University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

Midterm	Thursday, March 16
---------	--------------------

- 4 Problems with point weightings shown. All 4 problems must be completed.
- Calculators allowed. (non cell phone)
- Closed book = No text allowed. One two-sided 8.5×11 cheat sheet allowed.

Name:

Grade:

Q1	
Q2	
Q3	
Q4	
Total	

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform	TABLE 2.2 FOURIER TRANSFORM THEOREM	MS
1. δ[n]	1	Sequence	Fourier Transform
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$	x[n]	$X\left(e^{j\omega} ight)$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=1}^{\infty} 2\pi \delta(\omega + 2\pi k)$	y[n]	$Y(e^{j\omega})$
	$k=-\infty$	1. $ax[n] + by[n]$	$aX(e^{j\omega})+bY(e^{j\omega})$
4. $a^n u[n]$ (<i>a</i> < 1)	$\frac{1}{1-ae^{-j\omega}}$	2. $x[n-n_d]$ (n_d an integer)	$e^{-j\omega n_d} X(e^{j\omega})$
5. u[n]	$1 \qquad \sum_{k=1}^{\infty} \pi^{k}(w+2\pi k)$	3. $e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$
5. u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	4. $x[-n]$	$X(e^{-j\omega})$
6. $(n+1)a^n u[n]$ ($ a < 1$)	$\frac{1}{(1-ae^{-j\omega})^2}$		$X^*(e^{j\omega})$ if $x[n]$ real.
7. $\frac{r^n \sin \omega_p (n+1)}{\sin \omega_p} u[n] (r < 1)$	$\frac{1}{1-2r\cos\omega_p e^{-j\omega}+r^2 e^{-j2\omega}}$	5. nx[n]	$j \frac{dX \left(e^{j\omega}\right)}{d\omega}$
F		6. $x[n] * y[n]$	$X(e^{j\omega})Y(e^{j\omega})$
8. $\frac{\sin \omega_c n}{\pi n}$	$X\left(e^{j\omega} ight) = egin{cases} 1, & \omega < \omega_{c}, \ 0, & \omega_{c} < \omega \leq \pi \end{cases}$	7. $x[n]y[n]$	$\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	Parseval's theorem:	$2\pi J_{-\pi}$
0. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	$8.\sum_{n=-\infty}^{\infty} x[n] ^2=\frac{1}{2\pi}\int_{-\pi}^{\pi} X(e^{j\omega}) ^2d\omega$	
1. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} [\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)]$	9. $\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$	
ABLE 3.1 SOME COMMON <i>z</i> -TRANSFORM	M PAIRS		
Sequence 7	Transform ROC		
1. $\delta[n]$ 1	All z		
2. $u[n]$ $\frac{1}{1-a^{-1}}$	z > 1	TABLE 3.2 SOME z-TRANSFORM PROPERTIES	

1. $\delta[n]$	1	All z					
2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1	TABLE 3.2	SOME z-TRANSFORM PROPERTIES			
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1	Property Number	Section Reference	Sequence	Transform	ROC
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)			x[n]	X(z)	R _x
5. $a^{n}u[n]$	$\frac{1}{1-az^{-1}}$	z > a			$x_1[n]$	$X_1(z)$	R_{x_1}
6. $-a^n u[-n-1]$	$\frac{1}{1}$	z < a			$x_2[n]$	$X_2(z)$	R_{x_2}
	$1 - az^{-1} az^{-1}$		1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
7. $na^n u[n]$	$\frac{uz}{(1-az^{-1})^2}$	z > a	2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible
8. $-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a					addition or deletion of the origin or ∞
0	$1-\cos(\omega_0)z^{-1}$	1.1. 1	3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
9. $\cos(\omega_0 n)u[n]$	$\frac{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}{z^{-1}}$	z > 1	4	3.4.4	nx[n]	$\frac{-z\frac{dX(z)}{dz}}{X^*(z^*)}$	R_x
10. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1	5	3.4.5	$x^{*}[n]$	$X^*(z^*)$	R_x
11. $r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r	6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z)+X^*(z^*)]$	Contains R_x
12. $r^n \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1-2r\cos(\omega_0)z^{-1}+r^2z^{-2}}$	z > r	7		$\mathcal{I}m\{x[n]\}$	$\frac{1}{2i}[X(z) - X^*(z^*)]$	Contains R_x
13. $\begin{cases} a^n, & 0 \le n \le N-1, \\ 0, & 1 \le N-1, \end{cases}$	$1-a^Nz^{-N}$		8	3.4.6	$x^{*}[-n]$	$\bar{X}^{*}(1/z^{*})$	$1/R_x$
15. $\{0, \text{ otherwise } \}$	$1 - az^{-1}$	z > 0	9	3.4.7	$x_1[n] \ast x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$

