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Course Content

 Introduction
 Discrete Time Signals & Systems
 Discrete Time Fourier 

Transform
 Z-Transform
 Inverse Z-Transform
 Sampling of Continuous Time 

Signals
 Frequency Domain of Discrete 

Time Series
 Downsampling/Upsampling
 Data Converters, Sigma Delta 

Modulation

 Oversampling, Noise Shaping
 Frequency Response of LTI 

Systems
 Basic Structures for IIR and FIR 

Systems
 Design of IIR and FIR Filters
 Filter Banks
 Computation of the Discrete 

Fourier Transform
 Fast Fourier Transform
 Adaptive Filters
 Spectral Analysis
 Wavelet Transform
 Compressive Sampling
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Digital Signal Processing
 Represent signals by a sequence of numbers

 Sampling and quantization (or analog-to-digital conversion)

 Perform processing on these numbers with a digital processor
 Digital signal processing

 Reconstruct analog signal from processed numbers
 Reconstruction or digital-to-analog conversion

• Analog input  analog output
• Eg. Digital recording music

• Analog input  digital output
• Eg. Touch tone phone dialing, speech to text

• Digital input  analog output
• Eg. Text to speech

• Digital input  digital output
• Eg. Compression of a file on computer

A/D DSP D/Aanalog
signal

analog
signal

digital 
signal

digital 
signal
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Discrete Time Signals and Systems
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Discrete Time Systems
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System Properties

 Causality
 y[n] only depends on x[m] for m<=n

 Linearity
 Scaled sum of arbitrary inputs results in output that is a scaled sum of 

corresponding outputs
 Ax1[n]+Bx2[n]  Ay1[n]+By2[n]

 Memoryless
 y[n] depends only on x[n]

 Time Invariance
 Shifted input results in shifted output

 x[n-q]  y[n-q]

 BIBO Stability
 A bounded input results in a bounded output (ie. max signal value 

exists for output if max )
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LTI Systems
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 LTI system can be completely characterized by its impulse 
response

 Then the output for an arbitrary input is a sum of  weighted, 
delay impulse responses

y[n]= x[n]∗h[n]



Discrete Time Fourier Transform



DTFT Definition
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X (e jω ) = x[k]
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Example: Window DTFT
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W (e jω ) = w[k]
k=−∞

∞

∑ e− jωk

= e− jωk
k=−N

N

∑



Example: Window DTFT 
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W (e jω ) =
sin (N +1 2)ω( )
sin ω 2( )

=1 why?

Also, Σx[n]

Plot for N=2



LTI System Frequency Response

 Fourier Transform of impulse response
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H (e jω ) = h[k]
k=−∞

∞

∑ e− jωk

LTI Systemx[n]=ejωn y[n]=H(ejωn)ejωn



z-Transform
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 The z-transform generalizes the Discrete-Time 
Fourier Transform (DTFT) for analyzing infinite-
length signals and systems 

 Very useful for designing and analyzing signal 
processing systems 

 Properties are very similar to the DTFT with a few 
caveats

H (z) = h[n]
n=−∞

∞

∑ z−n



Region of Convergence (ROC)
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Inverse z-Transform

 Ways to avoid it:
 Inspection (known transforms) 
 Properties of the z-transform 
 Partial fraction expansion 

 Power series expansion 
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X (z) =
b0
a0

(1− ck z
−1)

k=1

M

∏

(1− dk z
−1)

k=1

N

∏
=

Ak
1− dk z

−1
k=1

N

∑

X (z) = x[n]z−n
n=−∞

∞

∑

=!+ x[−2]z2 + x[−1]z + x[0]+ x[1]z−1 + x[2]z−2 +!



Sampling and Reconstruction
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DSP System
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Ideal Sampling Model
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 Ideal continuous-to-discrete time (C/D) converter
 T is the sampling period
 fs=1/T is the sampling frequency
 Ωs=2π/T



Ideal Sampling Model
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Frequency Domain Analysis
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Xs (e
jΩ)

Ωs

2
⋅T = π

ω =ΩT



Frequency Domain Analysis
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Xs (e
jΩ)

Ωs

2
⋅T = π

ω =ΩT



Aliasing Example

22Penn ESE 5310 Spring 2024 - Khanna



Aliasing Example
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Reconstruction of Bandlimited Signals

 Nyquist Sampling Theorem:  Suppose xc(t) is 
bandlimited.  I.e.

