
ESE532 Fall 2017

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2017 Design and Function Milestone Wednesday, November 1

Due: Friday, Nov. 10, 5:00pm

Group: Develop functional code. Identify design space options.

Individual: Writeup is an individual task.

1. Develop a functional implementation for the project task that can run on the Zynq
ARM and produce a valid compressed output stream that works with the supplied
decompressor.

• we recommend you aim for complete functionality with reasonable compression
for this milestone

• however, we are not requiring that all pieces perform their full final operation this
week; they should work well enough to process data and produce a valid output
stream, but may have reduced functionality

• examples of reduced functionality

– create fixed-sized blocks instead of good chunks

– never identify a chunk match; so send all chunks to LZW

– send all characters within a chunk as literals rather than using substring
matches

• this technique of using a minimum functionality placeholder so that you can as-
semble a complete flow early then incrementally upgrading components to more
complete functionality is generally a good one, and we suggest you use it during
your development on the way to full functionality, even if you can achieve full
functionality for this milestone.

2. Writeup on functional implementation should include

(a) Status of all operations (how much functionality is there, what functionality is
missing)

(b) Code sources (e.g., URLs) for any open-source code you used as a starting point
or as a primary reference

(c) Current compression status and breakdown of contribution from deduplication
and from LZW compression

(d) Description of all validation performed on your current functional implementation.

3. Turn in a tar file with your functional code to the designated assignment component
in canvas.

1



ESE532 Fall 2017

4. Identify major design space axes that could be explored for your implementation.

• For this milestone, aim for breadth (quantity of options)

• Each axis description can be 1–3 sentences. Identify challenge being addressed,
basic solution opportunity, and continuum.

• Include a simple equation to illustrate ideal benefit (e.g., running N tasks in
parallel reduces runtime by a factor of N ; T (N) = T (1)/N).

• Cover all operations that must be accelerated.

• Aim for at least 6 axes per function.

• Some of this should build on the parallelism opportunities you identified on the
previous milestone.

Chunk Validation

Using an SHA-256 signature, the probability of having a collision where two chunks share
the same signature is extremely low. For the project, we will consider equality of SHA-256
signatures adequate to determine that a chunk is a duplicate. This means you do not need
to read back the chunk and validate that it is, in fact, identical. If you had terabytes of
data, or if the consequences of error were high, you would want to perform the check. This
only applies to the full 256b signature. If you use smaller hashes for indexing, you will still
need to validate that there is a match on the 256b signature.

2



ESE532 Fall 2017

Compressed Format

• Compressed stream is a sequential concatenation of chunks.

• Each chunk has a 32b header that identifies it as Duplicate Chunk or LZW Chunk.

– A Duplicate Chunk is a 32b value

∗ bit 0 is a 1 to signify a Duplicate Chunk

∗ bits 31–1 is the Chunk Index of previously encoded block to be duplicated.
Only LZW Chunks are indexed. The first LZW chunk has index 0, the next
1, etc.

– An LZW Chunk is

∗ a 32b bit header

· bit 0 is 0 to signify an LZW Chunk

· bits 31–1 is the compressed chunk length in bytes

∗ LZW-compressed contents of the chunk. LZW implementations vary. Our
implementation satisfies the following properties:

· Entries 0–255 of the dictionary are initialized to the 256 literals, e.g. a
byte with value 27 would be encoded as 27.

· The next dictionary entries are used for prefixes: sequences of 2 or more
bytes.

· No special keywords such as end-of-file are contained in the dictionary.

· The dictionary size is only limited by the chunk size limitatation.

· The code length depends on the size of the dictionary at the time an
input sequence is encoded. When the dictionary has N entries, the code
words are dlog2Ne bits.

· Code words are output MSB-first. Assuming nothing has been output yet,
a 9b code with binary value x8x7x6x5x4x3x2x1x0 results in two consecutive
bytes with values x8x7x6x5x4x3x2x1 and x00000000. The next code word
with value y8y7y6y5y4y3y2y1y0 changes the second byte to x0y8y7y6y5y4y3y2
and the third to y1y0000000.

∗ Padding so that the entire LZW chunk ends on an 8b boundary; that is,
chunks of either type always begin on 8b boundaries.

3



ESE532 Fall 2017

Supplied Resources

• Reference implementation of decoder

• We provide several datasets that you can use for testing. We encourage you to create
your own simple datasets for unit testing. Note that the tar-files are not meant to be
unpacked. Following are the datasets that we provide.

– Simple example. This archive contains three files, two of which are identical. An
encoded version is provided here as well.

– Benjamin Franklin’s autobiography. This is a simple text file that you can modify
for your own purposes. The current file probably has few duplicate areas. (390
KB)

– GTK+ source code. This file contains several subsequent versions of the GTK+
source, which provides ample opportunity for deduplication. (177 MB)

– Linux source code. This file contains several subsequent versions of the source.
(191 MB)

– Several Linux kernels. As opposed to the other data sets, this set contains preva-
lently binary data. (66 MB)

Note: you should take these as examples, not a definitive list of test cases. In particular,
you should create many other focused test examples to facilitate your debugging and
validation.

• You can use the compression pipeline of the homeworks as an example of how to access
the SD-card.

4

http://www.seas.upenn.edu/~ese532/fall2017/handouts/proj_decoder.tar.gz
http://www.seas.upenn.edu/~ese532/fall2017/handouts/project_examples/ESE532.tar
http://www.seas.upenn.edu/~ese532/fall2017/handouts/project_examples/ESE532.enc
http://www.seas.upenn.edu/~ese532/fall2017/handouts/project_examples/Franklin.txt
http://www.seas.upenn.edu/~ese532/fall2017/handouts/project_examples/gtk+.tar
http://www.seas.upenn.edu/~ese532/fall2017/handouts/project_examples/linux.tar
http://www.seas.upenn.edu/~ese532/fall2017/handouts/project_examples/vmlinuz.tar