Trigonometric Identity:

$$e^{j\Theta} = \cos(\Theta) + j\sin(\Theta)$$

Geometric Series:

$$\sum_{n=0}^{N} r^n = \frac{1-r^{N+1}}{1-r}$$
$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}, |r| < 1$$

DTFT Equations:

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

Z-Transform Equations:

$$\begin{split} X(z) &= \sum_{n=-\infty}^{\infty} x[n] z^{-n} \\ x[n] &= \frac{1}{2\pi j} \oint\limits_{C} X(z) z^{n-1} dz \end{split}$$

Upsampling/Downsampling:

Upsampling by L (\uparrow L): $X_{up} = X(e^{j\omega L})$ Downsampling by M (\downarrow M): $X_{down} = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\frac{\omega}{M} - \frac{2\pi}{M}i)})$

Interchange Identities:

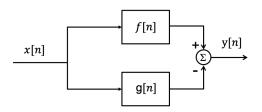
$$\begin{array}{rcl} x[n] & & & & & \\ & & & \\ & & & \\$$

- 1. (18 points) A frequency of 46 kHz is higher than the normal audible range of 20 Hz to 20 kHz for a human being. Consider a continuous-time signal $x(t) = cos(2\pi f_0 t)$ where $f_0 = 46$ kHz. Sample the signal using a sampling rate of $f_s = 48$ kHz. You can assume ideal sampling.
 - (a) Derive a formula for the discrete-time signal x[n] that results from sampling x(t).

(b) Draw the frequency response, $X(e^{j\omega})$, of the discrete-time signal x[n].

(c) The discrete-time signal is then put through an ideal reconstruction block. Would the resulting signal be audible? Explain your reasoning.

2. (30 points) An input, x[n], is filtered by a system comprising two stable subsystems, with impulse responses f[n] and g[n], whose outputs are subtracted to form the output, y[n], as shown in the figure below.



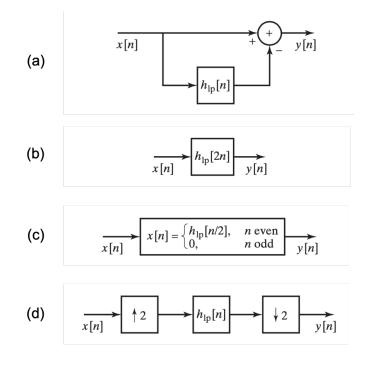
Given the above system with $F(z) = \frac{5z-4}{z-\frac{1}{2}}$, and $g[n] = 3 \cdot \left(-\frac{1}{2}\right)^n u[n]$,

- (a) find the difference equation relating input x[n] and output y[n].
- (b) find the impulse response of the entire system.
- (c) find the output, y[n], if the input $x[n] = e^{j\frac{\pi}{2}n} + e^{j\frac{\pi}{4}n}$.

ESE5310

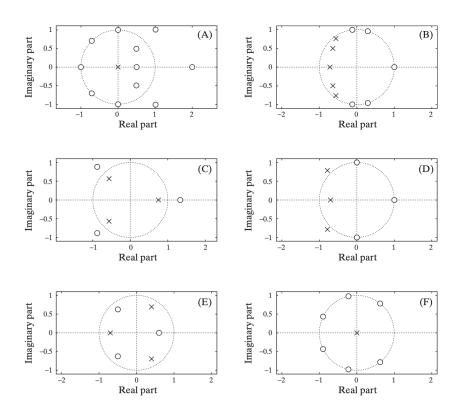
(You may continue the problem on this almost blank page.)

3. (30 points) Let $h_{lp}[n]$ denote the impulse response of an ideal lowpass filter with unity passband gain and cutoff frequency $\omega_c = \frac{\pi}{4}$. The figure below shows four systems, each of which is equivalent to an ideal LTI frequency-selective filter. For each system shown, sketch the equivalent frequency response, $H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$, indicating explicitly the band-edge frequencies in terms of ω_c and labeling all axes. In each case, specify whether the system is a lowpass, highpass, bandpass, or bandstop filter.



ESE5310

(You may continue the problem on this almost blank page.)



4. (22 points) The polezero plots below describe six different causal LTI systems.

- (a) Answer the following questions about the systems having the above polezero plots. In each case, an acceptable answer could be none or all.
 - i. Which systems are stable systems? ii. Which systems are minimum-phase systems? iii. Which systems have $|H(e^{j\omega})|$ = constant for all ω ? iv. Which systems have corresponding stable and causal inverse systems?

(b) Below is a zoomed in and annotated version of system C. Write the transfer function for this system, H(z), if H(0) = 1.

