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Data Converters, Noise Shaping
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Lecture Outline

 Data Converters
 Anti-aliasing
 ADC

 Quantization

 Oversampling and Noise Shaping
 Practical DAC
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ADC

Analog to Digital Converter
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Anti-Aliasing Filter with ADC
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Aliasing

 If ΩN>Ωs/2, xr(t) an aliased version of xc(t)
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Anti-Aliasing Filter with ADC
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Non-Ideal Anti-Aliasing Filter
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Non-Ideal Anti-Aliasing Filter
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Non-Ideal Anti-Aliasing Filter
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 Problem: Hard to implement sharp analog filter
 Consequence: Crop part of the signal and suffer 

from noise and interference



Oversampled ADC
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Oversampled ADC – Simple filter
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Oversampled ADC – M=2
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Oversampled ADC
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Oversampled ADC – Sharp digital filter/Downsample

14Penn ESE 5310 Spring 2024 - Khanna



Oversampled ADC – Sharp digital filter/Downsample
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Oversampled ADC
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Sampling and Quantization
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FSR



Sampling and Quantization
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FSR

Δ =
FSR
2B

 For an input signal with Vpp=FSR with B bits



Ideal Quantizer
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 Quantization step Δ
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Ideal Quantizer
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 Quantization step Δ
 Quantization error has 

sawtooth shape
 Bounded by –Δ/2, +Δ/2
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Ideal Quantizer
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 Quantization step Δ
 Quantization error has 

sawtooth shape
 Bounded by –Δ/2, +Δ/2

 Ideally infinite input 
range and infinite 
number of  quantization 
levels
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Ideal B-bit Quantizer
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 Practical quantizers have a limited input 
range and a finite set of  output codes 

 E.g. a 3-bit quantizer can map onto 
23=8 distinct output codes 
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Ideal B-bit Quantizer
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 Practical quantizers have a limited input 
range and a finite set of  output codes 

 E.g. a 3-bit quantizer can map onto 
23=8 distinct output codes 

 Quantization error grows out of  
bounds beyond code boundaries

 We define the full scale range (FSR) as 
the maximum input range that satisfies 
|eq|≤Δ/2
 Implies that FSR = 2B· Δ
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Effect of Quantization Error on Signal

 Quantization error is a deterministic function of the 
signal
 Consequently, the effect of quantization strongly depends on the 

signal itself

 Unless, we consider fairly trivial signals, a 
deterministic analysis is usually impractical
 More common to look at errors from a statistical perspective
 "Quantization noise”
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Quantization Error

 Model quantization error as noise:
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Quantization Error

 Model quantization error as noise: 

 In that case:
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Noise Model for Quantization Error

 Assumptions: 
 Model e[n] as a sample sequence of a stationary random 

process 
 e[n] is not correlated with x[n] 
 e[n] not correlated with e[m] where m≠n
 e[n] ~ U[-Δ/2, Δ/2] (uniform pdf)

 Result:
 Variance is: 
 Assumptions work well for signals that change 

rapidly, are not clipped, and for small Δ
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Quantization Noise

 Figure 4.57  Example of quantization noise. (a) Unquantized samples of the 
signal x[n] = 0.99cos(n/10).
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Quantization Noise
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 Figure 4.57(continued) (b) Quantized samples of  the cosine waveform in part (a) with a 3-
bit quantizer. 



Quantization Noise
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 Figure 4.57(continued) (b) Quantized samples of  the cosine waveform in part (a) with a 3-
bit quantizer. (c) Quantization error sequence for 3-bit quantization of  the signal in (a). 



Quantization Noise
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 Figure 4.57(continued) (b) Quantized samples of  the cosine waveform in part (a) with a 3-
bit quantizer. (c) Quantization error sequence for 3-bit quantization of  the signal in (a). (d) 
Quantization error sequence for 8-bit quantization of  the signal in (a). 



