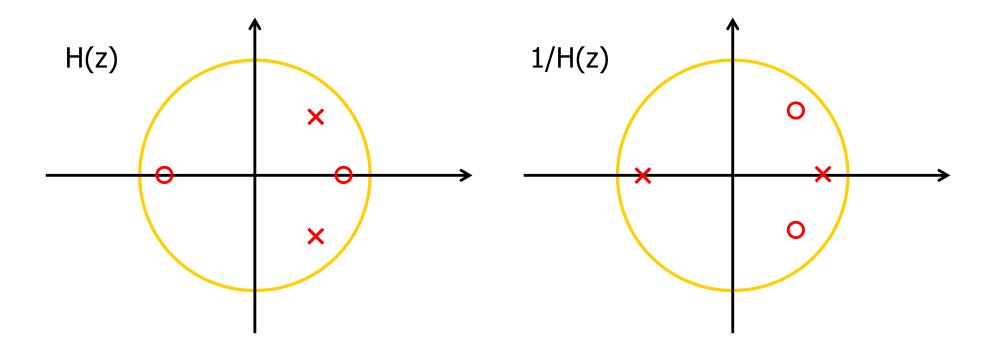
General All-Pass Filter

□ d_k =real pole, e_k =complex poles paired w/conjugate, e_k^*

$$H_{\rm ap}(z) = A \prod_{k=1}^{M_r} \frac{z^{-1} - d_k}{1 - d_k z^{-1}} \prod_{k=1}^{M_c} \frac{(z^{-1} - e_k^*)(z^{-1} - e_k)}{(1 - e_k z^{-1})(1 - e_k^* z^{-1})}$$

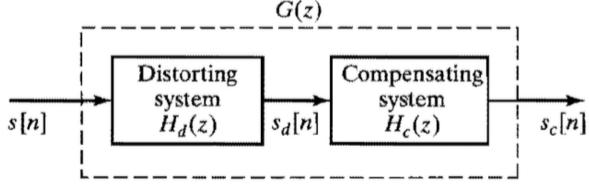
Minimum-Phase Systems

- Definition: A stable and causal system H(z) (i.e. poles inside unit circle) whose inverse 1/H(z) is also stable and causal (i.e. zeros inside unit circle)
 - All poles and zeros inside unit circle



Min-Phase Decomposition Purpose

■ Have some distortion that we want to compensate for:



- \Box If $H_d(z)$ is min phase, easy:
 - $H_c(z)=1/H_d(z)$ ← also stable and causal
- □ Else, decompose $H_d(z)=H_{d,min}(z)$ $H_{d,ap}(z)$
 - $H_c(z)=1/H_{d,min}(z)$ → $H_d(z)H_c(z)=H_{d,ap}(z)$
 - Compensate for magnitude distortion

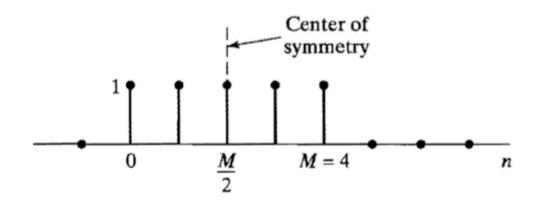
Generalized Linear Phase

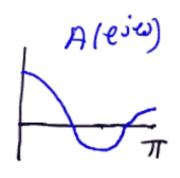
□ An LTI system has generalized linear phase if frequency response $H(e^{j\omega})$ can be expressed as:

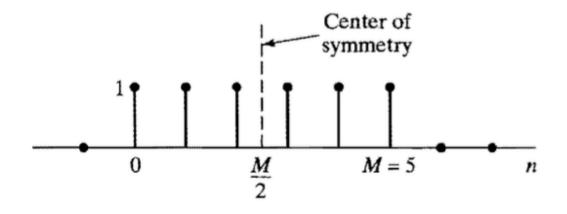
$$H(e^{j\omega}) = A(\omega)e^{-j\omega\alpha+j\beta}, \ |\omega| < \pi$$

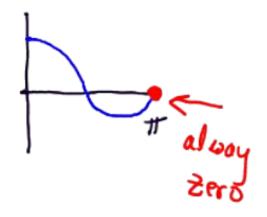
- ullet Where $A(\omega)$ is a real function.
- □ What is the group delay?

