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Today

 Wavelet Transform
 Compressive Sampling/Sensing
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Discrete Time-Dependent Fourier Transform
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X [n,λ) = x[n+m]w[m]e− jλm
m=−∞

∞

∑

X [rR,k]= X [rR,2πk / N ) = x[rR+m]w[m]e− j(2π /N )km
m=0

L−1

∑

Xr[k]= x[rR+m]w[m]e− j(2π /N )km
m=0

L−1

∑



Wavelet Transform
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Motivation

 Some signals obviously have spectral characteristics 
that vary with time
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Criticism of Fourier Spectrum

 It’s giving you the spectrum of the ‘whole time-
series’

 Which is OK if the time-series is stationary.  But 
what if it’s not?

 We need a technique that can “march along” a time 
series and that is capable of:
 Analyzing spectral content in different places
 Detecting sharp changes in spectral character
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Transform Comparison
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Transform Comparison
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Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)
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Windowed Sampled CT Signal Example

 As before, the sampling rate is Ωs/2π=1/T=20Hz
 Hamming Window, L = 32 vs. L = 64
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Uncertainty Principle
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https://youtu.be/MBnnXbOM5S4?t=49



Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)
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s

τ



Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

 Make the window smaller
 Better localization in time
 Less spectral resolution
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Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

 Make the window larger
 Worse localization in time
 More spectral resolution
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Discrete Time-Dependent FT

 Fixed window size, shift in time (Gabor)

 Use a big window for low frequency content that is not 
localized in time

 Use a small window for high frequency content that is 
localized in time
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Transform Comparison
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Fourier vs. Wavelet

 Fourier Analysis is based on an indefinitely long 
cosine wave of a specific frequency

 Wavelet Analysis is based on a short duration 
wavelet of a specific center frequency
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Wavelet Transform

 All wavelets derived from mother wavelet
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Example: Haar Wavelet
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ψ(t) = ψ1,0(t)

s=1/2, τ=2



Example: Haar Wavelet
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s=1/2, τ=2
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Examples of Wavelets
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Ricker SymletsBiorthogonal

Morlet Daubechies Coiflets



Ingrid Daubechies

 Defined worldwide standard for image compression
 https://www.fi.edu/en/laureates/ingrid-

daubechies#:~:text=Her%20contributions%20have%20revol
utionized%20and,the%20JPEG2000%20image%20processing
%20standard.
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https://www.fi.edu/en/laureates/ingrid-daubechies


change in scale

normalization

wavelet with
scale, s and 

translation, t

shift in time

Mother wavelet

Wavelet – Scaled and Shifted
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wavelet with
scale, s, and shift, t

time-series

coefficient of wavelet 
with

scale, s and time, t

Continuous Wavelet Transform

γ (s,τ ) = f (t)Ψs,τ∫ (t)dt
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wavelet with
scale, s and time, t

time-series

coefficients
of wavelets

Inverse Wavelet Transform

 Build up a time-series as sum of wavelets of 
different scales, s, and positions, t 
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Wavelet Basis Functions
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Discrete wavelets:

 Scale wavelets only by integer powers of 2
 sj= 2j

 And shifting by integer multiples of sj for 
each successive scale
 τj,k = k2j

 Then γ(sj, τj,k) = γjk
 where j = 1, 2, …∞, and k = - ∞ … -2, -1, 0, 1, 2, … ∞

γ j ,k =
1

2 j
f (t)Ψ∫ t − k2 j

2 j
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟dt
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DWT vs CWT
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Wavelet Transform

 For a fixed scale, s, determining the wavelet 
coefficients can be thought of as a filtering 
operation

 where
Ψs (t) =

1
s
Ψ( t
s
)
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𝛾 𝑠, 𝜏 = &𝑓 𝑡 Ψ!,# 𝑡 𝑑𝑡

𝛾! 𝜏 = &𝑓 𝑡 Ψ! 𝑡 − 𝜏 𝑑𝑡 = 𝑓 𝜏 ∗ Ψ!(−𝜏)

If wavelet is even,
Ψ −𝜏 = Ψ 𝜏



mother wavelet

t=5, s=2

time

Shannon Wavelet

 Y(t) = 2 sinc(2t) – sinc(t)
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frequency, w

Fourier spectrum of Shannon Wavelet

 Wavelet coefficients are a result of bandpass
filtering
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Ψs(jΩ)

Ω



Discrete Wavelet Transform

 The coefficients of Ψ is just the band-pass filtered 
time-series, where Ψ is the wavelet, now viewed as 
the impulse response of a bandpass filter.
 Discrete wavelet  s = 2j
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Discrete Wavelet Transform

 The coefficients of Ψ is just the band-pass filtered 
time-series, where Ψ is the wavelet, now viewed as 
the impulse response of a bandpass filter.
 Discrete wavelet  s = 2j 
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Discrete Wavelet Transform

