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Discrete Time Signals and Systems, Pt 2
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I.ecture Outline

0 Discrete Time Systems
a System Properties
a LTI Systems

0 Difference Equations
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Discrete-Time Systems

Penn



Discrete Time Systems

DEFINITION

A discrete-time system 7{ is a transformation (a rule or formula) that maps a
discrete-time input signal z into a discrete-time output signal y

y = H{z}

T — ’}{ - y

0 Systems manipulate the information in signals

a0 Examples

Speech recognition system that converts acoustic waves 1nto text
Radar system transforms radar pulse into position and velocity
fMRI system transform frequency into images of brain activity

Moving average system smooths out the day-to-day variability in a
stock price
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System Properties

0 Causality
= y[n] only depends on x[m] for m<=n
0 Linearity

= Scaled sum of arbitrary inputs results in output that 1s a scaled sum of
corresponding outputs

= Ax[n]+Bx,[n] 2 Ay[n]+By;|n]
o Memoryless
= y[n] depends only on x[n]
a Time Invariance
= Shifted input results in shifted output
= x[n-q] 2 y[n-q]
o BIBO Stability

= A bounded input results in a bounded output (le. max signal value
exists for output if max)
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Proving Linearity

0 A system that is not linear is called nonlinear

0 To prove that a system is linear, you must prove rigorously that it has both the
scaling and additive properties for arbitrary input signals

0 To prove that a system is nonlinear, it is sufficient to exhibit a counterexample
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Linearity Example: Moving Average ®

zfn] — H | yln] = 5(2ln] + 2 - 1)

0 Scaling: (Strategy to prove — Scale input x by o, compute output y via the formula
at top and verify that is scaled as well)
= et

z'[n] = azln], aeC

Penn ESE 5310 Spring 2023 - Khanna



Linearity Example: Moving Average

zfn] — H | yln] = 5(2ln] + 2 - 1)

0 Scaling: (Strategy to prove — Scale input x by o, compute output y via the formula
at top and verify that is scaled as well)
= et

z'[n] = azln], aeC

= Lety’ denote the output when x’ is input

= Then

y'[n] = %(m'[n]—}—:z:'[n—l]) = %(am[n]+aa:[n—1]) = a(%(m[n]—i—:z:[n—l])) = ay[n] v
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Linearity Example: Moving Average ®

zln] — H [yl = 5(zln] +zn - 1))

0 Additive: (Strategy to prove — Input two signals into the system and verify the
output equals the sum of the respective outputs

m Let
x'[n] = z1[n] + z2[n]
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Linearity Example: Moving Average

zn] — H | yln] = 3(zn] + zn - 1])

0 Additive: (Strategy to prove — Input two signals into the system and verify the
output equals the sum of the respective outputs

m  Let
x'[n] = z1[n] + z2[n]

= Lety’/y,/y, denote the output when x’/x;/x, is input

[ | Then

y'[n] = S(@[n+2'[n-1]) = %({wx[n]+w2[n]}+{w1[n—1]+:v2[n—1]})

(SR el S

(wa[n] + 21l — 1]) + 5 (@al] + zaln — 1) = wala] +paln) v
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Example: Squaring

zn] — H

— y[n] = (z[n])’
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Example: Squaring 1s Nonlinear

zln] — H | yn] = (z[n])?

0 Additive: Input two signals into the system and see what happens

m Let
yiln] = (@[n))*,  y2[n] = (22[n])”
= Set
z'[n] = z1[n] + z2[n]
= Then

y'In] = (¢'[])° = (ziln] +22[n))® = (21[n])? + 2z1[n]za[n] + (z2[n])® # ya[n] + y2[n]
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Time-Invariant Systems

A system H processing infinite-length signals is time-invariant (shift-invariant) if
a time shift of the input signal creates a corresponding time shift in the output
signal

zn] — H —  yln]

8
=
=
i
(@]

zn—q] —| H |— yln—qd

0 Intuition: A time-invariant system behaves the same no matter when the input is
applied

0 A system that is not time-invariant is called time-varying
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Example: Moving Average

zfn] — H [ yln] = 3(z[n] + 20 - 1))

o Let
z'ln]=zn—gq|], q€Z

0 Lety’ denote the output when x’ 1s input
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Example: Moving Average

zfn] — H [ yln] = 5(z[n] + 20— 1))

o Let
z'ln]=zn—gq|], q€Z

0 Lety’ denote the output when x’ 1s input

O Then

Vin) = Sl +e'ln—1) = J(eh—g+aln—g-1)) = yh—g ¢
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Causal Systems

A system H is causal if the output y[n] at time n depends only the input z[m| for
times m < n. In words, causal systems do not look into the future

