
ESE532 Fall 2017

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2017 HW3: Thread Parallel Wednesday, September 13

Due: Friday, September 22, 5:00pm

In this assignment, we will map the application from homework 2 on the two ARM cores of
the Zynq platform. We will encounter different parallel implementations and analyze their
impact on performance.

Collaboration

In this assignment, you work with partners that we assigned. You can find the assignment on
Canvas in the Partners map under the Files section. In the event that the partner assignment
does not work out, contact the instructor or TA as soon as possible. Partners may share
code and results and discuss analysis, but each writeup should be prepared independently.
Outside the assigned groups, only sharing of tool knowledge is allowed. See the course
policies on the course web page http://www.seas.upenn.edu/~ese532 for full details of
our policies for this course.

Communication

We will divide the work into threads that run on different processors. To distribute and coor-
dinate the work, the processors must communicate. We will let the processors communicate
via the SDRAM. This is possible because the SDRAM is mapped into the address spaces of
both processors. In order to share data, the processors have to agree on the location and or-
ganization of the data. In the provided code, we have mapped a small structure (com_area)
at a fixed address in memory, which we use for communicating pointers to shared memory
areas and synchronization. We also have to make sure that both processors respect each
other’s private memory areas. We have already done that in the provided code by mapping
private code and data of both processors at different locations. Sharing SDRAM is com-
plicated by the fact that SDRAM is cached in L1 and L2 caches. Data that one processor
attempts to write to SDRAM may not have been written to SDRAM yet, but instead remain
in the private L1 cache of the processor. When another processor reads the same memory
location, it may observe an old value. Fortunately, our Zynq has a Snoop Control Unit,
which bypasses data directly between processors as needed to maintain a consistent view of
the SDRAM. Therefore, this is no concern.

Another problem that we face when we communicate via shared memory is that the reading
processor should not start reading the memory until the writing processor has completed

1

http://www.seas.upenn.edu/~ese532


ESE532 Fall 2017

writing the data. In other words, we need a form of synchronization between the cores.
Design of synchronization functions is a rather complex subject, which is dealt with in other
courses such as CIS 501, so we will just provide a few functions for this purpose without
discussing their implementation:

• Initialize prepares a processor core for communication.

• Wait for start blocks processor core 1 until core 0 calls Start_core_1.

• Start core 1 stops a blocking Wait_for_start function on core 1.

• Wait for core 1 blocks processor core 0 until core 1 calls Return_to_core_0.

• Return to core 0 stops a blocking Wait_for_core_1 function on core 1.

These functions have known shortcomings, but they should be sufficient for this assignment.

Note that you may have to adapt Initialize and com_area if you want to communicate
more pointers between the processors. Other than that, you should not have to change these
functions.

Obtaining and Running the Code

In the previous homework, we dealt with a streaming application that compressed only one
picture. For this homework, we will use the same application, except that it will take a video
stream instead of a single picture. The input stream is available here. We provide an archive
with projects as starting point, which can be obtained from here.

The parallel implementations, which start with Coarse and Pipeline, are split over two
projects. Each project has the suffix core_0 or core_1, which indicate on which ARM core
they will run. We have provided debug configurations as well. It is essential that the code
for core 1 is started before the code of core 0. Otherwise, the initialization code of core
1 overwrites certain data structures of core 0. The provided debug configurations (Debug
coarse and Debug pipeline) take care of this by putting a breakpoint at the start of core 0’s
entry point. You only have to resume execution of core 0 to run the code. Synchronization
in the initialization function guarantees that core 1 does not start processing data before
core 0 has finished initializing.

You may notice that there are two more projects, zed_hw_platform and core_1_bsp. The
reason is that we created the application for core 1 as application project because an SDSoC
project does not allow us to adapt the memory layout of the application. We have to change
the memory layout to avoid that code and data for core 1 overlaps with core 0. Every
application needs a Board Support Package (BSP), which provides low-level routines to
access the hardware. An SDSoC project automatically includes a BSP. For an application
project, we have to create one manually. In addition, we need a platform description, which
is in the zed_hw_platform project.

