
ESE532 Fall 2017

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2017 Final Thursday, December 21

• Exam ends at 5:00pm; begin as instructed (target 3:00pm)

• Problems weighted as shown.

• Calculators allowed.

• Closed book = No text or notes allowed.

• Show work for partial credit consideration.

• Unless otherwise noted, answers to two significant figures are sufficient.

• Sign Code of Academic Integrity statement (see last page for code).

I certify that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this exam.

Name:

Problem 1 Problem 2 Problem 3 Problem 4

a b c a b c a b a b c d e Total

10 10 5 10 5 10 15 10 5 5 5 10 5 100

1

ESE532 Fall 2017

1. Consider the following set of real-time tasks for a vision-based control system:

Task Frequency Operations per Invocation

Plan once per second 1.28 × 1011

Control 100 times per second 106

Mapping 50 times per second 4 × 107

Collide 100 times per second 107

Consider the following computational elements:

Compute Element Performance Area

High Performance Processor (HPP) 1 op per cycle at 2 GHz 3×104

VLIW 8 ops per cycles at 500 MHz 3×103

6-LUT (with interconnect) 200 MHz 1

Consider the following spatial datapaths for each of the tasks:

Task 6-LUTs Effective operations per cycle

Plan 1,300 40
Control 32,000 500

Mapping 33,000 1024
Collide 3,200 100

Assume:

• perfectly divide work among processors (if need more than one),
• perfectly schedule VLIW
• perfectly divide task among instances of spatial datapaths shown above
• may share processor or VLIW among multiple tasks

2

ESE532 Fall 2017

(a) Complete table with the number of homogeneous resources required to meet real-
time task goals and the associated area: (May share processors, VLIW, but must
pay for an integer number of each.)

Task HPP VLIW 6-LUTs

Plan
Control

Mapping
Collide

Total (integer)
Total Area

(b) Heterogeneous solution that meets real-time goals and minimizes area. For each
task identify the number and type of compute units.
(May share processors, VLIW, but must pay for an integer number of each. Show
number of datapaths for 6-LUT case, and calculate total area of those datapaths
for Area column, when appropriate.)

Task Type Number Area

Plan
Control

Mapping
Collide

Total Area

(c) Show schedule for any HPP or VLIW processors that run multiple tasks at the
coarsest time-slice for the task set.

3

ESE532 Fall 2017

2. Parallelism in Plan Task

Working with the following algorithm for Plan and assuming this takes the 1.28×1011

operations stated in Problem 1:

#define DIM 1024

typedef struct cell {

uint32_t cost;

uint32_t path;

uint16_t edge_cost[4];

} cell_struct;

cell_struct from[DIM][DIM];

cell_struct to[DIM][DIM];

int xoff, yoff;

for (int iter=0;iter<3*DIM;iter++) {

for (int y=0;y<DIM;y++)

for (int x=0;x<DIM;x++) {

uint32_t min_cost=from[y][x].cost;

uint32_t min_path=from[y][x].path;

for (int j=0;j<4;j++) {

if (j==0) {xoff=0; yoff=-1;}

else if (j==1) {xoff=-1; yoff=0;}

else if (j==2) {xoff=1; yoff=0;}

else if (j==3) {xoff=0; yoff=1;}

uint32_t ncost=from[y+yoff][x+xoff].cost;

uint32_t ecost=from[y][x].edge_cost[j];

uint32_t icost=ncost+ecost

if (icost < min_cost){

min_path=ENCODE(yoff,xoff); // count 3 ops (depth 1 op)

min_cost=icost;

} // icost < min_cost

} // for j

to[y][x].cost=min_cost;

to[y][x].path=min_path;

} // for x

cell_struct **tmp=from;

from=to;

to=tmp;

} // for iter

4

ESE532 Fall 2017

(a) Describe how you can divide the computational task among processors or hard-
ware datapaths to achieve various levels of parallelism Write code snippets or
edits as necessary to make your division clear.

(b) Building on your answer above, how do you provide the specific parallelism needed
in Problem 1? (Number is the value you calculated in Problem 1)

Compute Element Number How

HPP
VLIW
6-LUT

datapaths

(c) What is the Latency Bound (critical path) in operations for the entire task as-
suming the data needed lives in registers (i.e., no latency coming or going from
memory)?

5

ESE532 Fall 2017

3. Hardware datapath for Plan

Working with the same algorithm for Plan:

#define DIM 1024

typedef struct cell {

uint32_t cost;

uint32_t path;

uint16_t edge_cost[4];

} cell_struct;

cell_struct from[DIM][DIM];

cell_struct to[DIM][DIM];

int xoff, yoff;

for (int iter=0;iter<3*DIM;iter++) {

for (int y=0;y<DIM;y++)

for (int x=0;x<DIM;x++) {

uint32_t min_cost=from[y][x].cost;

uint32_t min_path=from[y][x].path;

for (int j=0;j<4;j++) {

if (j==0) {xoff=0; yoff=-1;}

else if (j==1) {xoff=-1; yoff=0;}

else if (j==2) {xoff=1; yoff=0;}

else if (j==3) {xoff=0; yoff=1;}

uint32_t ncost=from[y+yoff][x+xoff].cost;

uint32_t ecost=from[y][x].edge_cost[j];

uint32_t icost=ncost+ecost

if (icost < min_cost){

min_path=ENCODE(yoff,xoff); // count 3 ops (depth 1 op)

min_cost=icost;

} // icost < min_cost

} // for j

to[y][x].cost=min_cost;

to[y][x].path=min_path;

} // for x

cell_struct **tmp=from;

from=to;

to=tmp;

} // for iter

6

ESE532 Fall 2017

(a) Unroll and pipeline the inner (j) loop.
Draw the resulting pipelined datapath.