 If Ωs≥2ΩN, then xc(t) can be uniquely determined 
from its samples x[n]=xc(nT)

 Bandlimitedness is the key to uniqueness
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Mulitiple signals go through 
the samples, but only one is 

bandlimited within our 
sampling band



Reconstruction in Frequency Domain
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Reconstruction in Time Domain
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*

=
The sum of “sincs” 

gives xr(t)  unique 
signal that is 

bandlimited by 
sampling bandwidth



Anti-Aliasing Filter
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1
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Rate Re-Sampling
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Downsampling

 Definition:  Reducing the sampling rate by an 
integer number
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Example: M=2
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4π2π



Example: M=3
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6π4π2π



Example: M=3 w/ Anti-aliasing
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Upsampling

 Definition:  Increasing the sampling rate by an 
integer number
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x[n]= xc (nT )
xi[n]= xc (nT ')



Upsampling
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xi[n]



Example
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Non-integer Sampling

 T’=TM/L
 Upsample by L, then downsample by M
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interpolator decimator



Interchanging Operations
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Upsampling
-expanding in time
-compressing in frequency

Downsampling
-compressing in time
-expanding in frequency



Interchanging Operations - Summary
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Filter and expander Expander and expanded filter*

Compressor and filter Expanded filter* and compressor

*Expanded filter = expanded impulse response, compressed freq response



Polyphase Implementation of Decimator
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interpolator decimator



Polyphase Implementation of Interpolation
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interpolator decimator

E0(z)

E0(z)

E0(z)



Multi-Rate Filter Banks

 Use filter banks to operate on a signal differently in 
different frequency bands
 To save computation, reduce the rate after filtering

 h0[n] is low-pass, h1[n] is high-pass
 Often h1[n]=ejπnh0[n]  shift freq resp by π
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Multi-Rate Filter Banks

 Assume h0, h1 are ideal low/high pass with ωC=π/2
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Have to be 
careful with 

order!



Perfect Reconstruction non-Ideal Filters
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Quadrature Mirror Filters
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Quadrature mirror filters



Frequency Response of Systems
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Frequency Response of LTI System

 We can define a magnitude response

 And a phase response
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Y e jω( ) = H e jω( ) X e jω( )

Y e jω( ) = H e jω( ) X e jω( )

∠Y e jω( ) =∠H e jω( )+∠X e jω( )
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Group Delay

 General phase response at a given frequency can be 
characterized with group delay, which is related to 
phase

47

ω
ω1 ω2
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LTI System

 Transfer function is not unique without ROC
 If diff. eq represents LTI and causal system, ROC is 

region outside all singularities
 If diff. eq represents LTI and stable system, ROC 

includes unit circle in z-plane
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Stable and causal 
if all poles inside 

unit circle



General All-Pass Filter

 dk=real pole, ek=complex poles paired w/ 
conjugate, ek*

49Penn ESE 5310 Spring 2024 - Khanna



Minimum-Phase Systems

 Definition: A stable and causal system H(z) (i.e. 
poles inside unit circle) whose inverse 1/H(z) is also 
stable and causal (i.e. zeros inside unit circle)
 All poles and zeros inside unit circle
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H(z) 1/H(z)



Min-Phase Decomposition Purpose

 Have some distortion that we want to compensate 
for:

 If Hd(z) is min phase, easy:
 Hc(z)=1/Hd(z)   also stable and causal

 Else, decompose Hd(z)=Hd,min(z) Hd,ap(z)
 Hc(z)=1/Hd,min(z) Hd(z)Hc(z)=Hd,ap(z)

 Compensate for magnitude distortion
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Generalized Linear Phase

 An LTI system has generalized linear phase if 
frequency response               can be expressed as:

 Where A(ω) is a real function.

