ESE 5310: Digital Signal Processing

Lecture 1: January 18, 2024 Introduction and Overview

- Course Topics Overview
- Learning Objectives
- Course Structure
- Course Policies
- Course Content
- What is DSP?
- **DSP** Examples

Course Topics Overview

- Discrete-Time (DT) Signals
- Time-Domain Analysis of DT Systems
- Discrete Fourier Transform (DFT)
- □ Fast Fourier Transform (FFT)
- Discrete-Time Fourier Transform (DTFT)
- z-Transform
- Sampling of Continuous Time Signals
- Data Converters and Modulation
- Upsampling/Downsampling
- Discrete-Time Filter Design
- Special Topics

- □ Learn the fundamentals of digital signal processing
- Provide an understanding of discrete-time signals and systems and digital filters
- Enable you to apply DSP concepts to a wide range of fields
- Gain the ability to read the technical literature on DSP
- Apply the techniques learned in two projects focused on filter design

□ In other words...

□ Math, Math, Math*

*With MATLAB application for intuition <u>https://cets.seas.upenn.edu/software/matlab/</u>

□ TTh Lecture, 3:30-5:00pm in DRLB A8

□ Website (http://www.seas.upenn.edu/~ese5310/)

Digital Signal Processing

Course: ESE5310

Units: 1.0 CU
Term: Spring 2024 (all times below are EST)
When: TTh 3:30-5pm
Where: DRLB A8
Instructor: Tania Khanna (Levine 262) (seas: taniak) (office hours: W 3:30-5pm (in person) and by appointment)
TA: Saurabh Parulekar (seas: psaurabh) OH: F time 2-5pm
TA: Noah Schwab (seas: nhschwab) OH: MW 9-11am Towne M70
TA: Meijun Tian (seas: meijunt) OH: TTh 10-12pm location TBD
Graders: Zeyu Gu, Manas Kulkarni

Prerequisites: ESE 3250/2240 or equivalent. Undergraduate students need permission of instructor. Roundup of topics you should be familiar with.

Quick Links: [Course Objectives] [Grading] [Policies] [Spring 2024 Calendar] [Reading] [Ed Discussion]

Catalog Level Description: This course covers the fundamentals of discrete-time signals and systems and digital filters. Specific topics include discrete-time Fourier transform (DTFT); Z-transforms; frequency response of linear discrete-time systems; sampling of continuous time signals, analog to digital conversion, sampling-rate conversion; basic discrete-time filter structures and types; finite impulse response (FIR) and infinite impulse response (IIR) filters; linear phase conditions; design of FIR and IIR filters; discrete Fourier transform (DFT) and the fast Fourier transform (FFT) algorithm. Applications in filtering and spectrum estimation, image filtering, adaptive filters, equalization.

Role and Objectives

Students will:

- □ TTh Lecture, 3:30-5:00pm in DRLB A8
- □ Website (http://www.seas.upenn.edu/~ese5310/)
 - Course calendar is used for all handouts (lectures slides, assignments)
 - Canvas/Gradescope used for lecture videos, assignment submission, and grades
 - Ed Discussion used for announcements and discussions

- □ Course Staff (complete info on course website)
- Instructor: Tania Khanna
 - In-person Office hours Wednesday 3:30-5pm or by appointment
 - Email: <u>taniak@seas.upenn.edu</u>
 - Best way to reach me
- TAs: Saurabh Parulekar, Noah Schwab, Meijun Tian
 - Office Hours see course website, some locations TBD
- Graders: Zeyu, Manas
- Ed discussions for questions

TA Introduction: Saurabh Parulekar

- 2nd year master's student in Electrical Engineering
- **D** Took this class in Spring 2023
- Worked for Tesla as System
 Validation Engineer intern
- Was a TA for "Introduction to Python", so feel free to reach out if you have questions related to python language.
- Pennkey: psaurabh

TA Introduction: Noah Schwab

- Took this course in Spring 2022
 2nd year EE Master's Student, Information and Decision Systems
- □ Main interests are DSP and ML
- Worked on Autopilot Algorithm Validation at Tesla
- Working at MIT Lincoln Lab after graduation
- Currently doing research on adapting generative AI models to image compression
- Hobbies: soccer, running, skiing

A picture of me at Yosemite Falls in May 2023

TA Introduction: Meijun Tian

- □ Took ESE 5310 in Spring 2023
- □ Second-year EE master's student
- Worked as a research assistant in the High-Speed Integrated Circuits Lab @ PSU
- Planning to pursue a Ph.D. focus on RFIC
- □ I like traveling and baking!

