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Chirp Transform Algorithm
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Chirp Transform Algorithm

 Uses convolution to evaluate the DFT
 This algorithm is not optimal in minimizing any 

measure of computational complexity, but it has 
been useful in a variety of applications, particularly 
when implemented in technologies that are well 
suited to doing convolution with a fixed, pre-
specified impulse response. 

 The CTA is also more flexible than the FFT, since it 
can be used to compute any set of equally spaced 
samples of the Fourier transform on the unit circle. 
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Chirp Transform Algorithm
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When ω0=0 and M=N, 
we just get the DFT



Chirp Transform Algorithm
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Chirp Transform Algorithm

6Penn ESE 5310 Spring 2024 - Khanna



Causal FIR CTA 
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Example: Chirp Transform Parameters

 We have a finite-length sequence x[n] that is 
nonzero only on the interval n = 0, ..., 25, (Length 
N=26) and we wish to compute 16 samples of the 
DTFT X(ejω) at the frequencies ωk = 2π/27 + 
2πk/1024 for k = 0, . . . , 15. 
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Discrete Cosine Transform

 Similar to the discrete Fourier transform (DFT), but 
using only real numbers

 Widely used in lossy compression applications (eg. 
Mp3, JPEG)

 Why use it?
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DFT Problems

 For processing 1-D or 2-D signals (especially coding), a 
common method is to divide the signal into “frames” and 
then apply an invertible transform to each frame that 
compresses the information into few coefficients.

 The DFT has some problems when used for this purpose:
 N real x[n] ↔ N complex X[k] : 2 real, N/2 − 1 conjugate pairs
 DFT is of the periodic signal formed by replicating x[n] 
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DFT Problems

 For processing 1-D or 2-D signals (especially coding), a 
common method is to divide the signal into “frames” and 
then apply an invertible transform to each frame that 
compresses the information into few coefficients.

 The DFT has some problems when used for this purpose:
 N real x[n] ↔ N complex X[k] : 2 real, N/2 − 1 conjugate pairs
 DFT is of the periodic signal formed by replicating x[n] 
⇒ Spurious frequency components from boundary discontinuity
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The Discrete Cosine Transform (DCT) overcomes these problems.



Discrete Cosine Transform
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Basis Functions

13Penn ESE 5310 Spring 2024 - Khanna



DFT of Sine Wave
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DFT of Sine Wave
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DCT of Sine Wave
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Adaptive Filters
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Application Areas

 Speech coding
 Speech enhancement (hands-free systems, hearing aids, 

public address systems) 
 Equalization (sending antennas, radar, loudspeakers) 
 Anti-noise systems (cars and airplanes) 
 Multi-channel signal processing (beamforming, submarine 

localization, layer of earth analysis) 
 Missile control 
 Medical applications (fetal heart rate monitoring, dialysis) 
 Processing of video signals (cancellation of distortions, image 

analysis) 
 Antenna arrays
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Adaptive Filters

 An adaptive filter is an adjustable filter that 
processes in time
 It adapts…
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Adaptive
Filter

Update 
Coefficients

x[n] y[n]

d[n]

e[n]=d[n]-y[n]
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Adaptive Filter Applications

 System Identification
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Adaptive Filter Applications

 Identification of inverse system
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Adaptive Filter Applications

 Adaptive Interference Cancellation
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Automotive Hands-Free System
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Adaptive Filter Applications

 Adaptive Prediction

24Penn ESE 5310 Spring 2024 - Khanna



Stochastic Gradient Approach

 Most commonly used type of Adaptive Filters
 Define cost function as mean-squared error

 Eg. Difference between filter output and desired response

 Based on the method of steepest descent
 Move towards the minimum on the error surface to get to minimum
 Requires the gradient of the error surface to be known
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Least-Mean-Square (LMS) Algorithm

 The LMS Algorithm consists of two basic processes
 Filtering process

 Calculate the output of FIR filter by convolving input and taps
 Calculate estimation error by comparing the output to desired signal

 Adaptation process
 Adjust tap weights based on the estimation error
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Adaptive FIR Filter: LMS
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Adaptive FIR Filter: LMS
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Adaptive FIR Filter: LMS
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Adaptive FIR Filter: LMS
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Adaptive FIR Filter: LMS
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Adaptive Filter Applications

 Adaptive Interference Cancellation
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Adaptive Interference Cancellation
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Adaptive Interference Cancellation
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ŝ[n]= s[n]+w[n]− ŵ[n]
= s[n]+w[n]− hn

T !wn
Minimizing (ŝ[n])2 removes noise w[n]



Adaptive Interference Cancellation
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ŝ[n]= s[n]+w[n]− ŵ[n]
= s[n]+w[n]− hn

T !wn
Minimizing (ŝ[n])2 removes noise w[n]

ŝ[n]( )
2
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∂ŝ2[n]
∂hn
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Adaptive Interference Cancellation

37Penn ESE 5310 Spring 2024 - Khanna



Stability of LMS

 The LMS algorithm is convergent in the mean square if and 
only if the step-size parameter satisfy

 Here lmax is the largest eigenvalue of the correlation matrix 
of the input data

 More practical test for stability is

 Larger values for step size
 Increases adaptation rate (faster adaptation)
 Increases residual mean-squared error
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Adaptive Equalization
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Big Ideas
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 Adaptive Filters
 Use LMS algorithm to update filter coefficients
 Applications like system ID, channel equalization, and 

signal prediction



Admin

 Project 2
 Out now  
 Can work in pairs
 Due 5/1 (last day of classes)

 Final Exam – 5/10
 3-5pm
 DRLB A8

 Subject to change.  Check path@penn for most up-to-date 
information
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