FIR GLP: Type I and II

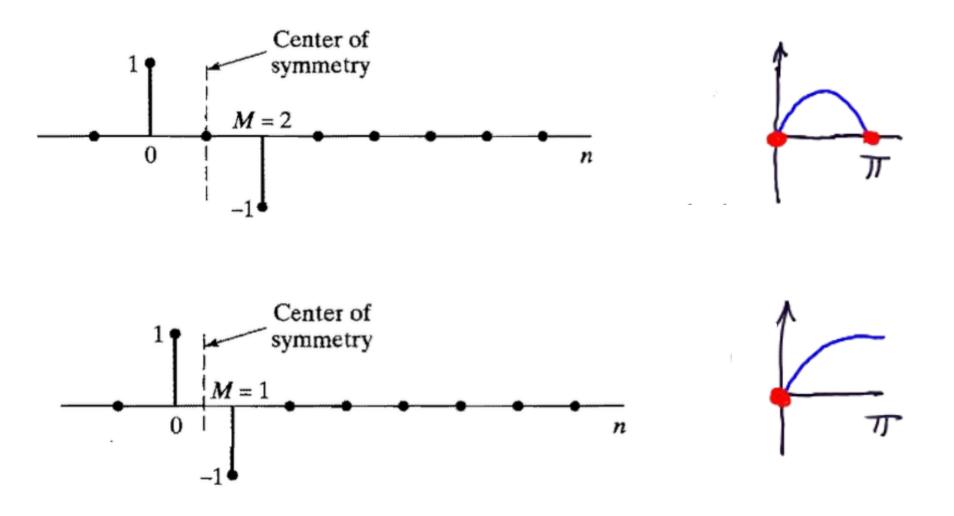








FIR GLP: Type III and IV



Zeros of GLP System

□ FIR GLP System Function

$$H(z) = \sum_{n=0}^{M} h[n]z^{-n}$$

Real system \rightarrow zeros occur in conjugate-reciprocal groups of 4

$$(1 - re^{j\theta}z^{-1})(1 - re^{-j\theta}z^{-1})(1 - r^{-1}e^{j\theta}z^{-1})(1 - r^{-1}e^{-j\theta}z^{-1})$$

 \square If zero is on unit circle (r=1)

$$(1 - e^{j\theta}z^{-1})(1 - e^{-j\theta}z^{-1}).$$

□ If zero is real and not on unit circle $(\theta=0)$

$$(1 \pm rz^{-1})(1 \pm r^{-1}z^{-1}).$$

FIR Filter Design

FIR Design by Windowing

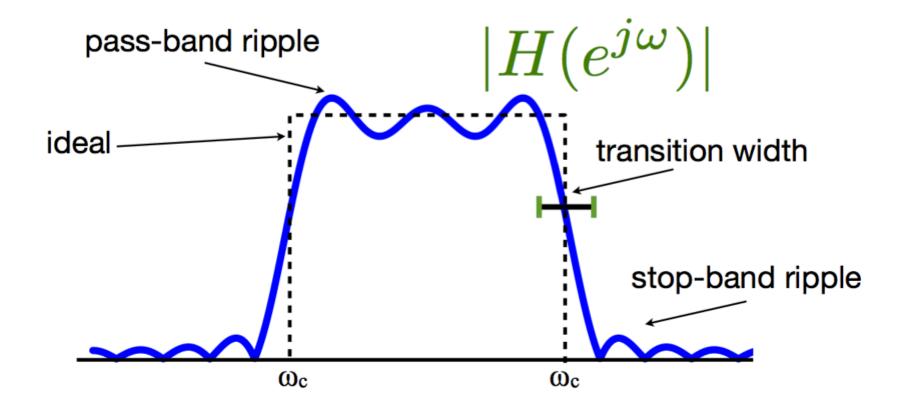
 $\hfill \Box$ Given desired frequency response, $H_d(e^{j\omega})$, find an impulse response

$$h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(\underline{e^{j\omega}}) e^{j\omega n} d\omega \qquad \text{ideal}$$