7

ESE532 Fall 2017

(b) Show how you manage data storage and movement of from data in order to
deliver from data to the datapath above. Assume data is streamed from the large
memory. Draw registers and memories and show inputs to the Part a datapath

8

ESE532 Fall 2017

(This page intentionally left mostly blank for pagination.
You may use for extra answer or work space.)

9

ESE532 Fall 2017

4. Data Managment

Continuing to work with the algorithm for Plan:

#define DIM 1024

typedef struct cell {

uint32_t cost;

uint32_t path;

uint16_t edge_cost[4];

} cell_struct;

cell_struct from[DIM][DIM];

cell_struct to[DIM][DIM];

int xoff, yoff;

for (int iter=0;iter<3*DIM;iter++) {

for (int y=0;y<DIM;y++)

for (int x=0;x<DIM;x++) {

uint32_t min_cost=from[y][x].cost;

uint32_t min_path=from[y][x].path;

for (int j=0;j<4;j++) {

if (j==0) {xoff=0; yoff=-1;}

else if (j==1) {xoff=-1; yoff=0;}

else if (j==2) {xoff=1; yoff=0;}

else if (j==3) {xoff=0; yoff=1;}

uint32_t ncost=from[y+yoff][x+xoff].cost;

uint32_t ecost=from[y][x].edge_cost[j];

uint32_t icost=ncost+ecost

if (icost < min_cost){

min_path=ENCODE(yoff,xoff); // count 3 ops (depth 1 op)

min_cost=icost;

} // icost < min_cost

} // for j

to[y][x].cost=min_cost;

to[y][x].path=min_path;

} // for x

cell_struct **tmp=from;

from=to;

to=tmp;

} // for iter

10

ESE532 Fall 2017

• Processor has a local memory that holds 64KB with single cycle access for 16b,
32b, or 64b data.

• uint32 t is stored in 4 Bytes; uint16 t is stored in 2 Bytes.
• from and to live in the large memory.
• Large memory has a read latency of 50 ns (100 cycles on HPP) for a single 16b,

32b, or 64b word or 100 ns (200 cycles) for a 2048b transfer into the local memory

– For the processor, assume you have a routine
void read2048(int *local buf,int *large mem buf)

that will initiate a 2048b read from the large memory into the processor local
memory at the specified addresses.

• The processor can issue a write to the large memory in a single cycle and continue
without waiting.

– We should be concerned with when a read may need something previously
written to memory and the impact of writes on memory bandwidth. To keep
this problem simple, you may ignore these effects.

• Assume scalar (non-array) variables can live in registers.
• You may ignore loop and conditional overheads in processor runtime estimates;

additions and comparisons are single cycle operations.

(a) What time (in ns) is required for the task as written when running on the HPP
and all references to each component of from go to the large memory?

(b) What fraction of time is spent performing read operations from the large memory
for from?

(c) What is the Amdahl’s Law speedup if you only accelerate these memory reads to
from?

11

ESE532 Fall 2017

(d) How do you need to modify the design to minimize the time spent reading from

from the large memory?
Describe how the code needs to be modified. Show revised code as necessary for
clarity.

12

ESE532 Fall 2017

(e) What is the time (in ns) required on a single HPP processor after this modifica-
tion?

13

ESE532 Fall 2017

Code of Academic Integrity

Since the University is an academic community, its fundamental purpose is the pursuit of
knowledge. Essential to the success of this educational mission is a commitment to the
principles of academic integrity. Every member of the University community is responsible
for upholding the highest standards of honesty at all times. Students, as members of the
community, are also responsible for adhering to the principles and spirit of the following
Code of Academic Integrity.*

Academic Dishonesty Definitions

Activities that have the effect or intention of interfering with education, pursuit of knowledge,
or fair evaluation of a students performance are prohibited. Examples of such activities
include but are not limited to the following definitions:

A. Cheating Using or attempting to use unauthorized assistance, material, or study aids
in examinations or other academic work or preventing, or attempting to prevent, another
from using authorized assistance, material, or study aids. Example: using a cheat sheet in
a quiz or exam, altering a graded exam and resubmitting it for a better grade, etc.

B. Plagiarism Using the ideas, data, or language of another without specific or proper
acknowledgment. Example: copying another persons paper, article, or computer work and
submitting it for an assignment, cloning someone elses ideas without attribution, failing to
use quotation marks where appropriate, etc.

C. Fabrication Submitting contrived or altered information in any academic exercise. Ex-
ample: making up data for an experiment, fudging data, citing nonexistent articles, contriv-
ing sources, etc.

D. Multiple Submissions Multiple submissions: submitting, without prior permission,
any work submitted to fulfill another academic requirement.

E. Misrepresentation of academic records Misrepresentation of academic records: mis-
representing or tampering with or attempting to tamper with any portion of a students
transcripts or academic record, either before or after coming to the University of Pennsyl-
vania. Example: forging a change of grade slip, tampering with computer records, falsifying
academic information on ones resume, etc.

F. Facilitating Academic Dishonesty Knowingly helping or attempting to help another
violate any provision of the Code. Example: working together on a take-home exam, etc.

G. Unfair Advantage Attempting to gain unauthorized advantage over fellow students in
an academic exercise. Example: gaining or providing unauthorized access to examination
materials, obstructing or interfering with another students efforts in an academic exercise,
lying about a need for an extension for an exam or paper, continuing to write even when
time is up during an exam, destroying or keeping library materials for ones own use., etc.

* If a student is unsure whether his action(s) constitute a violation of the Code of Academic
Integrity, then it is that students responsibility to consult with the instructor to clarify any
ambiguities.

14

