ESE5310 Spring 2023

University of Pennsylvania
Department of Electrical and System Engineering
Digital Signal Processing

Midterm Thursday, March 16

e 4 Problems with point weightings shown. All 4 problems must be completed.
e Calculators allowed. (non cell phone)

e (Closed book = No text allowed. One two-sided 8.5x11 cheat sheet allowed.

Name: Answers

Grade:

Q1

Q2

Q3

Q4

Total | Mean: 58.2, Stdev: 21




ESE5310

Spring 2023

TABLE 2.3 FOURIER TRANSFORM PAIRS
Sequence Fourier Transform TABLE2.2 FOURIER TRANSFORM THEOREMS
L. 8[n] 1 Sequence Fourier Transform
2. 8[n —ng) e~Jamo x[n] X (ef®)
o0 .
3.1 (=00 < n < o) Z 2wé (0 + 27k) yln] Y(e/®)
ke=— - -
o: 1. ax[n] + by[n] aX (e/¥) + bY (e/?)
4. a'ulnl (lal <1) g 2 x[n—ng] (ng aninteger) e—iona X (ew)
o Jjwon J(w-wq)
5. uln) 1_jw + E w8(w + 27k) 3. ¢/0{n] X ) )
I-e k=m0 4. x[-n) X (e79%)
6. (n+ D"l (lal <) B X*(el®) it x[n] real.
(1 —ae~ @) dx (ij)
"o 5. nx[n] j
7. Mu[n] (rl < 1) 1_ e dw
sinwp 1-2rcoswpe /¥ + rée= 1% . .
. 6. x[n]* y[n) X (e/)Y (/)
sinwen i 1, |o| <wc,
8 — = X(el ):[U we < |w| €7 1" ji i
wn G = 7. x[nlyln] E,f X (e/?)y e/ @)dp
0. xfn] = {1, O<n<M sin[m(M+1)/2]E_ij/2 -
- =10, otherwise sin(w/2) Parseval’s theorem:
oo 00 1 £ .
10. eluon 3 2w w4 2k 8 3 =5 f IX (e9) 2da
k=—00 n=—oo -
00 . . 0 1 g ) )
11. cos(won + ¢) Z [re!?5(w — wq + 2k) + meI8(w + w + 27k)] 9. Z x[n]y*[n] = E./ X (/) ¥*(e/)dw
k=—c0 n=—cc i
TABLE3.1  SOME COMMON z-TRANSFORM PAIRS
Sequence Transform ROC
1. 8[n] 1 Allz
2. uln] e >1 TABLE3.2  SOME z-TRANSFORM PROPERTIES
3. —u[-n—1] 12l <1 Property  Section
Number Reference Sequence Transform ROC
4. 8[n—m] All z except 0 (if m > 0) or oo (if m < 0) xnl X R
5. auln] Toart lel > lal xn) X1 Ry
6. —a"u[-n—1] ﬁ lz| < |a| x[n] X2(2) R,
_:zz_l 3.4.1 axy[n] +bx;[n] aXi(z) +bX2(2) Contains R, N Ry,
7. na"uln] A= a2 [zl > lal 2 342 x[n—-ngl X (2) Ry, except for the possible
. az- addition or deletion of
8. —na"u[-n—1] A—a 2 |z| < la| the origin or co
1 — cos(wo)z ™! 3 343 z5x[n] X (z/20) |z0|Rx
9. cos(won)u[n] R povvcon pyp— |z] > 1
1-2 ‘:::((MO))Z 41 +z 4 3.44 nx[n] -z d;iz) Ry
: o)z
10. sin(won)u[n] 1= Zcost@o)z +22 lz] > 1 5 345 x*[n] X*(z%) R,
1 — rcos(wp)z~! 1 o x .
. - 6 Re ~[X X Cont Ry
11. 7" cos(won)u[n] T 2r costanz—! 1 222 |z| > r {x[n]} 2[ (@) +X*(z"] ntains
. 1 1
12. " sin(won)uln] % |z| > r 7 ZIm{x[n]} T[X(z) — X*(z*)] Contains R,
13 {a", 0<n<N-1, 1-a"z7¥ 2> 0 8 346 x*[—n] X*(1/z% 1/Rx
* 10, otherwise 1-az! : 9 3.4.7 x1[n] % x3[n] X1(2)X2(2) Contains Ry, N Rx,
Trigonometric Identity:
el® = cos(O) + jsin(0)
Geometric Series:
ZN n _ 1—pN+l1
n=0T = 1—r
0 n _ _1
Do =l <1
DTFT Equations:
Jw) o8] —jwk
X(e) = 2ope o xlk]e

z[n]

2

217r ffﬂ X (e7¥) el dw
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Z-Transform Equations:

X()= T ool
x[n] = 5 gX(z)z”_ldz

21y

Upsampling/Downsampling;:
Upsampling by L (TL): X,, = X (e/“F)
Downsampling by M (IM): Xgown = ﬁ Zij\ial X(ej(ﬁjﬁ”))

Interchange Identities:

sc[n]—» y[n]
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1. (18 points) A frequency of 46 kHz is higher than the normal audible range of 20 Hz to
20 kHz for a human being. Consider a continuous-time signal z(t) = cos(2 fot) where
fo = 46 kHz. Sample the signal using a sampling rate of f; = 48 kHz. You can assume
ideal sampling.