□ Obtain the Mth order causal FIR filter by truncating/windowing it

$$h[n] = \left\{ \begin{array}{ll} h_d[n]w[n] & 0 \le n \le M \\ 0 & \text{otherwise} \end{array} \right\}$$

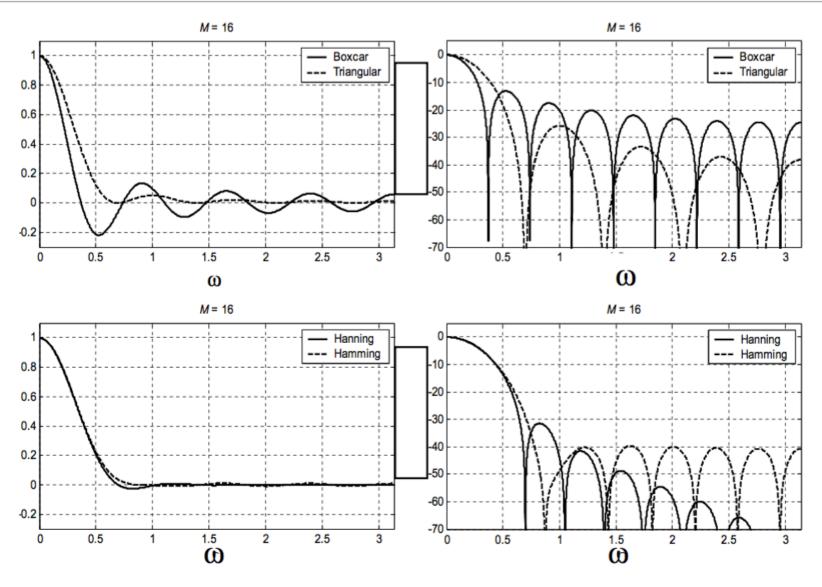
FIR Design by Windowing



Tapered Windows

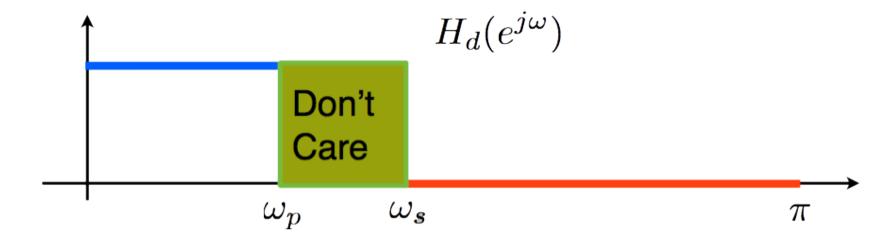
Name(s)	Definition	MATLAB Command	Graph (M = 8)
Hann	$w[n] = \begin{cases} \frac{1}{2} \left[1 + \cos\left(\frac{\pi n}{M/2}\right) \right] & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hann (M+1)	hann(M+1), M = 8 1 0.8 0.4 0.2 0-5 0 0 0 5
Hanning	$w[n] = \begin{cases} \frac{1}{2} \left[1 + \cos\left(\frac{\pi n}{M/2 + 1}\right) \right] & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hanning (M+1)	hanning(M+1), M = 8
Hamming	$w[n] = \begin{cases} 0.54 + 0.46 \cos\left(\frac{\pi n}{M/2}\right) & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hamming (M+1)	hamming(M+1), M = 8

Tradeoff – Ripple vs. Transition Width



Penn ESE 5310 Spring 2023 – Khanna Adapted from M. Lustig, EECS Berkeley

Optimality



Least Squares:

minimize
$$\int_{\omega \in \text{care}} |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega$$

Variation: Weighted Least Squares:

minimize
$$\int_{-\pi}^{\pi} W(\omega) |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega$$

Min-Max Ripple Design

- ullet Recall, $\tilde{H}(e^{j\omega})$ is symmetric and real
- □ Given $ω_p$, $ω_s$, M, find δ,

minimize

δ

Subject to:

$$1 - \delta \le \tilde{H}(e^{j\omega_k}) \le 1 + \delta \qquad 0 \le \omega_k \le \omega_p$$
$$-\delta \le \tilde{H}(e^{j\omega_k}) \le \delta \qquad \omega_s \le \omega_k \le \pi$$
$$\delta > 0$$

