
ESE532 Fall 2017

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2017 HW4: SIMD Wednesday, September 20

Due: Friday, September 29, 5:00pm

In this assignment, we will accelerate the streaming application from last homework using the
ARM NEON vector processor. Note that there were a few modifications to the application.
You can find the sources for this homework the course website.

Collaboration

In this assignment, you work with partners that we assigned. You can find the assignment on
Canvas in the Partners map under the Files section. In the event that the partner assignment
does not work out, contact the instructor or TA as soon as possible. Partners may share
code and results and discuss analysis, but each writeup should be prepared independently.
Outside the assigned groups, only sharing of tool knowledge is allowed. See the course
policies on the course web page http://www.seas.upenn.edu/~ese532 for full details of
our policies for this course.

ARM NEON

Information about the NEON architecture and datatypes is available in the ARM assembler
user guide. Another section in the same guide lists the instructions. Note that not all
information may be applicable to the ARMv7 architecture of the Cortex A9 processor that
we are using. You are encouraged to locate other sources as needed and to share them.

Homework Submission

1. Teamwork

As the difficulty of homework is ramping up, we encourage you to spend a moment
planning on how to tackle the homework as a team.

(a) Describe which tasks of this homework you will perform, which tasks will be
performed by your teammate(s), and which tasks you will perform together (e.g.,
pair programming, where you both sit together at the same terminal). Motivate
your task distribution. (5 lines)

1

http://www.seas.upenn.edu/~ese532/fall2017/handouts/hw4_code.tar.gz
http://www.seas.upenn.edu/~ese532
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473m/dom1359731184627.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473m/dom1359731184627.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473m/dom1361289932816.html


ESE532 Fall 2017

Optimization level Latency (Mcycles) Code size (bytes)

-O0

-O1

-O2

-O3

-Os

Table 1: Latency and Code Size per Optimization Level

(b) Give an estimate of the duration of each of the tasks. (5 lines)

(c) Explain how you will make sure that the lessons and knowledge gained from the
exercises are shared with everybody in the team. (3 lines)

2. Compiler Optimizations

Before we dive into the vector optimizations, we will investigate the effects of different
levels of compiler optimizations.

(a) Measure the latency and size of the Baseline project at the different optimization
levels. Put your measurements in a table like Table 1. You can change the
optimization level as follows: Right-click on the project in the Project Explorer,
and select C/C++ Build Settings from the popup menu. In the Tool Settings tab,
go to ARM v7 gcc compiler → Optimization, and select one of the optimization
levels under Optimization Level. You can see the code size by opening the CDT
Global Build Console. The code size is in the column text.

(b) Include the assembly code of inner loop of Filter_horizontal at optimization
level -O0 in your report.

(c) Include the assembly code of inner loop of Filter_horizontal at optimization
level -O2 in your report.

(d) Based on the machine code of questions 2b and 2c, explain the most important
difference between the -O0 and -O2 versions. (2 lines)

(e) Why would you want to use optimization level -O0? Hint: Compile the code
with -O3 and track the values of the variables X, Y, and i as you step through
Filter_horizontal. (3 lines)

(f) Include the assembly code of inner loop of Filter_horizontal at optimization
level -O3 in your report.

(g) Explain the most important difference between the -O2 and -O3 versions. (1 line)

(h) What are two drawbacks of using a higher optimization level? (5 lines)

3. Automatic Vectorization

The easiest way to take advantage of vector instructions is by using the automatic
vectorization feature of the GCC compiler, which automatically generates NEON in-
structions from loops. The archive that we provided contains a project (Vectorized)

2



ESE532 Fall 2017

that has the right compiler settings to enable autovectorization. Automatic vectoriza-
tion in GCC is sparsely documented in the GCC documentation. Although we are not
using the ARM compiler, the ARM compiler user guide may give some more insight.

(a) Report the latency of each stage of the baseline application at -O3. (5 lines)

(b) Which loops in the streaming stages of the application have sufficient data paral-
lelism for vectorization? Motivate your answer. (5 lines)

(c) What speedup do you expect your application can achieve under ideal circum-
stances? (5 lines)

(d) If you compare the Vectorized and Baseline projects, you will notice that frames
are now assumed to be aligned to a multiple of 32 bytes. Moreover, we allocated
1024 bytes for each row instead of the exact row length (e.g., 960 bytes for the
input of Scale). Explain how this may increase performance. Illustrate your
point with a picture that shows the data loaded by a few different iterations of
the loop, and the cache lines. Note that would also have benefited the baseline.
(5 lines)

(e) Explain in your own words why adding the __restrict keyword to some of the
pointers may have led to a better performance. (5 lines)

(f) Report the speedup of the vectorized code with respect to the baseline. (1 line)

(g) Explain the discrepancy between your measure and ideal performance based on
the optimization of Filter_horizontal. Hint: look at the size of the multiplica-
tions in the disassembly. (3 lines)

(h) Show how you can resolve the issue that you encountered. (1 line)

(i) Report the speedup with respect to the baseline after resolving the issue in both
Filter_horizontal and Filter_vertical. (1 line)

4. NEON Intrinsics

We will accelerate the Filter_vertical function using intrinsics. An intrinsic behaves
syntactically like a function, but the compiler translates it to a specific instruction that
is inlined in the code. The Neon intrinsics are listed in the ARM documentation.

(a) How can we deal with a number of data elements that is not divisible by the
number of vector lanes without losing significant performance? (3 lines)

(b) Explain at which granularity and in which order you should process the input data
with vector instructions to achieve a good performance. Motivate your answer.
Hint: Minimize the number of loads. (7 lines)

(c) Using NEON intrinsics, accelerate the Filter_vertical function. Include the
accelerated function in your report. Make sure that you verify your optimized
code properly.

(d) Report the latency of Filter_vertical and the application as a whole. (2 lines)

3

https://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472m/chr1359124204202.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472m/chr1359125038862.html


ESE532 Fall 2017

(e) Identify the critical path lower bound for Filter_vertical in terms of compute
operations. Focus on the data path. Ignore control flow and offset computations.
(5 lines)

(f) Report the resource capacity lower bound. There are many resources that may
limit the performance. Choose one that makes sense for your application. (5
lines)

(g) Compare your performance with the lower bounds. (1 lines)

(h) Compare the performance of manual and automatic vectorization. (1 lines)

5. Reflection

Reflect on the cooperation in your team.

• What was the most useful thing you learned from or working with your teammate?
(3 lines)

• What do you believe was the most useful thing that you could contribute to your
team? (3 lines)

4


