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Today

 Wavelet Transform
 Compressive Sampling/Sensing
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Discrete Time-Dependent Fourier Transform
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X [n,λ) = x[n+m]w[m]e− jλm
m=−∞

∞

∑

X [rR,k]= X [rR,2πk / N ) = x[rR+m]w[m]e− j(2π /N )km
m=0

L−1

∑

Xr[k]= x[rR+m]w[m]e− j(2π /N )km
m=0

L−1

∑



Wavelet Transform

4Penn ESE 5310 Spring 2024 – Khanna



Motivation

 Some signals obviously have spectral characteristics 
that vary with time
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Criticism of Fourier Spectrum

 It’s giving you the spectrum of the ‘whole time-
series’

 Which is OK if the time-series is stationary.  But 
what if it’s not?

 We need a technique that can “march along” a time 
series and that is capable of:
 Analyzing spectral content in different places
 Detecting sharp changes in spectral character

6Penn ESE 5310 Spring 2024 – Khanna



Transform Comparison
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Transform Comparison
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Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)
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Windowed Sampled CT Signal Example

 As before, the sampling rate is Ωs/2π=1/T=20Hz
 Hamming Window, L = 32 vs. L = 64
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Uncertainty Principle
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https://youtu.be/MBnnXbOM5S4?t=49



Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)
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s

τ



Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

 Make the window smaller
 Better localization in time
 Less spectral resolution
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Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

 Make the window larger
 Worse localization in time
 More spectral resolution
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Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

 Use a big window for low frequency content that is not 
localized in time

 Use a small window for high frequency content that is 
localized in time
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Transform Comparison
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Fourier vs. Wavelet

 Fourier Analysis is based on an indefinitely long 
cosine wave of a specific frequency

 Wavelet Analysis is based on a short duration 
wavelet of a specific center frequency
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Wavelet Transform

 All wavelets derived from mother wavelet
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Example: Haar Wavelet
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1

-1

t

ψ(t) = ψ1,0(t)

s=1/2, τ=2



Example: Haar Wavelet
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s=1/2, τ=2
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Examples of Wavelets
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Ricker SymletsBiorthogonal

Morlet Daubechies Coiflets



Ingrid Daubechies

 Defined worldwide standard for image compression
 https://www.fi.edu/en/laureates/ingrid-

daubechies#:~:text=Her%20contributions%20have%20revol
utionized%20and,the%20JPEG2000%20image%20processing
%20standard.
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https://www.fi.edu/en/laureates/ingrid-daubechies


change in scale

normalization

wavelet with
scale, s and 

translation, t

shift in time

Mother wavelet

Wavelet – Scaled and Shifted
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wavelet with
scale, s, and shift, t

time-series

coefficient of wavelet 
with

scale, s and time, t

Continuous Wavelet Transform

γ (s,τ ) = f (t)Ψs,τ∫ (t)dt
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wavelet with
scale, s and time, t

time-series

coefficients
of wavelets

Inverse Wavelet Transform

 Build up a time-series as sum of wavelets of 
different scales, s, and positions, t 
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Wavelet Basis Functions

26Penn ESE 5310 Spring 2024 - Khanna



Discrete wavelets:

 Scale wavelets only by integer powers of 2
 sj= 2j

 And shifting by integer multiples of sj for 
each successive scale
 τj,k = k2j

 Then γ(sj, τj,k) = γjk
 where j = 1, 2, …∞, and k = - ∞ … -2, -1, 0, 1, 2, … ∞

γ j ,k =
1

2 j
f (t)Ψ∫ t − k2 j

2 j
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟dt
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DWT vs CWT
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Wavelet Transform

 For a fixed scale, s, determining the wavelet 
coefficients can be thought of as a filtering 
operation

 where
Ψs (t) =

1
s
Ψ( t
s
)
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𝛾 𝑠, 𝜏 = &𝑓 𝑡 Ψ!,# 𝑡 𝑑𝑡

𝛾! 𝜏 = &𝑓 𝑡 Ψ! 𝑡 − 𝜏 𝑑𝑡 = 𝑓 𝜏 ∗ Ψ!(−𝜏)

If wavelet is even,
Ψ −𝜏 = Ψ 𝜏



mother wavelet

t=5, s=2

time

Shannon Wavelet

 Y(t) = 2 sinc(2t) – sinc(t)
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frequency, w

Fourier spectrum of Shannon Wavelet

 Wavelet coefficients are a result of bandpass
filtering
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Ψs(jΩ)

Ω



Discrete Wavelet Transform

 The coefficients of Ψ is just the band-pass filtered 
time-series, where Ψ is the wavelet, now viewed as 
the impulse response of a bandpass filter.
 Discrete wavelet  s = 2j
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Discrete Wavelet Transform