- $lue{}$ Formulation is a linear program with solution δ , h_+
- A well studied class of problems

IIR Filter Design

IIR Filter Design

- Transform continuous-time filter into a discretetime filter meeting specs
 - Pick suitable transformation from s (Laplace variable) to z
 (or t to n)
 - Pick suitable analog $H_{c}(s)$ allowing specs to be met, transform to H(z)
- □ We've seen this before... impulse invariance

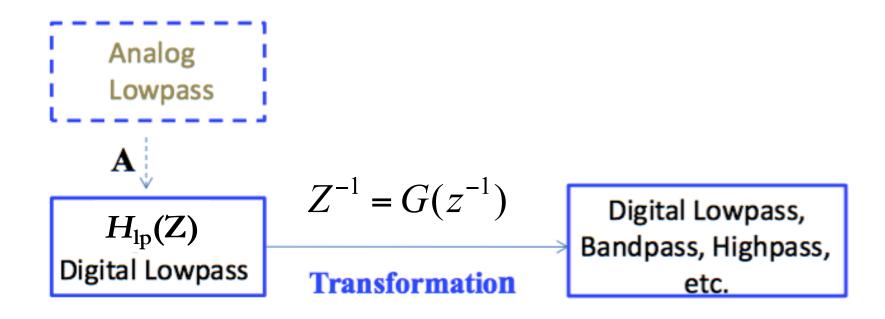
Bilinear Transformation

The technique uses an algebraic transformation between the variables s and z that maps the entire $j\Omega$ -axis in the s-plane to one revolution of the unit circle in the z-plane.

$$s = \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right);$$

$$H(z) = H_c \left(\frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \right).$$

Transformation of DT Filters



□ Map Z-plane → z-plane with transformation G

$$H(z) = H_{lp}(Z)|_{Z^{-1}=G(z^{-1})}$$

General Transformations

TABLE 7.1 TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPE OF CUTOFF FREQUENCY θ_{p} TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

Filter Type	Transformations	Associated Design Formulas
Lowpass	$Z^{-1} = \frac{z^{-1} - \alpha}{1 - az^{-1}}$	$\alpha = \frac{\sin\left(\frac{\theta_p - \omega_p}{2}\right)}{\sin\left(\frac{\theta_p + \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Highpass	$Z^{-1} = -\frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$	$\alpha = -\frac{\cos\left(\frac{\theta_p + \omega_p}{2}\right)}{\cos\left(\frac{\theta_p - \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Bandpass	$Z^{-1} = -\frac{z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1}z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \cot\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right) \tan\left(\frac{\theta_p}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$
Bandstop	$Z^{-1} = \frac{z^{-2} - \frac{2\alpha}{1+k}z^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{1+k}z^{-2} - \frac{2\alpha}{1+k}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \tan\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right) \tan\left(\frac{\theta_p}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$

Discrete Fourier Transform

DFT

Discrete Fourier Transform

□ The DFT

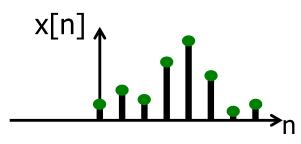
$$x[n]=rac{1}{N}\sum_{k=0}^{N-1}X[k]W_N^{-kn}$$
 Inverse DFT, synthesis $X[k]=\sum_{n=0}^{N-1}x[n]W_N^{kn}$ DFT, analysis

□ It is understood that,

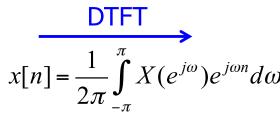
$$x[n] = 0$$
 outside $0 \le n \le N-1$
 $X[k] = 0$ outside $0 \le k \le N-1$

