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Adaptive Filters
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Chirp Transform Algorithm

Penn ESE 5310 Spring 2024 - Khanna 2



Chirp Transform Algorithm

 Uses convolution to evaluate the DFT
 This algorithm is not optimal in minimizing any 

measure of computational complexity, but it has 
been useful in a variety of applications, particularly 
when implemented in technologies that are well 
suited to doing convolution with a fixed, pre-
specified impulse response. 

 The CTA is also more flexible than the FFT, since it 
can be used to compute any set of equally spaced 
samples of the Fourier transform on the unit circle. 

3Penn ESE 5310 Spring 2024 - Khanna



Chirp Transform Algorithm
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When ω0=0 and M=N, 
we just get the DFT



Chirp Transform Algorithm
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Chirp Transform Algorithm
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Causal FIR CTA 
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Example: Chirp Transform Parameters

 We have a finite-length sequence x[n] that is 
nonzero only on the interval n = 0, ..., 25, (Length 
N=26) and we wish to compute 16 samples of the 
DTFT X(ejω) at the frequencies ωk = 2π/27 + 
2πk/1024 for k = 0, . . . , 15. 
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Discrete Cosine Transform

 Similar to the discrete Fourier transform (DFT), but 
using only real numbers

 Widely used in lossy compression applications (eg. 
Mp3, JPEG)

 Why use it?
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DFT Problems

 For processing 1-D or 2-D signals (especially coding), a 
common method is to divide the signal into “frames” and 
then apply an invertible transform to each frame that 
compresses the information into few coefficients.

 The DFT has some problems when used for this purpose:
 N real x[n] ↔ N complex X[k] : 2 real, N/2 − 1 conjugate pairs
 DFT is of the periodic signal formed by replicating x[n] 
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DFT Problems

 For processing 1-D or 2-D signals (especially coding), a 
common method is to divide the signal into “frames” and 
then apply an invertible transform to each frame that 
compresses the information into few coefficients.

 The DFT has some problems when used for this purpose:
 N real x[n] ↔ N complex X[k] : 2 real, N/2 − 1 conjugate pairs
 DFT is of the periodic signal formed by replicating x[n] 
⇒ Spurious frequency components from boundary discontinuity
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The Discrete Cosine Transform (DCT) overcomes these problems.



Discrete Cosine Transform
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Basis Functions
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DFT of Sine Wave
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DFT of Sine Wave
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DCT of Sine Wave
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Adaptive Filters
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Application Areas

 Speech coding
 Speech enhancement (hands-free systems, hearing aids, 

public address systems) 
 Equalization (sending antennas, radar, loudspeakers) 
 Anti-noise systems (cars and airplanes) 
 Multi-channel signal processing (beamforming, submarine 

localization, layer of earth analysis) 
 Missile control 
 Medical applications (fetal heart rate monitoring, dialysis) 
 Processing of video signals (cancellation of distortions, image 

analysis) 
 Antenna arrays
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Adaptive Filters

 An adaptive filter is an adjustable filter that 
processes in time
 It adapts…

19

Adaptive
Filter

Update 
Coefficients

x[n] y[n]

d[n]

e[n]=d[n]-y[n]
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Adaptive Filter Applications

 System Identification
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Adaptive Filter Applications

 Identification of inverse system
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Adaptive Filter Applications

 Adaptive Interference Cancellation
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Automotive Hands-Free System
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Adaptive Filter Applications

 Adaptive Prediction
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Stochastic Gradient Approach

 Most commonly used type of Adaptive Filters
 Define cost function as mean-squared error

 Eg. Difference between filter output and desired response

 Based on the method of steepest descent
 Move towards the minimum on the error surface to get to minimum
 Requires the gradient of the error surface to be known
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Stochastic Gradient Approach

 Most commonly used type of Adaptive Filters
 Define cost function as mean-squared error

 Eg. Difference between filter output and desired response

 Based on the method of steepest descent
 Move towards the minimum on the error surface to get to minimum
 Requires the gradient of the error surface to be known
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Least-Mean-Square (LMS) Algorithm

 The LMS Algorithm consists of two basic processes
 Filtering process

 Calculate the output of FIR filter by convolving input and taps
 Calculate estimation error by comparing the output to desired signal

 Adaptation process
 Adjust tap weights based on the estimation error
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Adaptive FIR Filter: LMS
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Adaptive FIR Filter: LMS
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Adaptive FIR Filter: LMS
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Adaptive FIR Filter: LMS
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Adaptive FIR Filter: LMS
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Adaptive Filter Applications

 Adaptive Interference Cancellation
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Adaptive Interference Cancellation
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Adaptive Interference Cancellation
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ŝ[n]= s[n]+w[n]− ŵ[n]
= s[n]+w[n]− hn

T !wn
Minimizing (ŝ[n])2 removes noise w[n]



Adaptive Interference Cancellation
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ŝ[n]= s[n]+w[n]− ŵ[n]
= s[n]+w[n]− hn

T !wn
Minimizing (ŝ[n])2 removes noise w[n]

ŝ[n]( )
2
= s[n]+w[n]− hn

T !wn( )
2

∂ŝ2[n]
∂hn

= 2 s[n]+w[n]− hn
T !wn( )(− !wn )

= 2ŝ[n](− !wn ) = −2ŝ[n] !wn



Adaptive Interference Cancellation
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Stability of LMS

 The LMS algorithm is convergent in the mean square if and 
only if the step-size parameter satisfy

 Here lmax is the largest eigenvalue of the correlation matrix 
of the input data

 More practical test for stability is

 Larger values for step size
 Increases adaptation rate (faster adaptation)
 Increases residual mean-squared error
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Adaptive Equalization
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Big Ideas
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 Adaptive Filters
 Use LMS algorithm to update filter coefficients
 Applications like system ID, channel equalization, and 

signal prediction



Admin

 Project 2
 Out now  
 Can work in pairs
 Due 5/1 (last day of classes)

 Final Exam – 5/10
 3-5pm
 DRLB A8

 Subject to change.  Check path@penn for most up-to-date 
information
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