 The coefficients of Ψ is just the band-pass filtered 
time-series, where Ψ is the wavelet, now viewed as 
the impulse response of a bandpass filter.
 Discrete wavelet  s = 2j 
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Discrete Wavelet Transform

 The coefficients of Ψ is just the band-pass filtered 
time-series, where Ψ is the wavelet, now viewed as 
the impulse response of a bandpass filter.
 Discrete wavelet  s = 2j
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Digital Wavelet as Multirate Filter Bank
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 Repeat recursively!



time-series of length N

HP LP

¯2 ¯2

HP LP

¯2 ¯2

HP LP

¯2 ¯2

…

g(s1,t)

g(s2,t)

g(s3,t)

g(s1,t): N/2 coefficients

g(s2,t): N/4 coefficients

g(s2,t): N/8 coefficients

Total: N coefficients

Digital Wavelet as Multirate Filter Bank

36Penn ESE 5310 Spring 2024 – Khanna



Coiflet low pass filter

Coiflet high-pass filter

time, t

time, t

Impulse Responses
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Spectrum of low pass filter

Spectrum of high pass filter

Filter Responses
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stage 1 - hi

time-series

stage 1 - lo

Downsample x2

Downsample x2

Level 1 ϒ
coefficients

(256)



stage 2 - hi

Stage 1 lo

stage 2 - lo

Downsample x2

Downsample x2

Level 2 ϒ
coefficients

(128)



stage 3 - hi

Stage 2 lo

stage 3 - lo

Downsample x2

Downsample x2

Level 3 ϒ
coefficients

(64)



stage 4 - hi

Stage 3 lo

stage 4 - lo

Downsample x2

Downsample x2

Level 4 ϒ
coefficients

(32)



stage 5 - hi

Stage 4 lo

Stage 5 - lo

Downsample x2

Downsample x2

Level 5 ϒ
coefficients

(16)



Stage 6 - hi

Stage 5 lo

stage 6 - lo

Downsample x2

Downsample x2

Level 6 ϒ
coefficients

(8)

Level 7 ϒ
coefficients

(8)



Putting it all together …

time, t

sc
al

e

long
wavelengths

short
wavelengths

|g(sj,t)|2



Expanding to Two Dimensions

 In two dimensions, a 2D scaling 
function 𝜙(𝑥, 𝑦) and three 2D wavelet functions 
𝜓!(𝑥, 𝑦), 𝜓"(𝑥, 𝑦), 𝜓# 𝑥, 𝑦 are required

 We can create these from the 1D scaling and 
wavelet functions:
 𝜙 𝑥, 𝑦 = 𝜙(𝑥)𝜙(𝑦)
 𝜓$ 𝑥, 𝑦 = 𝜓(𝑥)𝜙(𝑦)
 𝜓% 𝑥, 𝑦 = 𝜙 𝑥 𝜓 𝑦
 𝜓& 𝑥, 𝑦 = 𝜓 𝑥 𝜓 𝑦
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𝜓 𝑥 - HPF	
𝜙 𝑦 - LPF



Expanding to Two Dimensions
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HPF

LPF

LPF

LPF

HPF

LPF



Expanding to Two Dimensions
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Expanding to Two Dimensions
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Expanding to Two Dimensions
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Compressive Sampling
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Compressive Sampling

 What is the rate you need to sample at?
 At least Nyquist

52

tT
0

Anything
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Compressive Sampling

 What is the rate you need to sample at?
 Maybe less than Nyquist…

53

tT
0

Something
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First: Compression

 Standard approach
 First collect, then compress 

 Throw away unnecessary data
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First: Compression

 Examples
 Audio – 10x

 Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
 MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec

 Images – 22x
 Raw image (RGB): 24bit/pixel
 JPEG: 1280x960, normal = 1.09bit/pixel

 Videos – 75x
 Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz 

x 16b x 2 = 98,578 Kbit/s
 MPEG4: 1300 Kbit/s
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First: Compression

56

 Almost all compression algorithm use transform 
coding 
 mp3: DCT 
 JPEG: DCT 
 JPEG2000: Wavelet 
 MPEG: DCT & time-difference
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First: Compression

57

 Almost all compression algorithm use transform 
coding 
 mp3: DCT 
 JPEG: DCT 
 JPEG2000: Wavelet 
 MPEG: DCT & time-difference
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Sparse Transform

58
Penn ESE 5310 Spring 2024 – Khanna
Adapted from M. Lustig, EECS Berkeley



Sparse Transform
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Sparsity

60Penn ESE 5310 Spring 2024 - Khanna



Signal Processing Trends

 Traditional DSP  sample first, ask questions later
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Signal Processing Trends

 Traditional DSP  sample first, ask questions later
 Explosion in sensor technology/ubiquity has caused 

two trends:
 Physical capabilities of hardware are being stressed, 

increasing speed/resolution becoming expensive
 gigahertz+ analog-to-digital conversion
 accelerated MRI
 industrial imaging

 Deluge of data
 camera arrays and networks, multi-view target databases, 

streaming video...

