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Today

 Review: 
 Discrete Fourier Transform (DFT)

 Circular Convolution
 Fast Convolution Methods
 Time-aliasing w/ Convolution
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Discrete Fourier Transform

 The DFT

 It is understood that,
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DTFT Vs. DFT
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DFT Intuition
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 Back to example
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“10-point” DFT

Use fftshift
to center 
around dc

“6-point” DFT



Properties of DFT

 Circular frequency shift

 Complex Conjugation 

 Conjugate Symmetry for Real Signals
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Example: Conjugate Symmetry
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Example: Conjugate Symmetry

9
Penn ESE 5310 Spring 2024 – Khanna
Adapted from M. Lustig, EECS Berkeley



Example: Conjugate Symmetry
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Example: Conjugate Symmetry
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Example
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Example
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Circular Convolution

 Circular Convolution:

For two signals of length N
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Compute Circular Convolution Sum
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7-point convolution



Compute Circular Convolution Sum
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7-point convolution



Compute Circular Convolution Sum
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7-point convolution



Compute Circular Convolution Sum
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𝑥![(−𝑚)"]



Compute Circular Convolution Sum
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y[0]=2

𝑥![(−𝑚)"]



Compute Circular Convolution Sum
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y[0]=2
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𝑥![(−𝑚)"]



Compute Circular Convolution Sum
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y[1]=2
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𝑥![((1 − 𝑚))"]



Compute Circular Convolution Sum
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y[0]=2
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y[2]=3
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𝑥![((2 − 𝑚))"]



Compute Circular Convolution Sum
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y[0]=2
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𝑥![((3 − 𝑚))"]



Result
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y[0]=2
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Circular Convolution

 For x1[n] and x2[n] with length N

 Very useful!!  (for linear convolutions with DFT)
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Multiplication

 For x1[n] and x2[n] with length N
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Linear Convolution

 Next.... 
 Using DFT, circular convolution is easy 

 Matrix multiplication

 But, linear convolution is useful, not circular 
 So, show how to perform linear convolution with circular 

convolution 
 Use DFT to do circular convolution
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Linear Convolution

 We start with two non-periodic sequences:

 E.g. x[n] is a signal and h[n] a filter’s impulse response
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Compute Circular Convolution Sum
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L=7

P=4

Length=7
7-point circular 

convolution



Linear Convolution

 We start with two non-periodic sequences:

 E.g. x[n] is a signal and h[n] a filter’s impulse response

 We want to compute the linear convolution:

 y[n] is nonzero for 0 ≤ n ≤ L+P-2  (ie. length M=L+P-1)
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Requires L*P multiplications



Linear Convolution via Circular Convolution

 Zero-pad x[n] by P-1 zeros

 Zero-pad h[n] by L-1 zeros

 Now, both sequences are length M=L+P-1
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Linear Convolution via Circular Convolution

 Now, both sequences are length M=L+P-1
 We can now compute the linear convolution using a 

circular one with length M=L+P-1
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Example
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Example
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Example
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Linear Convolution with DFT

 In practice we can implement a circular convolution 
using the DFT property:
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Linear Convolution with DFT

 In practice we can implement a circular convolution 
using the DFT property:

 Advantage: DFT can be computed with Nlog2N 
complexity (FFT algorithm later!) 
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Linear Convolution with DFT

 In practice we can implement a circular convolution 
using the DFT property:

 Advantage: DFT can be computed with Nlog2N 
complexity (FFT algorithm later!) 

 Drawback: Must wait for all the samples -- huge 
delay -- incompatible with real-time filtering
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Block Convolution

 Problem: 
 An input signal x[n], has very long length (could be 

considered infinite) 
 An impulse response h[n] has length P 
 We want to take advantage of DFT/FFT and compute 

convolutions in blocks that are shorter than the signal 

 Approach: 
 Break the signal into small blocks 
 Compute convolutions (via DFT) 
 Combine the results

 Overlap-add
 Overlap-save
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Block Convolution
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Overlap-Add Method

 Decompose into non-overlapping segments

 The input signal is the sum of segments
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Example
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L=11



Overlap-Add Method

 The output is:

 Each output segment xr[n]*h[n] is length M=L+P-1
 h[n] has length P
 xr[n] has length L
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Overlap-Add Method

 We can compute xr[n]*h[n] using circular convolution with 
the DFT

 Using the DFT: 
 Zero-pad xr[n] to length M = L+P-1
 Zero-pad h[n] to length M and compute DFTM{hzp[n]} 

 Only need to do once!
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Overlap-Add Method

 We can compute xr[n]*h[n] using circular convolution with 
the DFT

 Using the DFT: 
 Zero-pad xr[n] to length M 
 Zero-pad h[n] to length M and compute DFTN{hzp[n]} 

 Only need to do once!