 The coefficients of Ψ is just the band-pass filtered 
time-series, where Ψ is the wavelet, now viewed as 
the impulse response of a bandpass filter.
 Discrete wavelet  s = 2j

34Penn ESE 5310 Spring 2024 - Khanna



Digital Wavelet as Multirate Filter Bank
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 Repeat recursively!



time-series of length N

HP LP

¯2 ¯2

HP LP

¯2 ¯2

HP LP

¯2 ¯2

…

g(s1,t)

g(s2,t)

g(s3,t)

g(s1,t): N/2 coefficients

g(s2,t): N/4 coefficients

g(s2,t): N/8 coefficients

Total: N coefficients

Digital Wavelet as Multirate Filter Bank
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Coiflet low pass filter

Coiflet high-pass filter

time, t

time, t

Impulse Responses
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Spectrum of low pass filter

Spectrum of high pass filter

Filter Responses
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stage 1 - hi

time-series

stage 1 - lo

Downsample x2

Downsample x2

Level 1 ϒ
coefficients

(256)



stage 2 - hi

Stage 1 lo

stage 2 - lo

Downsample x2

Downsample x2

Level 2 ϒ
coefficients

(128)



stage 3 - hi

Stage 2 lo

stage 3 - lo

Downsample x2

Downsample x2

Level 3 ϒ
coefficients

(64)



stage 4 - hi

Stage 3 lo

stage 4 - lo

Downsample x2

Downsample x2

Level 4 ϒ
coefficients

(32)



stage 5 - hi

Stage 4 lo

Stage 5 - lo

Downsample x2

Downsample x2

Level 5 ϒ
coefficients

(16)



Stage 6 - hi

Stage 5 lo

stage 6 - lo

Downsample x2

Downsample x2

Level 6 ϒ
coefficients

(8)

Level 7 ϒ
coefficients

(8)



Putting it all together …

time, t

sc
al

e

long
wavelengths

short
wavelengths

|g(sj,t)|2



Expanding to Two Dimensions

 In two dimensions, a 2D scaling 
function 𝜙(𝑥, 𝑦) and three 2D wavelet functions 
𝜓!(𝑥, 𝑦), 𝜓"(𝑥, 𝑦), 𝜓# 𝑥, 𝑦 are required

 We can create these from the 1D scaling and 
wavelet functions:
 𝜙 𝑥, 𝑦 = 𝜙(𝑥)𝜙(𝑦)
 𝜓$ 𝑥, 𝑦 = 𝜓(𝑥)𝜙(𝑦)
 𝜓% 𝑥, 𝑦 = 𝜙 𝑥 𝜓 𝑦
 𝜓& 𝑥, 𝑦 = 𝜓 𝑥 𝜓 𝑦
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𝜓 𝑥 - HPF	
𝜙 𝑦 - LPF



Expanding to Two Dimensions
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HPF

LPF

LPF

LPF

HPF

LPF



Expanding to Two Dimensions
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Expanding to Two Dimensions
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Expanding to Two Dimensions
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Compressive Sampling
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Compressive Sampling

 What is the rate you need to sample at?
 At least Nyquist

52

tT
0

Anything
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Compressive Sampling

 What is the rate you need to sample at?
 Maybe less than Nyquist…

53

tT
0

Something
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First: Compression

 Standard approach
 First collect, then compress 

 Throw away unnecessary data
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First: Compression

 Examples
 Audio – 10x

 Raw audio: 44.1kHz, 16bit, stereo = 1378 Kbit/sec
 MP3: 44.1kHz, 16 bit, stereo = 128 Kbit/sec

 Images – 22x
 Raw image (RGB): 24bit/pixel
 JPEG: 1280x960, normal = 1.09bit/pixel

 Videos – 75x
 Raw Video: (480x360)p/frame x 24b/p x 24frames/s + 44.1kHz 

x 16b x 2 = 98,578 Kbit/s
 MPEG4: 1300 Kbit/s
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First: Compression

56

 Almost all compression algorithm use transform 
coding 
 mp3: DCT 
 JPEG: DCT 
 JPEG2000: Wavelet 
 MPEG: DCT & time-difference
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First: Compression

57

 Almost all compression algorithm use transform 
coding 
 mp3: DCT 
 JPEG: DCT 
 JPEG2000: Wavelet 
 MPEG: DCT & time-difference

Penn ESE 5310 Spring 2024 – Khanna
Adapted from M. Lustig, EECS Berkeley



Sparse Transform

58
Penn ESE 5310 Spring 2024 – Khanna
Adapted from M. Lustig, EECS Berkeley



Sparse Transform
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Sparsity
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Signal Processing Trends

 Traditional DSP  sample first, ask questions later
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Signal Processing Trends

 Traditional DSP  sample first, ask questions later
 Explosion in sensor technology/ubiquity has caused 

two trends:
 Physical capabilities of hardware are being stressed, 

increasing speed/resolution becoming expensive
 gigahertz+ analog-to-digital conversion
 accelerated MRI
 industrial imaging

 Deluge of data
 camera arrays and networks, multi-view target databases, 

streaming video...

