
ESE5310 Spring 2024

University of Pennsylvania
Department of Electrical and System Engineering

Digital Signal Processing

Final Friday, May 10

• 4 Problems with point weightings shown. All 4 problems must be completed.

• Calculators (non-cellphone) allowed.

• Closed book = No text allowed.

• Two two-sided 8.5x11 cheat sheet allowed.

• All answers and work here.

Name: Answers

Grade:

Q1

Q2

Q3

Q4

Total Mean: 66.1, Stdev: 14.4
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DTFT Equations: Z-Transform Equations:

X(ejω) =
∑∞

k=−∞ x[k]e−jωk X(z) =
∑∞

n=−∞ x[n]z−n

x[n] = 1
2π

∫ π
−πX(ejω)ejωndω x[n] = 1

2πj

∮
C

X(z)zn−1dz

DFT Equations:

N-point DFT of {x[n], n = 0, 1, ..., N − 1} is X[k] =
N−1∑
n=0

x[n]e−j
2π
N
kn, for k = 0, 1, ..., N − 1

N-point IDFT of {X[k], k = 0, 1, ..., N −1} is x[n] = 1
N

N−1∑
k=0

X[k]ej
2π
N
kn, for n = 0, 1, ..., N −1
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Trigonometric Identities: Geometric Series:

ejΘ = cos(Θ) + jsin(Θ)
∑N

n=0 r
n = 1−rN+1

1−r

cos(Θ) = 1
2
(ejΘ + e−jΘ)

∑∞
n=0 r

n = 1
1−r , |r| < 1

sin(Θ) = 1
2j

(ejΘ − e−jΘ)

Upsampling/Downsampling:
Upsampling by L (↑L): Xup = X(ejωL)

Downsampling by M (↓M): Xdown = 1
M

∑M−1
i=0 X(ej(

ω
M
− 2π
M
i))

Generalized Linear Phase Systems:

Type I Type II

Symmetry Even, h[n] = h[M − n] Even, h[n] = h[M − n]

M Even Odd

H(ejω) A(ejω)e−jωM/2 A(ejω)e−jωM/2

A(ejω)
M/2∑
k=0

a[k]cos(ωk)
(M+1)/2∑
k=1

b[k]cos(ω(k − 1
2
))

a[0] = h[M/2] b[k] = 2h[(M + 1)/2− k]

a[k] = 2h[(M/2)− k] for k = 1, 2, ..., (M + 1)/2

for k = 1, 2, ...,M/2

Type III Type IV

Symmetry Odd, h[n] = −h[M − n] Odd, h[n] = −h[M − n]

M Even Odd

H(ejω) A(ejω)je−jωM/2 A(ejω)je−jωM/2

A(ejω)
M/2∑
k=1

c[k]sin(ωk)
(M+1)/2∑
k=1

d[k]sin(ω(k − 1
2
))

c[k] = 2h[(M/2)− k] d[k] = 2h[(M + 1)/2− k]

for k = 1, 2, ...,M/2 for k = 1, 2, ..., (M + 1)/2

Interchange Identities:
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1. (18 points) Window-based filter design. We want to design a lowpass filter (LPF) with
a cutoff frequency of ωc = 0.6, transition band, ∆ω, and peak stopband attenuation,
δs.

(a) Write the impulse response, hideal[n], of the ideal LPF with a cutoff frequency of
ωc = 0.6.

From table 2.3 we can write:

hideal[n] =
sin(0.6n)

πn
(1)

When using windows to design low-pass filters, there is a tradeoff between tran-
sition width and peak stopband attenuation. However for increasing filter length,
N , the transition band improves while the peak stopband attenuation does not
change much and can be fit as a constant value. The table below shows this best
fit characteristic for various window types.

Window π/∆ω max(δs)

Rectangular 0.4069N −21dB

Hann 0.1470N −44dB

Hamming 0.1398N −54dB

Gaussian 0.0891N −60dB

Blackman 0.0704N −75dB

(b) Which windows can be used to design a window-based LPF with a transition
band of 0.15π and peak stopband attenuation less than -50dB?

Any window with the max(δs) ≤ −50dB will work. So we can say Hamming,
Gaussian and Blackman.

