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Digital Signal Processing

Final Friday, May 10

• 4 Problems with point weightings shown. All 4 problems must be completed.

• Calculators (non-cellphone) allowed.

• Closed book = No text allowed.

• Two two-sided 8.5x11 cheat sheet allowed.

• All answers and work here.

Name:

Grade:

Q1

Q2

Q3

Q4

Total

1



ESE5310 Spring 2024

DTFT Equations: Z-Transform Equations:

X(ejω) =
∑∞

k=−∞ x[k]e−jωk X(z) =
∑∞

n=−∞ x[n]z−n

x[n] = 1
2π

∫ π
−πX(ejω)ejωndω x[n] = 1

2πj

∮
C

X(z)zn−1dz

DFT Equations:

N-point DFT of {x[n], n = 0, 1, ..., N − 1} is X[k] =
N−1∑
n=0

x[n]e−j
2π
N
kn, for k = 0, 1, ..., N − 1

N-point IDFT of {X[k], k = 0, 1, ..., N −1} is x[n] = 1
N

N−1∑
k=0

X[k]ej
2π
N
kn, for n = 0, 1, ..., N −1
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Trigonometric Identities: Geometric Series:

ejΘ = cos(Θ) + jsin(Θ)
∑N

n=0 r
n = 1−rN+1

1−r

cos(Θ) = 1
2
(ejΘ + e−jΘ)

∑∞
n=0 r

n = 1
1−r , |r| < 1

sin(Θ) = 1
2j

(ejΘ − e−jΘ)

Upsampling/Downsampling:
Upsampling by L (↑L): Xup = X(ejωL)

Downsampling by M (↓M): Xdown = 1
M

∑M−1
i=0 X(ej(

ω
M
− 2π
M
i))

Generalized Linear Phase Systems:

Type I Type II

Symmetry Even, h[n] = h[M − n] Even, h[n] = h[M − n]

M Even Odd

H(ejω) A(ejω)e−jωM/2 A(ejω)e−jωM/2

A(ejω)
M/2∑
k=0

a[k]cos(ωk)
(M+1)/2∑
k=1

b[k]cos(ω(k − 1
2
))

a[0] = h[M/2] b[k] = 2h[(M + 1)/2− k]

a[k] = 2h[(M/2)− k] for k = 1, 2, ..., (M + 1)/2

for k = 1, 2, ...,M/2

Type III Type IV

Symmetry Odd, h[n] = −h[M − n] Odd, h[n] = −h[M − n]

M Even Odd

H(ejω) A(ejω)je−jωM/2 A(ejω)je−jωM/2

A(ejω)
M/2∑
k=1

c[k]sin(ωk)
(M+1)/2∑
k=1

d[k]sin(ω(k − 1
2
))

c[k] = 2h[(M/2)− k] d[k] = 2h[(M + 1)/2− k]

for k = 1, 2, ...,M/2 for k = 1, 2, ..., (M + 1)/2

Interchange Identities:
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1. (18 points) Window-based filter design. We want to design a lowpass filter (LPF) with
a cutoff frequency of ωc = 0.6, transition band, ∆ω, and peak stopband attenuation,
δs.

(a) Write the impulse response, hideal[n], of the ideal LPF with a cutoff frequency of
ωc = 0.6.

When using windows to design low-pass filters, there is a tradeoff between tran-
sition width and peak stopband attenuation. However for increasing filter length,
N , the transition band improves while the peak stopband attenuation does not
change much and can be fit as a constant value. The table below shows this best
fit characteristic for various window types.

Window π/∆ω max(δs)

Rectangular 0.4069N −21dB

Hann 0.1470N −44dB

Hamming 0.1398N −54dB

Gaussian 0.0891N −60dB

Blackman 0.0704N −75dB

(b) Which windows can be used to design a window-based LPF with a transition
band of 0.15π and peak stopband attenuation less than -50dB?

(c) Which window would you pick to optimize your filter design? Explain your rea-
soning.
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2. (24 points) Impulse invariance and the bilinear transformation are two methods for
designing discrete-time filters. Both methods transform a continuous-time system func-
tion Hc(s) into a discrete-time system function H(z). Answer the following questions
by indicating which method(s) will yield the desired result. Show justification only
for partial credit. For your reference Impulse Invariance and Bilinear Transformation
equations are given below:

Impulse Invariance: Bilinear Transformation:

h[n] = Thc(nT ) H(z) = Hc

(
2
T

(
1−z−1

1+z−1

))
H(ejω) =

∑∞
n=−∞Hc

[
j
(
ω
T

+ 2π
T
k
)]

ω = 2arctan(ΩT/2)

(a) A minimum-phase continuous-time system has all its poles and zeros in the left-
half s-plane. If a minimum-phase continuous-time system is transformed into a
discrete-time system, which method(s) will result in a minimum-phase discrete-
time system?

(b) If the continuous-time system is an all-pass system, its poles will be at locations sk
in the left-half s-plane, and its zeros will be at corresponding locations −sk in the
right-half s-plane. Which design method(s) will result in an all-pass discrete-time
system?

(c) Which design method(s) will guarantee that

H(ejω)|ω=0 = Hc(jΩ)|Ω=0

(d) Suppose that H1(z), H2(z), and H(z) are transformed versions of Hc1(s), Hc2(s),
and Hc(s), respectively. Which design method(s) will guarantee that H(z) =
H1(z)H2(z) whenever Hc(s) = Hc1(s)Hc2(s)?
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3. (24 pts) Below are the impulse responses of four FIR filters. For each filter determine
whether H(ejω) = 0 for ω = 0 and ω = π.

Fill in each box with ”yes” or ”no”.

Filter H(ejω)|ω=0 = 0? H(ejω)|ω=π = 0?

h1[n]

h2[n]

h3[n]

h4[n]
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4. (34 pts) Spectral analysis via the DFT.

Consider the 32-point signal x[n] = cos
(

2π(3)
32

n
)
, n = 0, ..., 31.

(a) Determine an exact expression for the 32-point discrete Fourier transform (DFT)
X[k], k = 0, ..., 31 of this signal.

(b) Determine the approximate values of k where you would find the peaks in the
DFT.

(c) Are there any spectral leakage effects in this case? Why or why not?
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Now consider the 32-point signal x[n] = cos
(

2π(7)
64

n
)
, n = 0, ..., 31.

(d) Determine an exact expression for the 32-point discrete Fourier transform (DFT)
X[k], k = 0, ..., 31 of this signal. You can use the function for a periodic sinc in

your expression, psincN(ω) = sin(ωN/2)
sin(ω/2)

. Be sure to specify the value for N.

(e) Determine the approximate values of k where you would find the peaks in the
DFT.

(f) Are there any spectral leakage effects in this case? Why or why not?
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