 Compressive Sensing  sample smarter, not faster
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Compressive Sensing/Sampling

 Standard approach
 First collect, then compress 

 Throw away unnecessary data
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Compressive Sensing

 Shannon/Nyquist theorem is pessimistic
 2×bandwidth is the worst-case sampling rate — holds 

uniformly for any bandlimited data
 sparsity/compressibility is irrelevant
 Shannon sampling based on a linear model, compression 

based on a nonlinear model

 Compressive sensing
 new sampling theory that leverages compressibility
 key roles played by new uncertainty principles and 

randomness
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Sensing to Data
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Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Sparse signal in time Frequency spectrum

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time Undersampled in frequency
(reconstructed in time with IFFT)

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover
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Undersampled in time

Compressive Sampling

 Sample at lower than the Nyquist rate and still 
accurately recover the signal, and in most cases 
exactly recover

71

Undersampled in frequency
(reconstructed in time with IFFT)

Requires sparsity and incoherent sampling
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Compressive Sampling: Simple Example
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Compressive Sampling

 Sense signal M times
 Recover with linear 

program
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Compressive Sampling

 Sense signal M times
 Recover with linear 

program
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Example: Sum of Sinusoids

 Two relevant “knobs”
 percentage of Nyquist 

samples as altered by 
adjusting number of 
samples, M

 input signal duration, T
 Data block size 
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7% 14% 17.5%

20.9% 34.7% 51.9%

Example: Increasing M
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T=5 T=10 T=15

T=30 T=60 T=120

Example: Increasing T
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Numerical Recovery Curves

 Sense S-sparse signal of length N randomly M times

 In practice, perfect recovery occurs when M ≈ 2S for N ≈ 1000
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N=256
N=512
N=1024 



A Non-Linear Sampling Theorem

 Exact Recovery Theorem (Candès, R, Tao, 2004):
 Select M sample locations {tm} “at random” with

 Take time-domain samples (measurements)

 Solve

 Solution is exactly recovered signal with extremely 
high probability
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M > C∙μ2(Φ,Ψ)∙S∙log N



Biometric Example: Parkinson’s Tremors

 6 Subjects of real tremor 
data

 collected using low intensity 
velocity-transducing laser 
recording aimed at reflective 
tape attached to the subjects’ 
finger recording the finger 
velocity

 All show Parkinson’s tremor 
in the 4-6 Hz range.  

 Subject 8 shows activity at 
two higher frequencies

 Subject 4 appears to have two 
tremors very close to each 
other in frequency 
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81

Compressive Sampling: Real Data
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C=10.5, T=30
 20% Nyquist required samples 

Biometric Example: Parkinson’s Tremors
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 Tremors detected 
within 100 mHz

 randomly sample 
20% of the 
Nyquist required 
samples

Biometric Example: Parkinson’s Tremors

83

Requires post processing to randomly sample!
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Implementing Compressive Sampling

 Devised a way to randomly sample 20% of the Nyquist
required samples and still detect the tremor frequencies 
within 100mHz
 Requires post processing to randomly sample!

 Implement hardware on chip to “choose” samples in real 
time
 Only write to memory the “chosen” samples

 Design random-like sequence generator
 Only convert the “chosen” samples

 Design low energy ADC
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CS Theory

Why does it work?
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Sampling
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Compressive Sampling
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How Can It Work?
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How Can It Work?
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How Can It Work?
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How Can It Work?
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Restricted Isometric Property (RIP)
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CS Signal Recovery
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CS Signal Recovery
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CS Recovery
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Baraniuk, Richard. “Compressive Sensing [Lecture Notes].” IEEE Signal Processing Magazine 24 (2007): 118-121.



L2 Signal Recovery
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L0 Signal Recovery
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L1 Signal Recovery
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x̂



Universality
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Universality
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Universality
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Reference Slide
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Big Ideas

103

 Wavelet transform
 Capture temporal data with fewer coefficients than STFT
 Use scaling and translation to get different resolution at 

different levels

 Compressive Sampling
 Integrated sensing/sampling, compression and processing
 Based on sparsity and incoherency



Admin

 Project 2 - Due 5/1
 Final Exam – 5/10 3-5pm in DRLB A8 

 Cumulative – covers lec 1-22
 Except data converters, noise shaping (lec 11)
 Closed book
 2  8.5x11 two-sided cheat sheets allowed
 Calculators allowed, no smart phones

 Can’t share.  Bring your own.

 Old exams posted
 Disclaimers: old exams had different coverage for different years

 Review Session – poll in Ed
 Last day of office hours – May 9th

104
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