Signal-to-Quantization-Noise Ratio
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 Assuming full-scale sinusoidal input, we have



Signal-to-Quantization-Noise Ratio 
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 Assuming full-scale sinusoidal input, we have



Signal-to-Quantization-Noise Ratio
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 Assuming full-scale sinusoidal input, we have



Signal-to-Quantization-Noise Ratio
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 Assuming full-scale sinusoidal input, we have

 Improvement of  6dB with every bit 
 The range of  the quantization must be adapted to the rms 

amplitude of  the signal 



Quantization Noise Spectrum
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 If  the quantization error is "sufficiently random", it also 
follows that the noise power is uniformly distributed in 
frequency 

 References
 W. R. Bennett, "Spectra of  quantized signals," Bell Syst. Tech. J., pp. 

446-72, July 1988.
 B. Widrow, "A study of  rough amplitude quantization by means of  

Nyquist sampling theory," IRE Trans. Circuit Theory, vol. CT-3, pp. 
266-76, 1956.
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Non-Ideal Anti-Aliasing Filter
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 Problem: Hard to implement sharp analog filter
 Consequence: Crop part of the signal and suffer 

from noise and interference



Oversampled ADC
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Quantization Noise with Oversampling
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Quantization Noise with Oversampling

 Energy of xd[n] equals energy of x[n] 
 Signal power stays the same, but quantization noise 

power reduced!

 Noise variance is reduced by factor of M 

 For doubling of M we get 3dB improvement, which 
is the same as 1/2 a bit of accuracy 
 With oversampling of 16 with 8bit ADC we get the same 

quantization noise as 10bit ADC!
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𝑆𝑄𝑁𝑅 = 6.02𝐵 + 1.76 + 10 log!"𝑀



Noise Shaping
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Quantization Noise with Oversampling
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Noise Shaping

 Idea: "Somehow" build an ADC that has most of its 
quantization noise at high frequencies 

 Key: Feedback
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Noise Shaping Using Feedback
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Noise Shaping Using Feedback
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Noise Shaping Using Feedback

 Objective
 Want to make STF unity in the signal frequency band
 Want to make NTF "small" in the signal frequency band 

 If the frequency band of interest is around DC (0...fB) we 
achieve this by making |A(z)|>>1 at low frequencies 
 Means that NTF << 1 
 Means that STF ≅ 1 
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Discrete Time Integrator

 "Infinite gain" at DC (ω=0, z=1) 
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First Order Sigma-Delta Modulator
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First Order Sigma-Delta Modulator

 Output is equal to delayed input plus filtered quantization 
noise 
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NTF Frequency Domain Analysis
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NTF Frequency Domain Analysis

 "First order noise Shaping" 
 Quantization noise is attenuated at low frequencies, 

amplified at high frequencies 
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Higher Order Noise Shaping

 Lth order noise transfer function 
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Practical DAC
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Practical DAC

 Scaled train of sinc pulses 
 Difficult to generate sinc  Too long!
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Wolfram Demo
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Practical DAC

 h0(t) is finite length pulse  easy to implement 
 For example: zero-order hold
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h0(t)



Practical DAC
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Practical DAC
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Practical DAC

 Output of the reconstruction filter
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Practical DAC
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Practical DAC
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Practical DAC

 Output of the reconstruction filter
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Practical DAC

63Penn ESE 5310 Spring 2024 - Khanna

×



Practical DAC

 Output of the reconstruction filter
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Practical DAC with Upsampling
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Decimation Filter
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Decimation Filter
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Big Ideas

 Quantizers
 Introduces quantization noise

 Data Converters
 Oversampling to reduce interference and quantization 

noise  increase ENOB (effective number of bits)

 Noise Shaping
 Use feedback to reduce oversampling factor

 Practical DACs use practical interpolation and 
reconstruction filters with oversampling
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Admin

 HW 5 out now
 Due Sunday 3/10

 No lecture Thursday

 TA OH during spring break will be sparse
 Keep an eye on Ed for information and use Ed for 

questions

 I will still hold my office hours
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