8
E
=
T
w
Q

0 Forward difference system:

= y[n]=x[n+1]-x[n] causal?

a Backward difference system:

= y[n]=x[n]-x[n-1] causal’
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Stability

0 BIBO Stability
= Bounded-input bounded-output Stability

An LTI system is bounded-input bounded-output (BIBO) stable if a bounded
input  always produces a bounded output y

DEFINITION

boundedz — h [— bounded y

m Bounded input and output means ||z||. < 0o and ||y/|e < o0,
or that there exist constants A, C < oo such that |z[n]| < A and |y[n]| < C for all n

y[n

z[n] ]
" E— h — 2
w,,T?TTTTTTTTUThf‘lw ;{".'T ",fTiT..T T T TLT",QLT !

15 10 5 0 5 10 15 15 10 5 0 5 10 15
n n
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Examples

0 Causal? Linear? Time-invariant? Memoryless?
BIBO Stable?

0 Time Shift:
= yln]=x[n-m]

0 Accumulator:

k=—OO

0 Compressor (M>1):
yln]=x[Mn]
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Non-Linear System Example

0 Median Filter
s y[n]=MED{x[n-k], ...x[n+k]}

s [etk=1
= y[n]=MED{x|n-1], x[n], x[n+1]}
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Spectrum of Speech
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Spectrum of Speech

Speech

Corrupted =

Speech




Low Pass Filtering
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Speech 1n Time

Corrupted :
Speech . J/

.

n/

~

L
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Low Pass Filtering

S p—

Corrupted |

Speech 0 ]/

-05 F

1L

.
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T —
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Median Filtering

-y
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L'TT Systems

DEFINITION

A system # is linear time-invariant (LTI) if it is both linear and time-invariant

o LTT system can be completely characterized by its impulse

response
06— H

_.)h

0 Then the output for an arbitrary input is a sum of weighted,

delay impulse responses

Tr — h — Y
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yln] = ) hin—m|z[m]

m=—0oQ

yln]=x[n]=*h[n]
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Convolution

o Convolution formula:

y[n] = x[n| * h{n] Z h[n — m| z[m]

m=—00
a0 Convolution method:
= 1) Time reverse the impulse response and shift it # time steps to the
right
= 2) Compute the inner product between the shifted impulse response
and the input vector

= Repeat for evey 7
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Convolution Example

Z hln — m] z[m]

Tmn=—0o0

0 Convolve a unit pulse with itself

Penn ESE 5310 Spring 2023 - Khanna
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Convolution 1s Commutative

o Convolution 1s commutative:

rxh =

h *x

0 These block diagrams are equivalent

I —

h

_)y

h —

T

._)y

0 Implication: pick either / or x to tlip and shift when

convolving
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LLTT Systems 1n Series

0 Impulse response of the cascade of two LTI systems:

Ir — hl
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h2 — Y

r —

hl*h2
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LLTT Systems 1n Series

0 Impulse response of the cascade of two LTI systems:

I — hl h2 — Y

I hl*h2 — Y

a Proot by picture

d— h1 F—hi — hy — hyxho
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LLTT Systems 1n Parallel

0 Impulse response of the parallel connection of two LTI
systems:

|

h1+h2 —

A

-
ERr
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Causal System Revisited

A system 7 is causal if the output y[n| at time n depends only the input z[m] for
times m < n. In words, causal systems do not look into the future

DEFINITION

a0 An LTT system is causal if its impulse response is causal:
hin] =0forn <0

h(n] = a=0.8

"uln],
IO (LTI

R

-8 -6 -4 -2
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Causal System Revisited

A system 7 is causal if the output y[n| at time n depends only the input z[m] for
times m < n. In words, causal systems do not look into the future

=
=
=
=
™
a

a0 An LTT system is causal if its impulse response is causal:
hin] =0forn <0

1 hin] = a™uln], a=0.8
0.5
J......,{ITTTTT'Pv
-8 -6 -4 -2 0 2 4 6 8

I

o To prove, note that the convolution does not look into the
future 1f the impulse response is causal

yln] = Z h[n — m] z[m)| h[n — m| = 0 when m > n,

m=—0oc
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Duration of Impulse

An LTI system has a finite impulse response (FIR) if the duration of its impulse
response h is finite

DEFINITION

Penn ESE 5310 Spring 2023 - Khanna
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Duration of Impulse

An LTI system has a finite impulse response (FIR) if the duration of its impulse
response h is finite

DEFINITION

a0 Example: Moving average

yln] = H{z[n]} = 5 (z[n] +=z[n—1])

Penn ESE 5310 Spring 2023 - Khanna
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Duration of Impulse

An LTI system has a finite impulse response (FIR) if the duration of its impulse
response h is finite