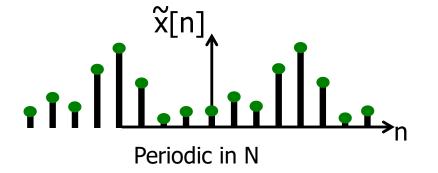
DFT Intuition

Time

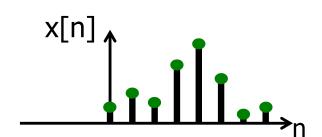


Transform



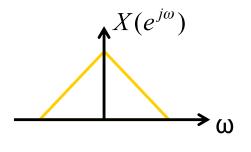


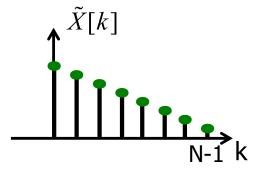
$$\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] W_N^{-kn}$$

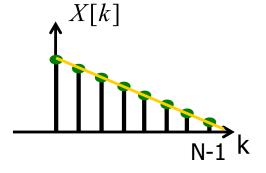


$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}$$

Frequency

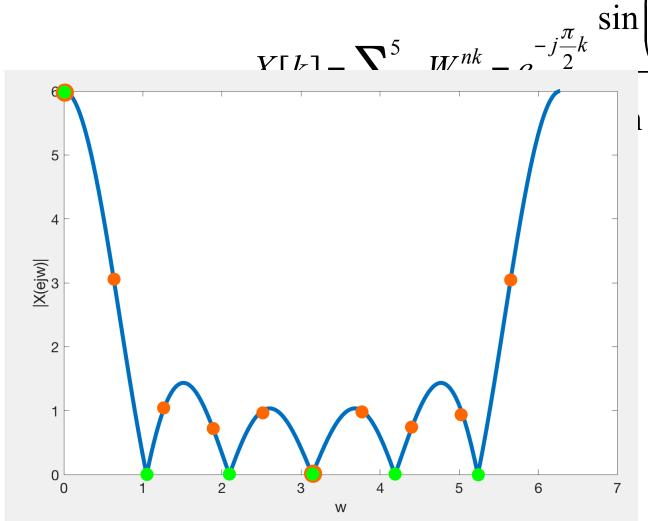






DFT vs DTFT

Back to example



Penn ESE 5310 Spring 2023 – Khanna Adapted from M. Lustig, EECS Berkeley "6-point" DFT
"10-point" DFT

Use fftshift to center around dc

Circular Convolution

 \blacksquare For $x_1[n]$ and $x_2[n]$ with length N

$$x_1[n] \otimes x_2[n] \leftrightarrow X_1[k] \cdot X_2[k]$$

Very useful!! (for linear convolutions with DFT)

Linear Convolution via Circular Convolution

Zero-pad x[n] by P-1 zeros

$$x_{\mathbf{zp}}[n] = \begin{cases} x[n] & 0 \le n \le L - 1\\ 0 & L \le n \le L + P - 2 \end{cases}$$

Zero-pad h[n] by L-1 zeros

$$h_{\mathrm{zp}}[n] = \left\{ egin{array}{ll} h[n] & 0 \leq n \leq P-1 \\ 0 & P \leq n \leq L+P-2 \end{array}
ight.$$

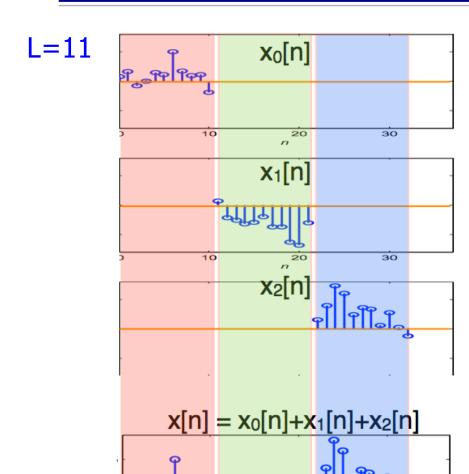
□ Now, both sequences are length M=L+P-1