 Compute:

 Results are of length M=L+P-1
 Neighboring results overlap by P-1
 Add overlaps to get final sequence
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Example of Overlap-Add
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L=11

L+P-1=16



Example of Overlap-Add

47

y

y

y

Penn ESE 5310 Spring 2024 – Khanna
Adapted from M. Lustig, EECS Berkeley

L=11

L+P-1=16



Example of Overlap-Add
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L=11

L+P-1=16



Overlap-Save Method

 Basic idea: 
 Split input into overlapping segments with length 

L+P-1
 P-1 sample overlap

 Perform circular convolution in each segment, and 
keep the L sample portion which is a valid linear 
convolution
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Example of Overlap-Save
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16 sample 
input 

segments



Circular to Linear Convolution

 An L-point sequence circularly convolved with a P-
point sequence 
 with L - P zeros padded, P < L

 gives an L-point result with 
 the first P - 1 values incorrect and 
 the next L - P + 1 the correct linear convolution result 

51Penn ESE 5310 Spring 2024 - Khanna



Circular to Linear Convolution

 An L-point sequence circularly convolved with a P-
point sequence 
 with L - P zeros padded, P < L

 gives an L-point result with 
 the first P - 1 values incorrect and 
 the next L - P + 1 the correct linear convolution result 
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Example of Overlap-Save
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P-1=5
Overlap 
samples

16 sample 
input 

segments



Example of Overlap-Save
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P-1=5
Overlap 
samples

L-P+1=11
keep

samples

16 sample 
input 

segments



Example of Overlap-Save
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Linear Convolution via Circular Convolution

 Zero-pad x[n] by P-1 zeros

 Zero-pad h[n] by L-1 zeros

 Now, both sequences are length M=L+P-1
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Circular Conv. via Linear Conv. (w/ Aliasing)

 If the DTFT X(ejω) of a sequence x[n] is sampled at 
N frequencies ωk=2πk/N, then the resulting 
sequence X[k] corresponds to the periodic sequence

 And is the 
DFT of one period given as 
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Circular Conv. via Linear Conv. (w/ Aliasing)

 If x[n] has length less than or equal to N, then 
xp[n]=x[n]

 However if the length of x[n] is greater than N, this 
might not be true and we get aliasing in time
 N-point convolution results in N-point sequence
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Circular Conv. via Linear Conv. (w/ Aliasing)
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 Given two N-point sequences (x1[n] and x2[n]) and 
their N-point DFTs (X1[k] and X2[k])

 The N-point DFT of x3[n]=x1[n]*x2[n] is defined as

X 3[k]= X 3(e
j(2πk /N ) )



x3p[n]=
x1[n− rN ]* x2[n− rN ]

r=−∞

∞

∑ 0 ≤ n ≤ N −1

0 else

⎧

⎨
⎪

⎩
⎪

x3p[n]= x1[n]⊗ x2[n]

Circular Conv. via Linear Conv. (w/ Aliasing)
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 Given two N-point sequences (x1[n] and x2[n]) and 
their N-point DFTs (X1[k] and X2[k])

 The N-point DFT of x3[n]=x1[n]*x2[n] is defined as

 And X3[k]=X1[k]X2[k], where the inverse DFT of 
X3[k] is

X 3[k]= X 3(e
j(2πk /N ) )

N



Circular Conv. via Linear Conv. (w/ Aliasing)
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 Given two N-point sequences (x1[n] and x2[n]) and 
their N-point DFTs (X1[k] and X2[k])

 The N-point DFT of x3[n]=x1[n]*x2[n] is defined as

 And X3[k]=X1[k]X2[k], where the inverse DFT of 
X3[k] is

X 3[k]= X 3(e
j(2πk /N ) )

!𝑥! 𝑛



Circular Conv. via Linear Conv. (w/ Aliasing)
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Circular Conv. via Linear Conv. (w/ Aliasing)
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 Thus
x3p[n]=

x1[n− rN ]* x2[n− rN ]
r=−∞

∞

∑ 0 ≤ n ≤ N −1

0 else

⎧

⎨
⎪

⎩
⎪

x3p[n]= x1[n]⊗ x2[n]N



Circular Conv. via Linear Conv. (w/ Aliasing)
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 Thus

 The N-point circular convolution is the sum of 
linear convolutions shifted in time by N

x3p[n]=
x1[n− rN ]* x2[n− rN ]

r=−∞

∞

∑ 0 ≤ n ≤ N −1

0 else

⎧

⎨
⎪

⎩
⎪

x3p[n]= x1[n]⊗ x2[n]N



Example 1:

 Let

 The N=L=6-point circular convolution results in
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Example 1:

 Let

 The N=L=6-point circular convolution results in
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Example 1:

 Let

 The linear convolution results in
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Example 1:

 Let

 The linear convolution results in
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Example 1:

 The sum of N-shifted linear convolutions equals the N-point 
circular convolution
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Example 1:

 The sum of N-shifted linear convolutions equals the N-point 
circular convolution
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Example 1:

 The sum of N-shifted linear convolutions equals the N-point 
circular convolution
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Example 1:

 If I want the circular convolution and linear 
convolution to be the same, what do I do?
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Example 1:

 If I want the circular convolution and linear 
convolution to be the same, what do I do?
 Take the N=2L-point circular convolution
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Example 1:

 If I want the circular convolution and linear 
convolution to be the same, what do I do?
 Take the N=2L-point circular convolution
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Example 2:

 Let
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Example 2:

 Let

 What does the L-point circular convolution look like?
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Linear convolution



Example 2:

 Let

 What does the L-point circular convolution look like?
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Linear convolution



Example 2:

 The L-shifted linear convolutions
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Example 2:

 The L-shifted linear convolutions

79Penn ESE 5310 Spring 2024 - Khanna



Big Ideas

 Discrete Fourier Transform (DFT)
 For finite signals assumed to be zero outside of defined length
 N-point DFT is sampled DTFT at N points
 DFT properties inherited from DFS, but circular operations!

 Fast Convolution Methods
 Use circular convolution (i.e DFT) to perform fast linear 

convolution
 Overlap-Add, Overlap-Save

 Circular convolution is linear convolution w/ 
aliasing 
 Must do a DFT long enough to get no aliasing
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Admin

 HW 8 out now
 Due 4/16
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