DEFINITION

a0 Example: Moving average

yln] = H{z[n]} = 5 (z[n] +=z[n—1])

h(n] = %(5[7&] +4[n — 1])

Penn ESE 5310 Spring 2023 - Khanna
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Duration of Impulse

An LTI system has an infinite impulse response (IIR) if the duration of its impulse
response h is infinite

DEFINITION

Penn ESE 5310 Spring 2023 - Khanna

39



Duration of Impulse

An LTI system has an infinite impulse response (IIR) if the duration of its impulse
response h is infinite

DEFINITION

a0 Example: Recursive average

yln] = H{z[nl} = z[n]+ayln—1]

Penn ESE 5310 Spring 2023 - Khanna
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Duration of Impulse

An LTI system has an infinite impulse response (IIR) if the duration of its impulse
response h is infinite

DEFINITION

a0 Example: Recursive average

yln] = H{z[nl} = z[n]+ayln—1]

1 hin] = a™ul[n], a= 0.8
0.5
J,.,,,,,[ITTTT???
-8 -6 -4 -2 g 2 4 6 8
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BIBO Stability Revisited

An LTI system is bounded-input bounded-output (BIBO) stable if a bounded
input = always produces a bounded output y

DEFINITION

boundedz —{ h |— bounded y

Penn ESE 5310 Spring 2023 - Khanna
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BIBO Stability Revisited

An LTI system is bounded-input bounded-output (BIBO) stable if a bounded
input = always produces a bounded output y

DEFINITION

bounded z

— h -

bounded y

0 Bounded input and output:

0 Where

[ <e= and ], <oo
[o.9] oo

HxH = max‘x[n]‘
[0}

— h

z(n]
WQ??TTTTTT”TTTTT?.
| AR Y U0

15 10 5 0 B 10
n
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BIBO Stability Revisited

An LTI system is bounded-input bounded-output (BIBO) stable if a bounded
input = always produces a bounded output y

DEFINITION

boundedz — h

——  bounded y

0 Bounded input and output:

HxH <o and
o0

. <o
oo

y[n]

z(n]
frosmmnnaaratt 00, — n

15 10 5 0 B 10 15
n

—) %m‘__.q‘?TTTTTT.?TT
2 AR EIRIES

15 10 5 0 5 10 15
n

0 An LTI system 1s BIBO stable if and only if

Il = )

|h[n]| < oo

n=—oo

Penn ESE 5310 Spring 2023 - Khanna

44



BIBO Stability — Sufficient Condition @

0 Prove that if ||All; <oc then the system 1s BIBO stable, then for any
input ||z||« < oo the output ||y[le < 00

0 Recall that ||z|« < co means there exist a constant .4 such that |z[n]| < A < oo
for all #

Penn ESE 5310 Spring 2023 - Khanna
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BIBO Stability — Sufticient Condition

0 Prove that if ||All; <oc then the system 1s BIBO stable, then for any
input ||z||« < oo the output ||y[le < 00

0 Recall that ||z|« < co means there exists a constant .4 such tha |z[n]| < A < 0o
for all »

0 Let [|by = ¥ |hln]| = B < oo

0 Compute a bound on |y[n]| using the convolution of x and 4 and the

bounds .4 and B
ly[n]| = Z h[n m] Z |h[n — m]] |z[m]
< Z lhln—m]|A = A Z h[k]| = = C < o
m=—oo k=—00

O Since |yn]|<C<ooforalln, ||yl <o Vv

Penn ESE 5310 Spring 2023 - Khanna
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BIBO Stability — Necessary Condition

0 Prove that if |||l = oo the system is not BIBO stable — there exists an
input ||z|]| < oo such that the output |[|y||ec = o0

= Assume that x and / are real-value; the proof for complex-valued signals is nearly
identical

Penn ESE 5310 Spring 2023 - Khanna
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BIBO Stability — Necessary Condition

0 Prove that if |||l = oo the system is not BIBO stable — there exists an
input ||z|]| < oo such that the output |[|y||ec = o0

= Assume that x and / are real-value; the proof for complex-valued signals is nearly
identical

a0 Given an impulse response 4 with [|hl|; = oo, form the tricky special signal
z[n] = sgn(h[—n])

= x[n] is the sigh of the time-reversed impulse response h[-n]

h(n| h[—n]
5 1. e eeltt T 11uee oIt .29
Y ll‘ ll‘ e '1 0 * g ‘l‘ ‘ll 0“0-‘—&0-0-0-0-0
-5 L " N . -5 N . . N ’
-15 -10 -5 g 5 10 15 -15 -10 -5 101 5 10 15
Penn ESE 5310 Spring 2023 - Khanna
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BIBO Stability — Necessary Condition