2

http://www.seas.upenn.edu/~ese532/fall2017/handouts/hw3_data.tar.gz
http://www.seas.upenn.edu/~ese532/fall2017/handouts/hw3_code.tar.gz


ESE532 Fall 2017

Homework Submission

Your writeup should follow http://www.seas.upenn.edu/~ese532/writeup_guidelines.

pdf. Your writeup should include your answers to the following questions:

1. Coarse-grain parallelism We will parallelize the application by processing half of
each picture on core 0 and the other half on core 1, a form of coarse-grain, data-
level parallelism. There are two projects, Coarse_core_0 and Coarse_core_1 in the
provided workspace, which form the starting point of your implementation. We have
parallelized Scale already for you.

(a) Estimate the throughput of Baseline in pictures per second. This is your baseline.
Ignore overhead such as loading and storing pictures for this and the following
questions. (1 line)

(b) Can we parallelize all streaming functions in our application, i.e. Filter_horizontal,
Filter_vertical, Differentiate, and Compress in the same way as Scale?
Motivate your answer. Assume that we synchronize our cores between each
producer-consumer pair. (3 lines)

(c) What speedup do you expect from parallelizing the functions that you considered
parallelizable in the previous question? (3 lines)

(d) Complete the implementation by parallelizing the functions that you considered
parallelizable in the previous question. Provide the relevant sections of code in
your report.

(e) Measure the throughput of your parallel implementation. (1 line)

(f) Compare your measurement with your expected speedup. How much overhead
does your implementation have? (1 line)

(g) To what can we attribute most of the overhead? (1 line)

(h) Why is it necessary to synchronize between every producing and consuming func-
tion? (7 lines)

(i) Assuming that overhead of synchronization is too large, how could we reduce the
number synchronization points while leaving our paradigm of processing each half
of the picture on a core largely intact? (3 lines)

(j) Estimate the throughput after the modification that you proposed in the previ-
ous question. This requires that you write equations to model the performance
before and after your modification. It will also require that you estimate some
of the terms in your equation from your implementation in order to evaluate the
equations to get a final numeric estimate for throughput.

3

http://www.seas.upenn.edu/~ese532/writeup_guidelines.pdf
http://www.seas.upenn.edu/~ese532/writeup_guidelines.pdf


ESE532 Fall 2017

2. Pipelining As an alternative to coarse-grain, data-level parallelism, we will investigate
a pipelined implementation in this question. The initial implementation, which can
be found in the projects Pipeline_core_0 and Pipeline_core_1, maps Scale and
Filter on core 1 and Differentiate and Compress on core 0. The provided stream
has only 10 frames, but assume in your performance computations that you are dealing
with a stream of infinite length.

(a) Report the throughput of the pipelined implementation in pictures per second.
(1 lines)

(b) What is the best performance that one can achieve with a pipelined mapping of
the streaming application?

(c) Describe the mapping that achieves the best performance.

(d) Adapt the implemention such that it utilizes your new mapping. Include the
sections of the code that you modified in your report.

(e) Report the throughput of your new application in pictures per second.

(f) Let’s investigate the performance if we incorporate the optimized pipeline in a
video broadcast server. The input data is read from the USB interface of the
ZedBoard. 75% of traffic is video traffic that is compressed using our pipeline.
The remaining 25% is other traffic that we protect with an error correction code
(ECC) that adds 10% overhead in size. The ECC unit processes 10 MB/s. The
output of the ECC unit and compression pipeline are output to a Gigabit Ethernet
port of the ZedBoard.

i. Draw a streaming dataflow diagram for the network server. Indicate through-
put and data transfer ratios where applicable.

ii. What is the maximum throughput that the server can achieve? (10 lines)

iii. Where is the bottleneck? (1 line)

iv. How much smaller do we have to make the kernel of Filter to move the
bottleneck? (7 lines)

4