 Compressive Sensing  sample smarter, not faster
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Compressive Sensing/Sampling

 Standard approach
 First collect, then compress 

 Throw away unnecessary data
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Compressive Sensing

 Shannon/Nyquist theorem is pessimistic
 2×bandwidth is the worst-case sampling rate — holds 

uniformly for any bandlimited data
 sparsity/compressibility is irrelevant
 Shannon sampling based on a linear model, compression 

based on a nonlinear model

 Compressive sensing
 new sampling theory that leverages compressibility
 key roles played by new uncertainty principles and 

randomness
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Sensing to Data
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Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Sparse signal in time Frequency spectrum

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time Undersampled in frequency
(reconstructed in time with IFFT)

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover

71

Undersampled in frequency
(reconstructed in time with IFFT)

Requires sparsity and incoherent sampling
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Compressive Sampling: Simple Example
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Compressive Sampling

 Sense signal M times
 Recover with linear 

program
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Compressive Sampling

 Sense signal M times
 Recover with linear 

program
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Example: Sum of Sinusoids

 Two relevant “knobs”
 percentage of Nyquist 

samples as altered by 
adjusting number of 
samples, M

 input signal duration, T
 Data block size 
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7% 14% 17.5%

20.9% 34.7% 51.9%

Example: Increasing M
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T=5 T=10 T=15

T=30 T=60 T=120

Example: Increasing T
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Numerical Recovery Curves

 Sense S-sparse signal of length N randomly M times

 In practice, perfect recovery occurs when M ≈ 2S for N ≈ 1000
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N=256
N=512
N=1024 



A Non-Linear Sampling Theorem

 Exact Recovery Theorem (Candès, R, Tao, 2004):
 Select M sample locations {tm} “at random” with

 Take time-domain samples (measurements)

 Solve

 Solution is exactly recovered signal with extremely 
high probability
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M > C∙μ2(Φ,Ψ)∙S∙log N



Biometric Example: Parkinson’s Tremors

 6 Subjects of real tremor 
data

 collected using low intensity 
velocity-transducing laser 
recording aimed at reflective 
tape attached to the subjects’ 
finger recording the finger 
velocity

 All show Parkinson’s tremor 
in the 4-6 Hz range.  

 Subject 8 shows activity at 
two higher frequencies

 Subject 4 appears to have two 
tremors very close to each 
other in frequency 
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Compressive Sampling: Real Data
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C=10.5, T=30
 20% Nyquist required samples 

Biometric Example: Parkinson’s Tremors
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 Tremors detected 
within 100 mHz

 randomly sample 
20% of the 
Nyquist required 
samples

Biometric Example: Parkinson’s Tremors
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Requires post processing to randomly sample!
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Implementing Compressive Sampling

 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies 
within 100mHz
 Requires post processing to randomly sample!

 Implement hardware on chip to “choose” samples in real 
time
 Only write to memory the “chosen” samples

 Design random-like sequence generator
 Only convert the “chosen” samples

 Design low energy ADC
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CS Theory

Why does it work?
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Sampling
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Compressive Sampling
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How Can It Work?
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How Can It Work?
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How Can It Work?
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How Can It Work?
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Restricted Isometric Property (RIP)
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CS Signal Recovery
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CS Signal Recovery
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CS Recovery
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Baraniuk, Richard. “Compressive Sensing [Lecture Notes].” IEEE Signal Processing Magazine 24 (2007): 118-121.



L2 Signal Recovery
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L0 Signal Recovery
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L1 Signal Recovery
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x̂



Universality
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Universality
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Universality
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Reference Slide
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Big Ideas

103

 Wavelet transform
 Capture temporal data with fewer coefficients than STFT
 Use scaling and translation to get different resolution at 

different levels

 Compressive Sampling
 Integrated sensing/sampling, compression and processing
 Based on sparsity and incoherency



Admin

 Project 2 - Due 5/1
 Final Exam – 5/10 3-5pm in DRLB A8 

 Cumulative – covers lec 1-22
 Except data converters, noise shaping (lec 11)
 Closed book
 2  8.5x11 two-sided cheat sheets allowed
 Calculators allowed, no smart phones

 Can’t share.  Bring your own.

 Old exams posted
 Disclaimers: old exams had different coverage for different years

 Review Session – poll in Ed
 Last day of office hours – May 9th
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