 Four types with even/odd length and even/odd 
symmetry
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FIR GLP: Type I and II (even symmetry)
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FIR GLP: Type III and IV (odd symmetry)
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Zeros of GLP System

 FIR GLP System Function

 If zero is on unit circle (r=1)

 If zero is real and not on unit circle (θ=0)
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FIR Filter Design



FIR Design by Windowing

 Given desired frequency response, Hd(ejω) , find an 
impulse response

 Obtain the Mth order causal FIR filter by 
truncating/windowing it
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FIR Design by Windowing
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Tapered Windows
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Tradeoff – Ripple vs. Transition Width
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Optimality

 Least Squares:

 Variation: Weighted Least Squares:
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Min-Max Ripple Design

 Recall,             is symmetric and real
 Given ωp, ωs, M, find δ, 

 Formulation is a linear program with solution δ,
 A well studied class of problems 
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IIR Filter Design



IIR Filter Design

 Transform continuous-time filter into a discrete-
time filter meeting specs
 Pick suitable transformation from s (Laplace variable) to z 

(or t to n)
 Pick suitable analog Hc(s) allowing specs to be met, 

transform to H(z)

 We’ve seen this before… impulse invariance
 Linear mapping of s-plane j𝜴 axis onto infinite 

revolutions around unit circle in z-plane
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Bilinear Transformation

 The technique uses an algebraic transformation 
between the variables s and z that maps the entire 
jΩ-axis in the s-plane to one revolution of the unit 
circle in the z-plane.

65Penn ESE 5310 Spring 2024 - Khanna



Transformation of DT Filters

66Penn ESE 5310 Spring 2024 - Khanna

Z −1 =G(z−1)
Hlp(Z)

 Map Z-planez-plane with transformation G



Discrete Fourier Transform

DFT



Discrete Fourier Transform

 The DFT

 It is understood that,

68
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DFT Intuition
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Time Transform Frequency

DTFT

n ωx[n]= 1
2π

X (e jω
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X [k]= Wnk
10n=0

5
∑ = e
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2
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5
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⎠
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⎜

⎞

⎠
⎟

DFT vs DTFT

 Back to example
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“10-point” DFT

Use fftshift
to center 
around dc

“6-point” DFT



Circular Convolution

 For x1[n] and x2[n] with length N

 Very useful!!  (for linear convolutions with DFT)
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Linear Convolution via Circular Convolution

 Zero-pad x[n] by P-1 zeros

 Zero-pad h[n] by L-1 zeros

 Now, both sequences are length M=L+P-1
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Block Convolution
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Example of Overlap-Add
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y

y

y
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L=11

L+P-1=16



Example of Overlap-Save
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L+P-1=16 P-1=5
Overlap 
samples



Circular Conv. as Linear Conv. w/ Aliasing
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 Therefore

 The N-point circular convolution is the sum of 
linear convolutions shifted in time by N

x3p[n]= x1[n]⊗ x2[n]N



Example:

 Let

 What does the L-point circular convolution look like?
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Linear convolution



Example:

 The L-shifted linear convolutions
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Fast Fourier Transform

FFT



Fast Fourier Transform

 Enable computation of an N-point DFT (or DFT-1) with the 
order of just N· log2 N complex multiplications. 

 Most FFT algorithms decompose the computation of a DFT 
into successively smaller DFT computations. 
 Decimation-in-time algorithms 
 Decimation-in-frequency 

 Historically, power-of-2 DFTs had highest efficiency
 Modern computing has led to non-power-of-2 FFTs with 

high efficiency
 Sparsity leads to reduce computation on order K· logN
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Decimation-in-Time FFT
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• 3=log2(N)=log2(8)  stages
• 4=N/2=8/2 multiplications in each stage

• 1st stage has trivial multiplication



Decimation-in-Frequency FFT
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Adaptive Filters
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 Use LMS algorithm to update filter coefficients
 Applications like system ID, channel equalization, 

and signal prediction



Spectral Analysis

 Frequency analysis with DFT
 Nontrivial to choose sampling frequency, signal length, 

window type, DFT length (zero-padding)
 Get accurate representation of DFT
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Spectral Analysis

 Time-dependent Fourier transform
 Includes temporal information about signal
 Useful for many applications

 Analysis, Compression, Denoising, Detection, Recognition, 
Approximation (Sparse)
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Admin

 Project 2 - Due 5/1
 Final Exam – 5/10 3-5pm in DRLB A8 

 Cumulative – covers lec 1-22
 Except data converters, noise shaping (lec 11)
 Closed book
 2  8.5x11 two-sided cheat sheets allowed
 Calculators allowed, no smart phones

 Can’t share.  Bring your own.

 Old exams posted
 Disclaimers: old exams had different coverage for different years

 Review Session – poll in Ed
 Last day of office hours – May 9th
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