
ESE532 Fall 2017

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2017 HW6: Accelerator Interface Wednesday, October 11

Due: Friday, October 20, 5:00pm

In this assignment, we will accelerate an application by implementing functions on the pro-
grammable fabric. You can find the sources for this homework on the course website.

Be warned that this homework requires a number of full SDSoC builds, each of which can
easily take 20–30 minutes, so begin on time and plan your schedule accordingly. Questions 1
and 3 consist of 4 builds each. Question 2 has no builds, so we suggest starting with it once
you have completed question 1b, such that you can work while other builds are running.

Collaboration

In this assignment, you work with partners that we assigned. You can find the assignment on
Canvas in the Partners map under the Files section. In the event that the partner assignment
does not work out, contact the instructor or TA as soon as possible. Partners may share
code and results and discuss analysis, but each writeup should be prepared independently.
Outside the assigned groups, only sharing of tool knowledge is allowed. See the course
policies on the course web page http://www.seas.upenn.edu/~ese532 for full details of
our policies for this course.

Homework Submission

1. Accelerator interface In this question, we will analyze various ways in which a
processor core can communicate with an accelerator.

(a) Create an SDSoC project. Add the provided source files in the MatMul directory
of the archive to the project. Set the optimization level of the SDS++ compiler
to -O3. Report the latency of Multiply_SW. (1 line)

(b) Measure the duration of Multiply_HW when data is transferred to and from the ac-
celerator using DMA, as follows: Set Multiply_HW as hardware function. Insert a
data_mover pragma immediately before Multiply_HW in the code. Indicate in the
pragma that each of the parameters should be transferred using AXIDMA_SIMPLE.
You can check whether the pragma was successfully applied by looking at the
Data Motion Network Report. Report the latency of Multiply_HW in clock cycles.
(1 line)

1

http://www.seas.upenn.edu/~ese532/fall2017/handouts/hw6_code.tar.gz
http://www.seas.upenn.edu/~ese532


ESE532 Fall 2017

(c) Measure the duration of Multiply_HW when data is retrieved and stored in a
shared region of DRAM. Make a new project identical to the previous one, except
for replacing the data_mover pragma with a zero_copy pragma that is applied
to all parameters. (1 line)

(d) Use the event tracing functionality of SDSoC to explain the performance difference
between the implementations of 1b and 1c. To collect a trace, enable Enable
event tracing in the project overview, rebuild your application, right-click on your
project, and choose Debug As→Trace Application (SDSoC Debugger). Include
pictures of the trace in your report. Screenshots are fine for this question, but
make sure to crop them to the area of interest. (3 lines)

(e) Under which circumstances do you expect DMA to perform better than shared
memory? Motivate your answer. (5 lines)

2. Analyze implementation

In this question, we will investigate what the FPGA implementation of the matrix
multiplication with DMA looks like using Vivado (not Vivado HLS). Vivado is part of
the SDx installation.

(a) Report how many resources of each type (BlockRAM, DSP unit, flip-flop, and
LUT) the implementation with DMA consumes. You can find this information
in the Project Summary of Vivado. Launch Vivado and open the project at
the location Debug/_sds/p0/ipi/zed.xpr relative to the root directory of your
SDSoC project with simple DMA interface to see this view. (4 lines)

(b) Compare the resource utilization with the expected utilization that you obtained
in the previous homework. Which resource estimate was the least accurate? (1
line)

(c) Report the expected power consumption of this design from the Project Summary.
(1 line)

(d) Open the block design by selecting Open Block Design in the Flow Navigator
on the left side of the main window. The block labeled Multiply_HW_1 is the
accelerator. The logic that is not programmable (PS) is in the ps7 block. The
DMA controllers of the three accelerator ports are in dm_0, dm_1, and dm_2. The
block named Multiply_HW_1_if is a wrapper around the accelerator that contain,
among other stuff, the BlockRAMs that data movers, such as simple DMA, write
their data to. The blocks with label AXI interconnect are crossbars that may
have buffers and converters if different types of buses are connected. Many data
buses on the programmable fabric are either AXI4, AXI4-Lite, or AXI4 Stream
buses. Which bus is used between each of the DMA controllers and the PS to
transfer data (not control signals)? As the blocks and buses in Vivado are not very
descriptive, you will probably have to dig a bit in the documentation of one of the
blocks. To open the documentation for a particular block, you can double-click
a block and press the Documentation button if the documentation was installed.
Otherwise, you can generally find documentation on the internet by entering the
name and version number of the block. (1 line)