(c) Which window would you pick to optimize your filter design? Explain your rea-
soning.

Choosing a Hamming window will enable us to meet the transition band require-
ment with the shortest filter. So we choose a Hamming window of length N = 48
when rounding:

π

∆ω
=

1

0.15
= 0.1398 ·N → N = 47.69
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2. (24 points) Impulse invariance and the bilinear transformation are two methods for
designing discrete-time filters. Both methods transform a continuous-time system func-
tion Hc(s) into a discrete-time system function H(z). Answer the following questions
by indicating which method(s) will yield the desired result. Show justification only
for partial credit. For your reference Impulse Invariance and Bilinear Transformation
equations are given below:

Impulse Invariance: Bilinear Transformation:

h[n] = Thc(nT ) H(z) = Hc

(
2
T

(
1−z−1

1+z−1

))
H(ejω) =

∑∞
n=−∞Hc

[
j
(
ω
T

+ 2π
T
k
)]

ω = 2arctan(ΩT/2)

(a) A minimum-phase continuous-time system has all its poles and zeros in the left-
half s-plane. If a minimum-phase continuous-time system is transformed into a
discrete-time system, which method(s) will result in a minimum-phase discrete-
time system?

Bilinear Transformation
Impulse Invariance maps left-half s-plane poles inside the unit circle in the z-
plane, however zeros won’t necessarily be mapped inside the unit circle. A counter
example can be found, for e.g. Hc(s) = s+10

(s+1)(s+2)
with T=1.

The bilinear transform maps a pole or zero at s = s0 the same to z0 =
1+T

2
s0

1−T
2
s0

:

|z0| =

∣∣∣∣∣1 + T
2
s0

1− T
2
s0

∣∣∣∣∣ (2)

|z0| =

√
(1 + T

2
σ)2 + (T

2
Ω)2

(1− T
2
σ)2 + (T

2
Ω)2

(3)

Since Hc(s) is minimum phase s0 = σ + jΩ and σ < 0. Therefore |z0| < 1 and
all zeros and poles will be inside the unit circle, so the DT filter will be minimum
phase.

(b) If the continuous-time system is an all-pass system, its poles will be at locations sk
in the left-half s-plane, and its zeros will be at corresponding locations −sk in the
right-half s-plane. Which design method(s) will result in an all-pass discrete-time
system?

Bilinear Transformation
Impulse invariance can result in aliasing and destroy the all pass nature of the fil-
ter. However, bilinear transform only warps the frequency axis and the magnitude
is not affected.
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(c) Which design method(s) will guarantee that

H(ejω)|ω=0 = Hc(jΩ)|Ω=0

Bilinear Transformation
Again because of aliasing, impulse invariance does not guarantee this in the gen-
eral case, however bilinear transform maps Ω = 0 to ω = 0 and there is no aliasing
so it does guarantee this.

(d) Suppose that H1(z), H2(z), and H(z) are transformed versions of Hc1(s), Hc2(s),
and Hc(s), respectively. Which design method(s) will guarantee that H(z) =
H1(z)H2(z) whenever Hc(s) = Hc1(s)Hc2(s)?

Bilinear Transformation
Impulse invariance may result in aliasing. Since the order of aliasing and mul-
tiplication are not interchangeable, the desired identity does not hold. Consider
H1(s) = H2(2) = e−sT/2. By the bilinear transform:

H(z) = Hc

(
2

T

(
1− z−1

1 + z−1

))
= Hc1

(
2

T

(
1− z−1

1 + z−1

))
Hc2

(
2

T

(
1− z−1

1 + z−1

))
= H1(z)H2(z)
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3. (24 pts) Below are the impulse responses of four FIR filters. For each filter determine
whether H(ejω) = 0 for ω = 0 and ω = π.

Fill in each box with ”yes” or ”no”.

Filter H(ejω)|ω=0 = 0? H(ejω)|ω=π = 0? GLP Type M A(ω)

h1[n] yes yes IV 3 2sin(0.5ω) + 2sin(1.5ω)

h2[n] yes yes III 4 4sin(ω)− 2sin(2ω)

h3[n] no yes II 5 4cos(0.5ω) + 2cos(1.5ω)− 2cos(2.5ω)

h4[n] no no I 8 2− 2cos(ω) + 6cos(2ω) + 2cos(4ω)

These are all GLP filters with a time shift. The time shift does not affect the magni-
tude, so we can just identify the type and order M of the filter and write A(ω) from
the table given.
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4. (34 pts) Spectral analysis via the DFT.

