
1 

Penn ESE532 Fall 2017 -- DeHon 
1 

ESE532: 
System-on-a-Chip Architecture 

Day 11:  October 9, 2017 
Data Movement 

(Interconnect, DMA) 

Preclass 1 

•  N processors 
•  Each: 1 read, 10 cycle, 1 write 
•  Memory: 1 read or write per cycle 
•  How many processors can support? 
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Bottleneck 

•  Sequential access to a common 
memory can become the bottleneck 
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Previously 

•  Want data in small memories 
– Low latency, high bandwidth 

•  FPGA has many memories all over fabric 
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Embedded Memory in FPGA 
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Logic 
Cluster 

Memory 
Bank 

Memory 
Frequency 

XC7Z020 (Zed Board) has 140 36Kb BRAMs 

Previously 

•  Want data in small memories 
– Low latency, high bandwidth 

•  FPGA has many memories all over fabric 
•  Want C arrays in small memories 

– Partitioned so can perform enough reads 
(writes) in a cycle to avoid memory bottleneck 
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Today 
•  Interconnect Infrastructure 
•  Data Movement Threads 
•  Peripherals 
•  DMA 

Message 
•  Need to move data 
•  Shared interconnect to make physical 

connections 
•  Useful to move data as separate thread 

of control 
– Dedicating a processor is inefficient 
– Useful to have dedicated data-movement 

hardware: DMA 
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Memory and I/O Organization 
•  Architecture contains 

– Large memories 
•  For density, necessary sharing 

– Small memories local to compute 
•  For high bandwidth, low latency, low energy 

– Peripherals for I/O 
•  Need to move data 

– Among memories and I/O 
•  Large to small and back 
•  Among small 
•  From Inputs, To Outputs 
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How move data? 

•  Abstractly, using stream links. 
•  Connect stream between producer and 

consumer. 

•  Ideally: dedicated wires 
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Dedicated Wires? 

•  Why might we not be able to have 
dedicated wires? 
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Making Connections 

•  Cannot always be dedicated wires 
– Programmable 
– Wires take up area 
– Don’t always have enough traffic to 

consume the bandwidth of point-to-point 
wire 

– May need to serialize use of resource 
•  E.g. one memory read per cycle 

– Source or destination may be 
sequentialized on hardware 
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Model 

•  Programmable, possibly shared 
interconnect 
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Simple Realization 

Shared Bus 
•  Write to bus with  

address of destination 
•  When address match,  

take value off bus 
•  Pros? 
•  Cons?         
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Alternate: Crossbar 
•  Provide programmable connection 

between all sources and destinations 
•  Any destination can be connected to 

any single source 
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Crossbar 
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Preclass 2 
•  K-input, O-output Crossbar 
•  How many 2-input muxes? 
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Crossbar 

•  Provides high bandwidth 
– Minimal blocking 

•  Costs large amounts of area 
– Grows fast with inputs, outputs 
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General Interconnect 

•  Generally, want to be able to 
parameterize designs  

•  Here: tune area-bandwidth 
– Control how much bandwidth provide 
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Interconnect 

•  How might get design points between 
bus and crossbar? 
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Multiple Busses 
•  Think of crossbar as one bus per output 
•  Simple bus is one bus total 
•  In between,  

– How many simultaneous 
 busses support? 
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Share Crossbar Outputs 

•  Group set of outputs together on a bus 
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Share Crossbar Inputs 

•  Group number of inputs together on an input 
port to crossbar 
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Locality in Interconnect 

•  How allow physically local items to be 
closer? 
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Hierarchical Busses 
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Mesh 
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Interconnect 
•  Will need an infrastructure for 

programmable connections 
•  Rich design space to tune  

area-bandwidth-locality 
– Will explore more  

later in course 
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Masters and Slaves 

•  Regardless of form, potentially have two 
kinds of entities on interconnect 

•  Master – can initiate requests 
– E.g. processor that can perform a read or 

write 
•  Slaves – can only respond to requests 

– E.g. memory that can return the read data 
from a read requset 
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Long Latency Memory 
Operations 
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Day 3 