0 Prove that if |||l = oo the system is not BIBO stable — there exists an
input ||z|]| < oo such that the output |[|y||ec = o0

= Assume that x and / are real-value; the proof for complex-valued signals is nearly
identical
a0 Given an impulse response 4 with [|hl|; = oo, form the tricky special signal
z[n| = sgn(h[-n])
= x[n] is the sigh of the time-reversed impulse response h[-n]

= Note that xis bounded |x[n]| =1 foralln

h(n| h[—n]

_ﬂ*“‘fli"f’?.ll‘TT?él",T‘TT'l _i‘TT‘T,"l+?TT‘1“??T“.‘T’*"T

-15 -10 -5 5 10 15 -15 -10 - 5 10 15
n mn

O
B DU VU VY Sty ——rt
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BIBO Stability — Necessary Condition

0 We are proving that if ||y = oo then the system is not BIBO stable —
there exists an input ||z« < oo such that the output ||yl = o0

0 Armed with the tricky signal x, compute the output y[n] at n=0

Penn ESE 5310 Spring 2023 - Khanna
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BIBO Stability — Necessary Condition

0 We are proving that if ||y = oo then the system is not BIBO stable —
there exists an input ||z« < oo such that the output ||yl = o0

0 Armed with the tricky signal x, compute the output y[n] at n=0

o) = 3 ho—mam] = 3 h{~m]sgn(h[-m])
= Y hem) = Y (RE] = o

a0 Thus y is not bounded while x is bounded, so the system is not BIBO
stable

Penn ESE 5310 Spring 2023 - Khanna
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Examples

L n>1
Example: h[n| = {'" "=

0 otherwise

|Allh =352 || =00 = not BIBO

mn

(1

. > 1
Example: hjn] =4 7 "=
\0 otherwise

Ihlli =302, | %] =% = BIBO

Penn ESE 5310 Spring 2023 - Khanna
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Examples

L n>1
Example: hin] = {(r)l otherwise

|R]1 =352, || =00 = not BIBO

(1

S > 1
Example: hln] = ¢ ™ "=
\0 otherwise

Ihlli =302, | %] =% = BIBO

Example: h FIR = BIBO

Penn ESE 5310 Spring 2023 - Khanna
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Example

0 Example: Recall the recursive average system y[n] = H{z[n]} = z[n]+ ay[n —1]

0 Impulse response: h[n] = a™uln]
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Example

0 Example: Recall the recursive average system y[n] = H{z[n]} = z[n]+ ay[n —1]

0 Impulse response: h[n] = a™uln]

For |a| < 1
1 h(n|
hlli =3 la|® = —— <00 = BIBO 05 I I
Il = X320 lal" = [ [T1tes,
6 -4 -2 0 n 2 4 & 8
For |a| > 1
h(n]
4
|h|li =30 o |a|™ =o0c = not BIBO T I
=25 : SERAAN|
-6 -4 -2 0 2 4 G 8
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Ditterence Equations

0 Accumulator example

ynl= Y x[k]
k=—0
vl =x{nl+ 3 *{k]
k=—

Penn ESE 5310 Spring 2023 - Khanna
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Ditterence Equations

0 Accumulator example

1=

a yln-k]= E b x[n-m]

Penn ESE 5310 Spring 2023 - Khanna
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Ditterence Equations

0 Accumulator example

yln]= ) x[k] ; »
kgoo i l y[n]
n-1
y[n] = x[n] + E x[k] Olké-gl‘;l;lplc
k=—o0
vin-1]

k=0

a yln-k]= E b x[n-m]

Penn ESE 5310 Spring 2023 - Khanna
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Example: Difference Equation

0 Moving Average System
M +M,+1

yln] x|n—kj

f=—

Penn ESE 5310 Spring 2023 - Khanna
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Example: Difference Equation

0 Moving Average System

M,

|
Mn]= M +M, +1k=2 X =kl

1

a0 Let M;=0 (t.e. system is causal)

1 K
y[n]= M2+1,§x[”’"‘]

Penn ESE 5310 Spring 2023 - Khanna
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Big Ideas

a LTI Systems are a special class of systems with
significant signal processing applications

= Can be characterized by the impulse response

a LTI System Properties

= Causality and stability can be determined from impulse
response

0 Difference equations suggest implementation of
systems

= Give insight into complexity of system
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Admin

0 Complete Diagnostic Quiz by midnight tonight

= Answers posted after due date
o HW 0: Brush up on background and Matlab tutorial
2 HW 1 out now

0 First recitation posted after lecture
= Basic Matlab usage

= (in general recitations will get posted Th or IF every week)
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