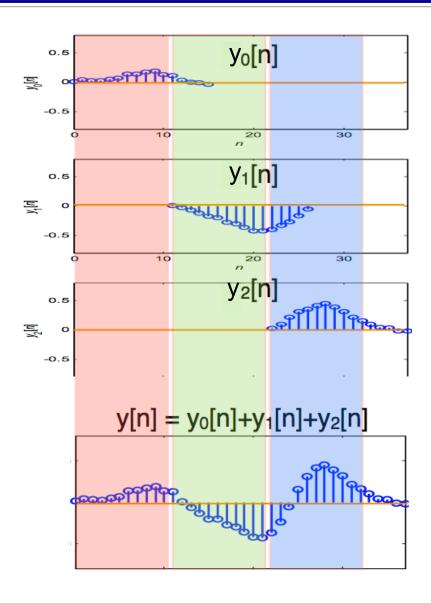
Block Convolution

Example: h[n] Impulse response, Length P=6 THE STATE OF THE S x[n] Input Signal, Length P=33 y[n] Output Signal, Length P=38

Example of Overlap-Add

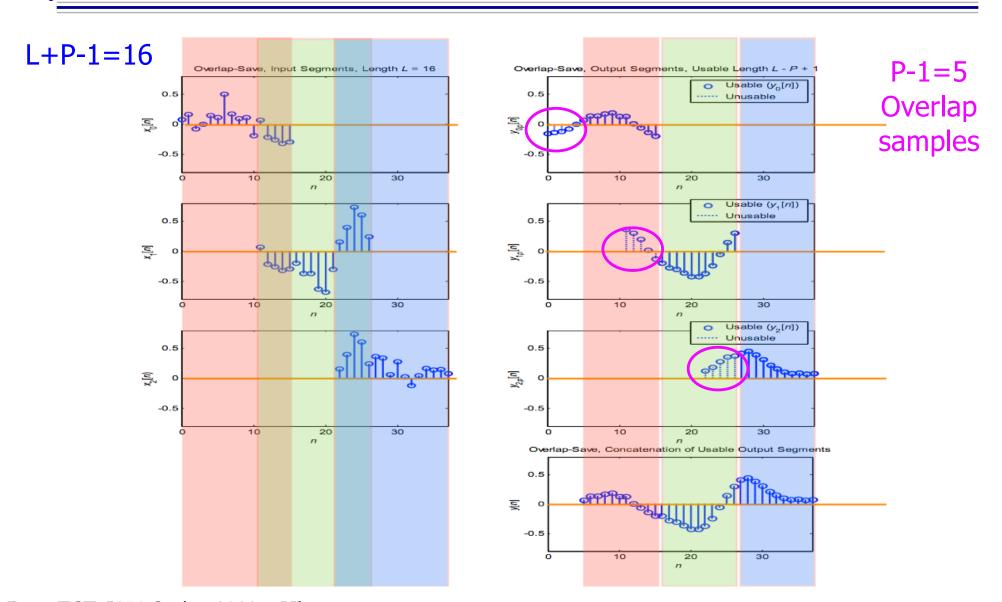
L+P-1=16





Penn ESE 5310 Spring 2023 – Khanna Adapted from M. Lustig, EECS Berkeley

Example of Overlap-Save



Penn ESE 5310 Spring 2023 – Khanna Adapted from M. Lustig, EECS Berkeley

Circular Conv. as Linear Conv. w/ Aliasing

$$x_{3p}[n] = \begin{cases} \sum_{r=-\infty}^{\infty} x_3[n-rN], & 0 \le n \le N-1, \\ 0, & \text{otherwise,} \end{cases}$$

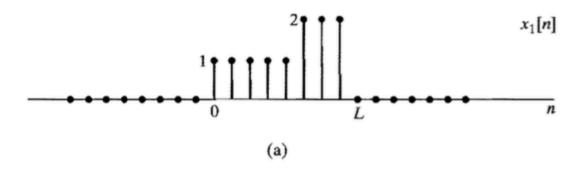
Therefore

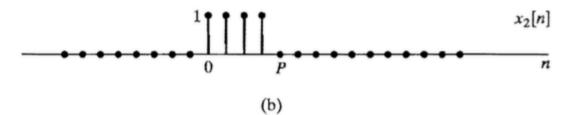
$$x_{3p}[n] = x_1[n] \otimes x_2[n]$$

□ The N-point circular convolution is the sum of linear convolutions shifted in time by N

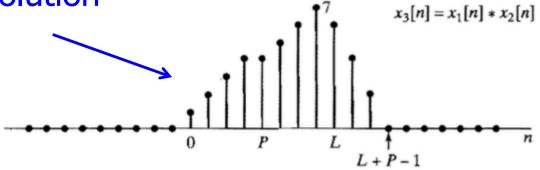
Example:

□ Let





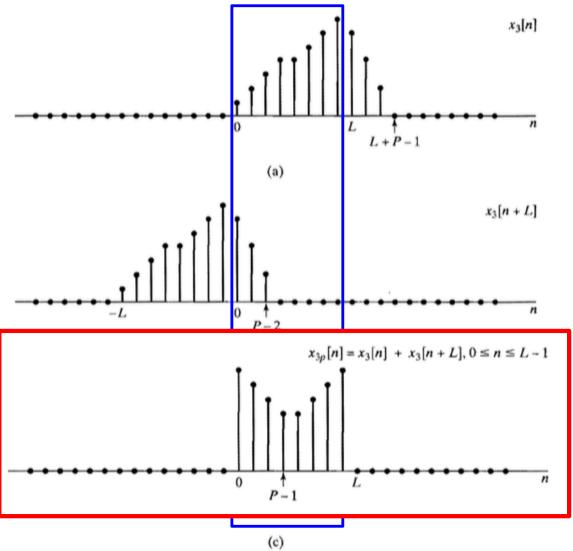
Linear convolution



□ What does the L-point circular convolution look like?

Example:

□ The L-shifted linear convolutions



Fast Fourier Transform

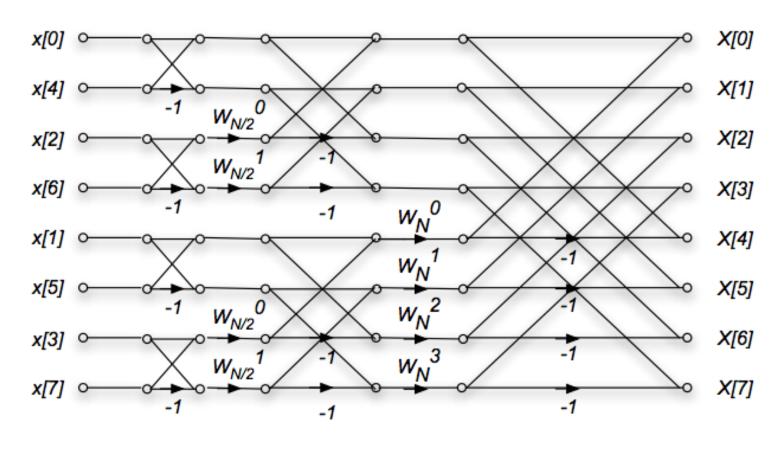
FFT

Fast Fourier Transform

- Enable computation of an N-point DFT (or DFT⁻¹) with the order of just N· log₂ N complex multiplications.
- Most FFT algorithms decompose the computation of a DFT into successively smaller DFT computations.
 - Decimation-in-time algorithms
 - Decimation-in-frequency
- Historically, power-of-2 DFTs had highest efficiency
- Modern computing has led to non-power-of-2 FFTs with high efficiency
- Sparsity leads to reduce computation on order K· logN

Decimation-in-Time FFT

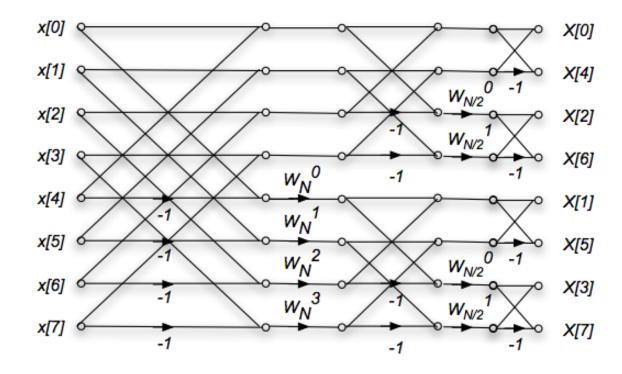
Combining all these stages, the diagram for the 8 sample DFT is:



- $3 = \log_2(N) = \log_2(8)$ stages
- 4=N/2=8/2 multiplications in each stage
 - 1st stage has trivial multiplication