2



ESE532 Fall 2017

(e) Open the Address Editor by choosing the corresponding tab above the block
design. In which memory region is the accelerator wrapper (Multiply_HW_1_if
mapped? This region is used for such communication as starting the accelerator
and querying its status. Writes and reads by the ARM processor are to this region
are sent over an AXI4-Lite bus to the accelerator wrapper, which handles them
and controls the accelerator. (1 line)

(f) Open the timing report by returning to the Project Summary and pressing Im-
plemented Timing Report. Click on the number next to Worst Negative Slack.
Look at the Path Properties. Report in which hardware modules that we saw in
the block design the path begins and ends. (1 line)

(g) Include a screenshot of the critical path in your writeup. Zoom in to make sure
all elements of the path are clearly visible. Indicate the type of each element (e.g.
LUT, flip-flop, carry chain) on the screenshot.

(h) Highlight the accelerators in green, the DMA controllers in red, and the intercon-
nect (axi_ic_ps7_M_AXI_GP0 and axi_ic_ps7_S_AXI_ACP) in orange. You can
do this by right- clicking the modules in the netlist view and selecting Highlight
Leaf Cells. Include a screenshot of the entire device in your report.

3. Streaming, serial, and parallel

A brilliant engineer (but not in cryptography), inspired by the encryption example of
HW1, came up with a novel way to encrypt messages. He believes that his algorithm
will perform well on FPGAs because it has a lot of fine-grained parallelism. In this
question, we will map his implementation on the hardware.

(a) Create a new Vivado HLS project, and add the sources of the Encrypt folder in
the provided archive. Use a clock period of 7 ns. Map the Encrypt_HW function on
the hardware. When you build the design, you will encounter a problem. Explain
why this property of the code is problematic for hardware acceleration. (3 lines)

(b) Solve the problem by changing the function declaration such that it explicitly
deals with the worst case. Include the relevant code in your report.

(c) Add pragmas such that the accelerator can process at least one 32-bit word per
cycle. Include the relevant sections of the code in your report.

(d) Create a new SDSoC project, and add the sources of your optimized application.
Set the optimization level of the SDSCC compiler to -O3. Map Encrypt_HW to
the hardware. Build the accelerator. Which limitation of the FPGA is at the root
of the next problem that you encounter? (3 lines)

(e) We can solve this issue by processing the data sequentially. Add a suitable pragma
to inform SDx that we are accessing both the input and output buffers sequen-
tially. Show the pragma that you added.

(f) How does this pragma solve the problem? Consult the manuals as needed. (3
lines)

3



ESE532 Fall 2017

(g) Add a SDS data copy pragma to inform the SDSoC about the actual length of
the data that is passed to and from the accelerator. This avoids the problem that
more data is transferred than necessary. Show the pragma that you added.

(h) Build the application and report the speedup with respect to the software imple-
mentation. (1 line)

(i) The engineer believes that he can obtain better encryption by putting two in-
stances of the encryption module in series, using a different key for each of them.
He predicts that the speedup will be twice as large as for a single encryption
module. Create a project with this new configuration, and report the speedup.
(1 line)

(j) Explain why the speedup differs from what the engineer expected. You may need
Vivado to investigate the issue. (3 lines)

(k) A friend of the engineer want to use the encryption module as well, so he suggests
using multiple accelerators in parallel. How many accelerators can you implement
in parallel before you hit the communication bandwidth? Assume that a DMA
controller on the fabric accesses the DRAM via the AXI high-performance ports.
You can find some useful information in Figure 5-1 and section 22.3 of the Zynq
manual. (7 lines)

(l) Implement two accelerators in parallel using the async and wait pragmas. Use
different data and keys for each accelerator. What is the speedup that you ob-
tained? (1 line)

4

https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