- Lectures
 - Statistically speaking, you will do better if you come to lecture
 - Better if interactive, everyone engaged
 - Asking and answering questions
 - Actively thinking about material
- Recitation
 - Videos from previous year posted
 - Work out example problems and review for exam
- Textbook
 - A. V. Oppenheim and R. W. Schafer (with J. R. Buck), Discrete-Time Signal Processing. 3rd. Edition, Prentice-Hall, 2010
 - Homework from text
 - Class will follow text structure... mostly

Course Structure - Assignments/Exams

- □ Homework one week long (8 total) [25%]
 - Due Sundays/Tuesdays at midnight
 - Combination of book problems and Matlab problems
- □ Projects two projects [30%]
 - Work individually or in team
 - Different DSP applications of filter/system design
- □ Midterm exam [20%]
- □ Final exam [25%]

See web page for full details

- □ Turn-in homework in Canvas/Gradescope
 - Single PDF
 - Anything handwritten/drawn must be clearly legible
 - Submit code, graphs, test results when specified
- Individual work unless specified
 - code, test simulations, analysis, writeups
 - May discuss strategies, but acknowledge help
- Late assignments
 - 1 day late = -15ps, 2 days late = -25pts

- Introduction
- Discrete Time Signals & Systems
- Discrete Time Fourier Transform
- **Z**-Transform
- □ Inverse Z-Transform
- Sampling of Continuous Time Signals
- Frequency Domain of Discrete
 Time Series
- Downsampling/Upsampling
- Data Converters, Sigma Delta Modulation

- Frequency Response of LTI Systems
- □ Signal Flow Representation
- Basic Structures for IIR and FIR Systems
- Design of IIR and FIR Filters
- Butterworth, Chebyshev, and Elliptic Filters
- Filter Banks
- Adaptive Filters
- Computation of the Discrete
 Fourier Transform
- □ Fast Fourier Transform

ESE5310 Spring 2024 Working Schedule

Wk	Lect.	. Date		Lecture	Slides	Due	Reading
1	1	1/18	Th	Intro/Overview	[<u>lec1</u>]		review <u>course</u> webpage completely
2	2	1/23	Т	Discrete Time Signals & Systems, Part 1			2.1-2.2
	3	1/25	Th	Discrete Time Signals & Systems, Part 2		<u>HW0,</u> <u>Diagnostics</u> <u>Quiz</u>	2.3-2.4
3	4	1/30	Т	Discrete Time Fourier Transform			2.5-2.7
	5	2/1	Th	Z-Transform			3.0-3.1
		2/4	Su			HW 1	
4	6	2/6	Т	Inverse Z-Transform			3.3
	7	2/8	Th	Sampling and Reconstruction			4.0-4.3
		2/11	Su			HW 2	
5	8	2/13	Т	DT/CT Processing of CT/DT Signals, Impulse Invariance			4.4-4.5
	9	2/15	Th	Downsampling/Upsampling and Practical Interpolation			4.6-4.6.3
		2/18	Su			HW 3	
6	10	2/20	Т	Non-Integer and Multi-rate Sampling			4.6.4-4.7.2
	11	2/22	Th	Polyphase Decomposition and Multi-rate Filter Banks			4.7
		2/25	Su			HW 4	
7	12	2/27	Т	Data Converters and Noise Shaping			4.8-4.9
		2/29	Th	No Class			
8		3/5	Т	SPRING BREAK no class			
		3/7	Th	SPRING BREAK no class			
		3/10	Su			HW 5	

- Diagnostic Quiz in Canvas
 - Complete by Thursday 1/25 for full credit
 - Review in HW 0
 - Complex math review
 - https://www.seas.upenn.edu/~ese5310/spring2024/knowledge_roundup.html
 - Matlab Tutorial

- Diagnostic Quiz in Canvas
 - Complete by Thursday 1/25 for full credit
 - Ref "I would strongly encourage students to go through the provided review material, regardless of their familiarity, as I remember it really helped prepare me for the first few weeks of the course."

ge roundup.html

What is DSP

Automotive

 ABS, GPS, Active Noise Cancellation, Cruise Control, Parking, Driverless Cars

- Sound applications
 - Compression, enhancement, special effects, synthesis, recognition, echo cancellation
 - Cell phones, MP3 players, movies, dictation, text-to-speech
- Image and Video Applications
 - DVD, JPEG, Movie special effects, video conferencing

Communication

- Modulation, coding, detection, equalization, echo cancellation
- Cell Phones, dial-up modem, DSL modem, Satellite Receiver