•  Large memories are slow 
– Latency increases with memory size 

•  Distant memories are high latency 
– Multiple clock-cycles to cross chip 
– Off-chip memories even higher latency 
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Day 3, Preclass 2 

•  10 cycle latency to memory 
•  If must wait for data return, latency can 

degrade throughput 
•  10 cycle latency + 10 op + (assorted) 

– More than 20 cycles / result 
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Preclass 3 

•  Throughput using 3 threads? 
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Fetch (Write) Threads 

•  Potentially useful to move data in 
separate thread 

•  Especially when 
– Long (potentially variable) latency to data 

source (memory) 
•  Useful to split request/response 
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Peripherals 
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Input and Output 

•  Typical SoC has I/O 
with external world 
–  Sensors 
–  Actuators 
–  Keyboard/mouse, 

display 
–  Communications 

•  Also accessible from 
interconnect 
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Simple Peripheral Model 

•  Peripherals are 
slave devices 
–  Masters can read 

input data 
–  Masters can write 

output data 
–  To move data, 

master (e.g. 
processor) initiates 
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Simple Model Implications 

•  What implication to processor grabbing/
moving each input (output) value? 
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Timing Demands 

•  Must read each input before overwritten 
•  Must write each output within real-time 

window 
•  Must guarantee processor scheduled to 

service each I/O at appropriate 
frequency 

•  How many cycles between inputs for 
1Gb/s network and 32b, 1GHz 
processor? 
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Refine Model 

•  Give each peripheral 
local FIFO 

•  Processor must still 
move data 

•  How does this 
change 
requirements and 
impact? 
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DMA 

Penn ESE532 Fall 2017 -- DeHon 
40 

Preclass 4 
•  How much hardware to support fetch 

thread: 
– Counter bits? 
– Registers? 
– Comparators? 
– Other gates? 

•  Compare to MicroBlaze  
–  (minimum config 630 6-LUTs) 
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Observe 

•  Modest hardware can serve as data 
movement thread 
– Much less hardware than a processor 
– Offload work from processors 

•  Small hardware allow peripherals to be 
master devices on interconnect 
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DMA 

•  Direct Memory 
Access (DMA) 

•  Peripheral as Master 
–  Can write directly 

into (read from) 
memory 

–  Saves processor 
from copying 

–  Reduces demand to 
schedule processor 
to service 
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DMA Engine 

•  Data Movement Thread 
– Specialized Processor that moves data 

•  Act independently 
•  Implement data movement 
•  Can build to move data between 

memories (Slave devices) 
•  E.g., Implement P1, P3 in Preclass 3 
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DMA Engine 
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Programmable DMA Engine 

•  What copy from? 
•  Where copy to? 
•  Stride? 
•  How much? 
•  What size data? 
•  Loop? 
•  Transfer Rate? 
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Multithreaded DMA Engine 

•  One copy task not necessarily saturate 
bandwidth of DMA Engine 

•  Share engine performing many 
transfers (channels) 

•  Separate transfer state for each  
– Hence thread (or channel) 

•  Swap among threads 
– E.g., round-robin 
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Hardwired and Programmable 

•  Zynq has hardwired DMA engine 
•  Can also add data movement engines 

(Data Movers) in FPGA fabric 
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Example 
•  Networking Application 

•  Header on processor 
•  Payload (encrypt, checksum) on FPGA 
•  DMA from ethernet!main memory 
•  DMA main memory!BRAM  
•  Stream between payload components 
•  DMA from chksum to ethernet out 
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header Payload 
encrypt 

chksum ethernet ethernet 

Big Ideas 

•  Need to move data 
•  Shared Interconnect to make physical 

connections – can tune area/bw/locality 
•  Useful to  

– move data as separate thread of control 
– Have dedicated data-movement hardware: 

DMA 
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Admin 

•  Day 12  
– DRAM reading if not read on Day 3 

•  HW5 due Friday 
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