(a) Derive a formula for the discrete-time signal x[n] that results from sampling x(?).
xln| = cos(2ﬂ%n) = cos(2mion)

(b) Draw the frequency response, X (e/“), of the discrete-time signal z[n].
X(e@)

™ T
—T ﬁﬁ T

(c¢) The discrete-time signal is then put through an ideal reconstruction block. Would
the resulting signal be audible? Explain your reasoning.
Yes. The ideal reconstruction would place our DT signal at 2kHz in the continuous
time reconstruction so we would hear it.
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2. (30 points) An input, x[n], is filtered by a system comprising two stable subsystems,
with impulse responses f[n| and g[n], whose outputs are subtracted to form the output,
y[n], as shown in the figure below.

fln]
+¢  yInl

g[n]

Given the above system with F(z) = 2=, and g[n] = 3 - (—3)" uln],
2

(a) find the difference equation relating input x[n] and output y[n].
(b) find the impulse response of the entire system.

(¢) find the output, y[n], if the input z[n] = e/2™ 4 7in,

a) We can write y[n| = z[n] * f[n] — xz[n] % g[n] which we can take the z-transforn of

both sides:
Y(z) = X(2)-F(2) N X(2)-G(2)
V() = X)X
1, 1, 1
Y(z)(z—i)(l—l—éz ) = X(z)(5z—4)(1—|—52 )—X(z)(?))(z—é)
V(-7 = X()2 -2

From this we can take the inverse z-transform using the time-delay property:

yln] — gyl — 2] = 2efn] ~ 22[n 2

b)
H(z) — §Ez;:F(z)—G(z)
HE) = T -
5 4271 3
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c) H(e?v) = 29—~ 2iw

lfie*2jw
y[n] = H(ejw)|g€jg”+H<6jw)|%ej§n
[n] 16jgn+ 40+24. itn
! 5 17 17!
yln] = 3.2e752" 4 2. 7441 (57 +0-54)
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3. (30 points) Let hy,[n] denote the impulse response of an ideal lowpass filter with unity
passband gain and cutoff frequency w. = 7. The figure below shows four systems,
each of which is equivalent to an ideal LTI frequency-selective filter. For each system
shown, sketch the equivalent frequency response, H(e/*) = %, indicating explicitly
the band-edge frequencies in terms of w,. and labeling all axes. In each case, specify

whether the system is a lowpass, highpass, bandpass, or bandstop filter.

(+)
x[n] N vl
(@)

> hyp[n]
(b) > hlp[Zn] >
x[n] yln]
(c) — x[n]:{g}p[nm, neven
x yin]
d > 42 —{n i —] {2 —
Y e T ' ' y[n]
Hl;u(ejw)
1
. oz . t

a) y[n] = x[n| — x[n] * hy,[n] and taking the DTFT of both sides:

Y(e) = X(e/*) = X(¢°) - Hyp(e™*)
Ho (™) =1 — Hy(e™)

Hq(e)

}
T[ ! @

- 3

NE
3

This is a highpass filter.
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b) hip[2n] is a downsampled version of the filter. Therefore, the frequency response

will be stretched by a factor of two and scaled by a factor of %
Hy(e?)

12

g .

1
! w
-1 3

NI R
El

This is a lowpass filter.
c¢) This system upsamples hy,[n]. Therefore, the frequency axis will be squished by a

factor of two and the gain is not scaled.
He(e/)

1

B - :
This is a bandstop filter.
d) This system upsamples the input before passing it through hy,[n|. This effectively
doubles the frequency bandwidth of Hj,. The downsampling then scales by a factor of

two and stretches the frequency response of the filter output signal.
Ha(e/®)

1/2

T
- —
2

N
E]

This is a lowpass filter.
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4. (22 points) The polezero plots below describe six different causal LTI systems.

1 O [0} 1 OF -
£ o (A) - X © (B)
g 05 8 05 Sx
: >
g 0 e e o 4 o0 X
= : =
® 05 : / Ei 05 x
g ko) g
=Y e o -1 0;-O
-1 0 1 2 2 -1 0 2
Real part Real part
1 1 O
05 RS g 0.5

Imaginary part
(=]
Imaginary part
(=]

05 -0.5
a1 4 e
2 -2 -1 0 2
Real part
1 1 ] O T
- (®) - el ®)
g 05 g 05 o
2 o :
g o g o0
‘&b ‘&
< 05 < 05 Q
k= 5
1 -1 O
-2 2 -2 -1 0 2
Real part Real part

(a) Answer the following questions about the systems having the above polezero plots.
In each case, an acceptable answer could be none or all.

1.

ii.

1il.

v.

Which systems are stable systems?

A B CEF

Which systems are minimum-phase systems?

E

Which systems have |H (e’*)|= constant for all w?

C

E

Which systems have corresponding stable and causal inverse systems?
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(b) Below is a zoomed in and annotated version of system C. Write the transfer
function for this system, H(z), if H(0) = 1.

- O ©
8 (s X3

& N

N S R
£ : 3

2 s i

1 O M
-1 0 1 2
Real part

This is an all-pass system, so the zeros are located at the reciprocal locations from
the poles. Therefore we can write:

(z—3)(z — ‘516134")(2 _ %e*j%)
H(z)=A _ - '
) (z=3)(z—32e70)(z — 3e7777) (1)

With H(0) = 1, we can solve A = (

NI
~—
(=)

Or using the general all-pass formula given in lecture 14:

10