Consider the 32-point signal x[n] = cos
(

2π(3)
32

n
)
, n = 0, ..., 31.

(a) Determine an exact expression for the 32-point discrete Fourier transform (DFT)
X[k], k = 0, ..., 31 of this signal.

(b) Determine the approximate values of k where you would find the peaks in the
DFT.

(c) Are there any spectral leakage effects in this case? Why or why not?

(a) The signal is a windowed cosine function so X[k] is the DTFT of the product
of the rectangular window and cosine sampled at ω = 2π

N
k, where N = 32:

X[k] = DTFT{w[n]× x[n]}, ω =
2π

N
k, k = 0, ..., 31

X(ejω) = π

[
δ

(
ω − 2π(3)

32

)
+ δ

(
ω +

2π(3)

32

)]
, |ω| ≤ π

W (ejω) = e−jω(32−1)/2 sin(32ω/2)

sin(ω/2)

DTFT{w[n]× x[n]} =
1

2π
X(ejω) ∗W (ejω)

=
1

2

[
W

(
ω − 2π(3)

32

)
+W

(
ω +

2π(3)

32

)]
, |ω| ≤ π

X[k] =
1

2

[
W

(
2π

32
k − 2π(3)

32

)
+W

(
2π

32
k +

2π(3)

32

)]
=

1

2

[
W

(
2π

32
(k − 3)

)
+W

(
2π

32
(k + 3)

)]

The first term is only non-zero for k = 3, and the second for k = −3 + 32 = 29:

X[k] =
1

2
(32δ[k − 3] + 32δ[k − 29]) = 16δ[k − 3] + 16δ[k − 29]

(b) It follows the peaks are at k = 3 and k = 29
(c) There is no spectral leakage because the frequency of the cosine belongs to
the set of frequencies sampled by the DFT.
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Now consider the 32-point signal x[n] = cos
(

2π(7)
64

n
)
, n = 0, ..., 31.

(d) Determine an exact expression for the 32-point discrete Fourier transform (DFT)
X[k], k = 0, ..., 31 of this signal. You can use the function for a periodic sinc in

your expression, psincN(ω) = sin(ωN/2)
sin(ω/2)

. Be sure to specify the value for N.

(e) Determine the approximate values of k where you would find the peaks in the
DFT.

(f) Are there any spectral leakage effects in this case? Why or why not?

(a) The signal is a windowed cosine function so X[k] is the DTFT of the product of
the rectangular window and cosine sampled at ω = 2π

N
k, where N = 32:

X[k] = DTFT{w[n]× x[n]}, ω =
2π

N
k, k = 0, ..., 31

X(ejω) = π

[
δ

(
ω − 2π(7)

64

)
+ δ

(
ω +

2π(7)

64

)]
, |ω| ≤ π

W (ejω) = e−jω(32−1)/2 sin(32ω/2)

sin(ω/2)
= e−jω31/2psinc32(ω)

DTFT{w[n]× x[n]} =
1

2π
X(ejω) ∗W (ejω)

=
1

2

[
W

(
ω − 2π(7)

64

)
+W

(
ω +

2π(7)

64

)]
, |ω| ≤ π

X[k] =
1

2

[
W

(
2π

32
k − 2π(7)

64

)
+W

(
2π

32
k +

2π(7)

64

)]
=

1

2

[
W

(
2π

32
(k − 7

2
)

)
+W

(
2π

32
(k +

7

2
)

)]
=

1

2
e−jω31/2

[
psinc32

(
2π

32
(k − 7

2
)

)
+ psinc32

(
2π

32
(k +

7

2
)

)]

(b) It follows the peaks are at k = 7/2 = 3.5 and k = −7/2 + 32 = 28.5
(c) There is now spectral leakage because the frequency of the cosine does not belong
to the set of frequencies sampled by the DFT. This can be noted because we see that
the peak frequencies occur at non-integer k values.
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