ESE 5310: Digital Signal Processing

Lecture 11: February 27, 2024 Data Converters, Noise Shaping

- Data Converters
 - Anti-aliasing
 - ADC
 - Quantization
 - Oversampling and Noise Shaping
 - Practical DAC

ADC

Analog to Digital Converter

□ If $\Omega_N > \Omega_s/2$, $x_r(t)$ an aliased version of $x_c(t)$

$$X_r(j\Omega) = \begin{cases} TX_s(j\Omega) & \text{if } |\Omega| \le \Omega_s/2\\ 0 & \text{otherwise} \end{cases}$$

Anti-Aliasing Filter with ADC

Penn ESE 5310 Spring 2024 - Khanna

Penn ESE 5310 Spring 2024 - Khanna

- Problem: Hard to implement sharp analog filter
- Consequence: Crop part of the signal and suffer from noise and interference

• For an input signal with V_{pp} =FSR with B bits

 $\Delta = \frac{FSR}{2^B}$

Quantization step Δ

- Quantization step Δ
- Quantization error has sawtooth shape
 - Bounded by $-\Delta/2$, $+\Delta/2$

- Quantization step Δ
- Quantization error has sawtooth shape
 - Bounded by $-\Delta/2$, $+\Delta/2$
- Ideally infinite input range and infinite number of quantization levels

- Practical quantizers have a limited input range and a finite set of output codes
- E.g. a 3-bit quantizer can map onto
 2³=8 distinct output codes

Ideal B-bit Quantizer

- Practical quantizers have a limited input range and a finite set of output codes
- E.g. a 3-bit quantizer can map onto
 2³=8 distinct output codes

- Quantization error grows out of bounds beyond code boundaries
- We define the full scale range (FSR) as the maximum input range that satisfies $|e_q| \le \Delta/2$
 - Implies that $FSR = 2^B \cdot \Delta$

Effect of Quantization Error on Signal

- Quantization error is a deterministic function of the signal
 - Consequently, the effect of quantization strongly depends on the signal itself
- Unless, we consider fairly trivial signals, a deterministic analysis is usually impractical
 - More common to look at errors from a statistical perspective
 - "Quantization noise"

Model quantization error as noise:

Model quantization error as noise:

□ In that case:

 $-\Delta/2 \leq e[n] < \Delta/2$

Noise Model for Quantization Error

Assumptions:

- Model e[n] as a sample sequence of a stationary random process
- e[n] is not correlated with x[n]
- e[n] not correlated with e[m] where $m \neq n$
- $e[n] \sim U[-\Delta/2, \Delta/2]$ (uniform pdf)

• Assumptions work well for signals that change rapidly, are not clipped, and for small Δ

□ Figure 4.57 Example of quantization noise. (a) Unquantized samples of the signal x[n] = 0.99cos(n/10).

• Figure 4.57(continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer.

• **Figure 4.57**(continued) (b) Quantized samples of the cosine waveform in part (a) with a 3bit quantizer. (c) Quantization error sequence for 3-bit quantization of the signal in (a).

Figure 4.57(continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of the signal in (a). (d) Quantization error sequence for 8-bit quantization of the signal in (a).

Penn ESE 5310 Spring 2024 - Khanna

$$SQNR = \frac{P_{sig}}{P_{qnoise}}$$

Penn ESE 5310 Spring 2024 - Khanna adapted from Murmann EE315B, Stanford

$$SQNR = \frac{P_{sig}}{P_{qnoise}} = \frac{\frac{1}{2} \left(\frac{2^{B} \Delta}{2}\right)^{2}}{\frac{\Delta^{2}}{12}} = 1.5 \times 2^{2B} = 6.02B + 1.76 \text{ dB}$$

Penn ESE 5310 Spring 2024 - Khanna adapted from Murmann EE315B, Stanford

$$SQNR = \frac{P_{sig}}{P_{qnoise}} = \frac{\frac{1}{2} \left(\frac{2^{B} \Delta}{2}\right)^{2}}{\frac{\Delta^{2}}{12}} = 1.5 \times 2^{2B} = 6.02B + 1.76 \text{ dB}$$

B (Number of Bits)	SQNR
8	50dB
12	74dB
16	98dB
20	122dB

Penn ESE 5310 Spring 2024 - Khanna adapted from Murmann EE315B, Stanford

$$SQNR = \frac{P_{sig}}{P_{qnoise}} = \frac{\frac{1}{2} \left(\frac{2^{B} \Delta}{2}\right)^{2}}{\frac{\Delta^{2}}{12}} = 1.5 \times 2^{2B} = 6.02B + 1.76 \text{ dB}$$