Military

 Radar, Sonar, Space photographs, remote sensing

Medical

 Magnetic Resonance, Tomography, Electrocardiogram, Biometric Monitoring

- Humans are the most advanced signal processors
 - speech and pattern recognition, speech synthesis
- We encounter many types of signals in various applications
 - Electrical signals: voltage, current, magnetic and electric fields
 - Mechanical signals: velocity, force, displacement
 - Acoustic signals: sound, vibration
 - Other signals: pressure, temperature, biometrics
- Most real-world signals are analog
 - They are continuous in time and amplitude
 - Convert to voltage or currents using sensors and transducers

- Analog circuits process these signals using
 - Resistors, Capacitors, Inductors, Amplifiers
- Analog signal processing examples
 - Audio processing in FM radios
 - High end stereo equipment
 - Video processing in traditional TV sets
 - Biopotential amplifiers

Limitations of Analog Signal Processing

- Accuracy limitations due to
 - Component tolerances
 - Undesired nonlinearities
- Limited repeatability due to
 - Tolerances
 - Changes in environmental conditions
 - Temperature
 - Vibration
- Sensitivity to electrical noise
- Limited dynamic range for voltage and currents
- Inflexibility to changes
- Difficulty of implementing certain operations
 - Nonlinear operations
 - Time-varying operations
- Difficulty of storing information

- Represent signals by a sequence of numbers
 - Sampling and quantization (or analog-to-digital conversion)
- Perform processing on these numbers with a digital processor
 - Digital signal processing
- Reconstruct analog signal from processed numbers
 - Reconstruction or digital-to-analog conversion

- Analog input \rightarrow analog output
 - Eg. Digital recording music
- Analog input \rightarrow digital output
 - Eg. Speech to text
- Digital input \rightarrow analog output
 - Eg. Text to speech
- Digital input \rightarrow digital output
 - Eg. Compression of a file on computer

Pros and Cons of Digital Signal Processing

- **Pros**
 - Accuracy can be controlled by choosing word length
 - Repeatable
 - Sensitivity to electrical noise is minimal
 - Dynamic range can be controlled using floating point numbers
 - Flexibility can be achieved with software implementations
 - Non-linear and time-varying operations are easier to implement
 - Digital storage is cheap
 - Digital information can be encrypted for security
 - Price/performance and reduced time-to-market

Pros and Cons of Digital Signal Processing

- **Pros**
 - Accuracy can be controlled by choosing word length
 - Repeatable
 - Sensitivity to electrical noise is minimal
 - Dynamic range can be controlled using floating point numbers
 - Flexibility can be achieved with software implementations
 - Non-linear and time-varying operations are easier to implement
 - Digital storage is cheap
 - Digital information can be encrypted for security
 - Price/performance and reduced time-to-market
- Cons
 - Sampling causes loss of information
 - Quantization and round-off errors
 - A/D and D/A requires mixed-signal hardware
 - Limited by speed of processors

DSP Examples

Example I: Audio Compression

- Compress audio by 10x without perceptual loss of quality
- Sophisticated processing based on models of human perception
- □ 3MB files instead of 30MB
 - Entire industry changed in less than 10 years!

Historical Forms of Compression

- □ Morse code: dots (1 unit) dashes (3 units)
 - Code Length inversely proportional to frequency of character
 - E (12.7%) = . (1 unit) Q (0.1%) = --.- (10 units)
- □ "92 Code"
 - Used by Western-Union in 1859 to reduce BW on telegraph lines by numerical codes for frequently used phrases
 - 1 = wait a minute
 - 73 = Best Regards
 - 88 = Love and Kisses

Example II: Digital Imaging Camera

Example II: Digital Imaging Camera

Example II: Digital Imaging Camera

Example II: Digital Imaging Camera

 Compression of 40x without perceptual loss of quality.

 Example of slight over compression: difference enables 60x compression!

Computational Photography

Image Processing - Saves Lives

Canadian 'swirl face' Thailand

jailed in

Images released by Interpol in 2007 show the 'unswirling' of the internet pictures that led to the capture of Christopher Paul Neil.

k-space (raw data)

- Sensitivity to blood oxygenation
 - response to brain activity Convert from one signal to another

Compression meets sampling

- Sense signal randomly M times
 - $M > C \cdot \mu 2(\Phi, \Psi) \cdot S \cdot \log N$
- Recover with linear program

Example IV: Software Defined Radio

- **Traditional radio:**
 - Hardware receiver/mixers/demodulators/filtering
 - Outputs analog signals or digital bits
- Software Defined Radio:
 - Uses RF front end for baseband signal
 - High speed ADC digitizes samples
 - All processing chain done in software

- Advantages:
 - Flexibility
 - Upgradable
 - Sophisticated processing
 - Ideal processing chain
 - Not approximate like in analog hardware
- Already used in consumer electronics
 - Cellphone baseband processors
 - Wifi, GPS, etc....