Decimation-in-Frequency FFT

The diagram for and 8-point decimation-in-frequency DFT is as follows

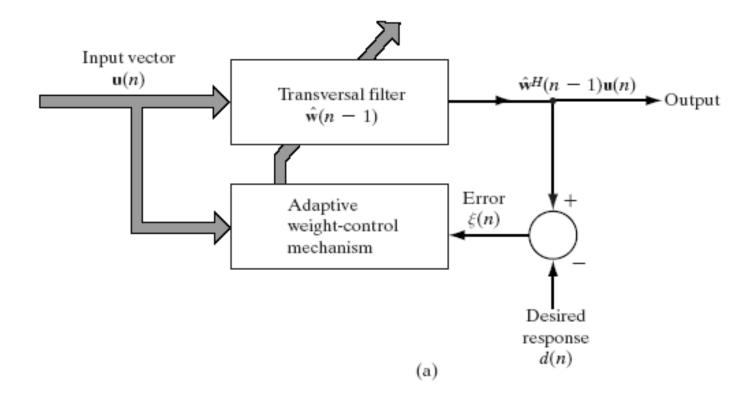


This is just the decimation-in-time algorithm reversed!

The inputs are in normal order, and the outputs are bit reversed.

Adaptive Filters

- Use LMS algorithm to update filter coefficients
- Applications like system ID, channel equalization,
 and signal prediction



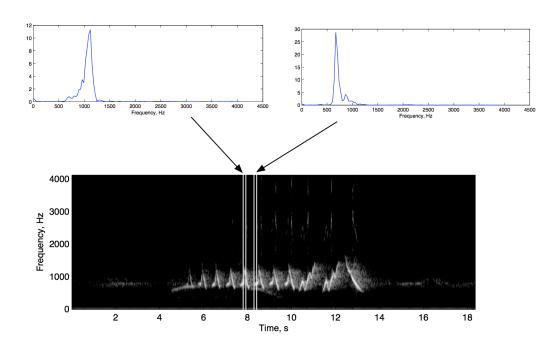
Spectral Analysis

- Frequency analysis with DFT
 - Nontrivial to choose sampling frequency, signal length, window type, DFT length (zero-padding)
 - Get accurate representation of DFT

Parameter	Symbol	Units
Sampling interval	T	S
Sampling frequency	$\Omega_s=rac{2\pi}{T}$	rad/s
Window length	L	unitless
Window duration	$L \cdot T$	S
DFT length	$N \geq L$	unitless
DFT duration	$N \cdot T$	S
Spectral resolution	$\frac{\Omega_s}{L} = \frac{2\pi}{L \cdot T}$	rad/s
Spectral sampling interval	$\frac{\Omega_s}{N} = \frac{2\pi}{N \cdot T}$	rad/s

Spectral Analysis

- □ Time-dependent Fourier transform
 - Includes temporal information about signal
 - Useful for many applications
 - Analysis, Compression, Denoising, Detection, Recognition, Approximation (Sparse)



Admin

- □ Final Project due 4/26 Tomorrow!
 - TA advice "The report takes time. Leave time for it."
- Office hour schedule for rest of semester (See Ed for zoom links)
 - 25th T Zhihan, 10-11:30 am and 7-8:30 pm
 - 26th W Tania, 1-2:30 pm (Levine 262)
 - 27th Th Tania 12-1pm, Shuang 5-7:30pm (LRSM 208)
 - 28th F Shuang 3-4pm
 - 29th Sa Shuang 2-4pm zoom
 - 1st M Zhihan, 10-11:30 am
- □ Final Exam May 1st

Admin - Final Exam Admin

- □ Final Exam -5/1 (6-8pm)
 - Location DRLB A2
 - Cumulative covers lec 1-23
 - Except data converters, noise shaping (lec 12)
 - Closed book
 - Data/Equation sheet provided by me (see old exams)
 - 2 8.5x11 two-sided cheat sheets allowed
 - Calculators allowed, no smart phones
 - Can't share. Bring your own.
 - Old exams posted
 - Disclaimers: old exams had different coverage for different years
 - TA Review session 4/28 (Fri) 1-2pm in Towne 307
 - Will not be recorded