- □ Improvement of 6dB with every bit
- The range of the quantization must be adapted to the rms amplitude of the signal

Penn ESE 5310 Spring 2024 - Khanna adapted from Murmann EE315B, Stanford

Quantization Noise Spectrum

 If the quantization error is "sufficiently random", it also follows that the noise power is uniformly distributed in frequency

References

- W. R. Bennett, "Spectra of quantized signals," Bell Syst. Tech. J., pp. 446-72, July 1988.
- B. Widrow, "A study of rough amplitude quantization by means of Nyquist sampling theory," IRE Trans. Circuit Theory, vol. CT-3, pp. 266-76, 1956.

- Problem: Hard to implement sharp analog filter
- Consequence: Crop part of the signal and suffer from noise and interference

Quantization Noise with Oversampling

Quantization Noise with Oversampling

- Energy of $x_d[n]$ equals energy of x[n]
 - Signal power stays the same, but quantization noise power reduced!
- □ Noise variance is reduced by factor of M

 $SQNR = 6.02B + 1.76 + 10\log_{10}M$

- For doubling of M we get 3dB improvement, which is the same as 1/2 a bit of accuracy
 - With oversampling of 16 with 8bit ADC we get the same quantization noise as 10bit ADC!

Noise Shaping

Quantization Noise with Oversampling

 Idea: "Somehow" build an ADC that has most of its quantization noise at high frequencies

• Key: Feedback

- Objective
 - Want to make STF unity in the signal frequency band
 - Want to make NTF "small" in the signal frequency band
- □ If the frequency band of interest is around DC $(0...f_B)$ we achieve this by making |A(z)| >> 1 at low frequencies
 - Means that NTF << 1
 - Means that $STF \cong 1$

□ "Infinite gain" at DC (ω =0, z=1)

Output is equal to delayed input plus filtered quantization noise

$$H_e(z) = l - z^{-l}$$

- "First order noise Shaping"
 - Quantization noise is attenuated at low frequencies, amplified at high frequencies

□ Lth order noise transfer function

$$H_E(z) = \left(l - z^{-l}\right)^L$$

Practical DAC

D.T

$$x[n] = x(t)|_{t=nT}$$
 $\xrightarrow{\text{sinc pulse}}$ $x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \text{sinc} \left(\frac{t-nT}{T}\right)$

- Scaled train of sinc pulses
- $\square \text{ Difficult to generate sinc } \rightarrow \text{Too long!}$

D.T

$$x[n] = x(t)|_{t=nT} \longrightarrow \begin{bmatrix} \text{Interp. Filter} \\ h_0(t) \Leftrightarrow H_0(j\Omega) \end{bmatrix} \longrightarrow \begin{bmatrix} \text{Recon. Filter} \\ h_r(t) \Leftrightarrow H_r(j\Omega) \end{bmatrix} \longrightarrow x_r(t)$$

$$= \sum x[n]h_0(t-nT)$$

- □ $h_0(t)$ is finite length pulse → easy to implement
- □ For example: zero-order hold

$$I \oint_{T} H_0(j\Omega) = Te^{-j\Omega \frac{T}{2}} \operatorname{sinc}(\frac{\Omega}{\Omega_s})$$

Zero-Order-Hold interpolation

Zero-Order-Hold interpolation

• Output of the reconstruction filter D.T $x[n] = x(t)|_{t=nT}$ $h_0(t) \Leftrightarrow H_0(j\Omega)$

 $X_r(j\Omega) = H_0(j\Omega) \cdot X_s(j\Omega)$

Ideally:

Practically:

• Output of the reconstruction filter

$$D.T$$

 $x[n] = x(t)|_{t=nT}$
 $h_0(t) \Leftrightarrow H_0(j\Omega)$
 $filter$
 $h_0(t) \Leftrightarrow H_0(j\Omega)$
 $filter$
 $h_0(t) \Leftrightarrow H_0(j\Omega)$
 $filter$
 $h_r(t) \Leftrightarrow H_r(j\Omega)$
 $filter$

Practically:

- Quantizers
 - Introduces quantization noise
- Data Converters
 - Oversampling to reduce interference and quantization noise → increase ENOB (effective number of bits)
- Noise Shaping
 - Use feedback to reduce oversampling factor
- Practical DACs use practical interpolation and reconstruction filters with oversampling

- □ HW 5 out now
 - Due Sunday 3/10
- No lecture Thursday
- **TA OH during spring break will be sparse**
 - Keep an eye on Ed for information and use Ed for questions
- □ I will still hold my office hours