[Schreier, "ADCs and DACs: Marching Towards the Antenna," GIRAFE workshop, ISSCC 2003]

[Schreier, "ADCs and DACs: Marching Towards the Antenna," GIRAFE workshop, ISSCC 2003]

- Today's ADCs are extremely well optimized
- For non-incremental improvements, we must explore new ideas in signal processing that tackle ADC inefficiency at the system level
 - Manufacturing innovation
 - Compressed sensing
 - Finite innovation rate sampling
 - Other ideas?

Filter Design Example

Optimal Filter Design

- Window method
 - Design Filters heuristically using windowed sinc functions
- Optimal design
 - Design a filter h[n] with $H(e^{j\omega})$
 - Approximate H_d(e^{jω}) with some optimality criteria or satisfies specs.

The frequency response H(ω) of the ideal low-pass filter passes low frequencies (near ω = 0) but blocks high frequencies (near ω = ±π)

- Compute the impulse response h[n] given this $H(\omega)$
- Apply the inverse DTFT

$$h[n] = \int_{-\pi}^{\pi} H(\omega) e^{j\omega n} \frac{d\omega}{2\pi} = \int_{-\omega_c}^{\omega_c} e^{j\omega n} \frac{d\omega}{2\pi} = \left. \frac{e^{j\omega n}}{2\pi jn} \right|_{-\omega_c}^{\omega_c} = \frac{e^{j\omega_c n} - e^{-j\omega_c n}}{2\pi jn} = \frac{\omega_c}{\pi} \frac{\sin(\omega_c n)}{\omega_c n}$$

The frequency response $H(\omega)$ of the ideal low-pass filter passes low frequencies (near $\omega = 0$) but blocks high frequencies (near $\omega = \pm \pi$)

$$H(\omega) = egin{cases} 1 & -\omega_c \leq |\omega| \leq \omega_c \ 0 & ext{otherwise} \end{cases}$$

 The frequency response H(ω) of the ideal low-pass filter passes low frequencies (near ω = 0) but blocks high frequencies (near ω = ±π)

Pass band smeared and rippled

- Smearing determined by width of main lobe
- Rippling determined by size of side lobes

Different windows for different main/side lobe characteristics

Desired filter,

$$H(e^{j\omega}) = H_d(e^{j\omega}) * W(e^{j\omega})$$

□ For Boxcar (rectangular) window

Penn ESE 5310 Spring 2024 – Khanna Adapted from M. Lustig, EECS Berkeley

- Butterworth
 - Monotonic in pass and stop bands
- □ Chebyshev, Type I
 - Equiripple in pass band and monotonic in stop band
- □ Chebyshev, Type II
 - Monotonic in pass band and equiripple in stop band
- Elliptic
 - Equiripple in pass and stop bands

□ Appendix B in textbook

FIR Design by Windowing

Butterworth

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

0

0.2

0

0.2

- Butterworth
 - Monotonic in pass and stop bands
- Chebyshev, Type I
 - Equiripple in pass band and monotonic in stop band
- Chebyshev, Type II
 - Monotonic in pass band and equiripple in stop band
- Elliptic
 - Equiripple in pass and stop bands

Penn ESE 5310 Spring 2024 – Khanna Adapted from M. Lustig, EECS Berkeley

□ Least Squares:

minimize
$$\int_{\omega \in \text{care}} |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega$$

Variation: Weighted Least Squares:

minimize
$$\int_{-\pi}^{\pi} W(\omega) |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega$$

Penn ESE 5310 Spring 2024 – Khanna Adapted from M. Lustig, EECS Berkeley

Example of Complex Filter

- Larson et. al, "Multiband Excitation Pulses for Hyperpolarized 13C Dynamic Chemical Shift Imaging" JMR 2008;194(1):121-127
- Need to design 11 taps filter with following frequency response:

- □ Find web, get text, start HW 0 and assigned reading...
 - http://www.seas.upenn.edu/~ese5310
 - https://edstem.org/us/courses/53754/discussion/
 - <u>https://canvas.upenn.edu/</u>
- Diagnostic quiz due 1/25
 - Review before or after as needed