
1

Penn ESE532 Fall 2017 -- DeHon
1

ESE532:
System-on-a-Chip Architecture

Day 11: October 9, 2017
Data Movement

(Interconnect, DMA)

Preclass 1

•  N processors
•  Each: 1 read, 10 cycle, 1 write
•  Memory: 1 read or write per cycle
•  How many processors can support?

Penn ESE532 Spring 2017 -- DeHon
2

Bottleneck

•  Sequential access to a common
memory can become the bottleneck

Penn ESE532 Spring 2017 -- DeHon
3

Previously

•  Want data in small memories
– Low latency, high bandwidth

•  FPGA has many memories all over fabric

Penn ESE532 Fall 2017 -- DeHon
4

Embedded Memory in FPGA

Penn ESE532 Fall 2017 -- DeHon
5

Logic
Cluster

Memory
Bank

Memory
Frequency

XC7Z020 (Zed Board) has 140 36Kb BRAMs

Previously

•  Want data in small memories
– Low latency, high bandwidth

•  FPGA has many memories all over fabric
•  Want C arrays in small memories

– Partitioned so can perform enough reads
(writes) in a cycle to avoid memory bottleneck

Penn ESE532 Fall 2017 -- DeHon
6

2

Penn ESE532 Fall 2017 -- DeHon
7

Today
•  Interconnect Infrastructure
•  Data Movement Threads
•  Peripherals
•  DMA

Message
•  Need to move data
•  Shared interconnect to make physical

connections
•  Useful to move data as separate thread

of control
– Dedicating a processor is inefficient
– Useful to have dedicated data-movement

hardware: DMA

Penn ESE532 Fall 2017 -- DeHon
8

Memory and I/O Organization
•  Architecture contains

– Large memories
•  For density, necessary sharing

– Small memories local to compute
•  For high bandwidth, low latency, low energy

– Peripherals for I/O
•  Need to move data

– Among memories and I/O
•  Large to small and back
•  Among small
•  From Inputs, To Outputs

Penn ESE532 Fall 2017 -- DeHon
9

How move data?

•  Abstractly, using stream links.
•  Connect stream between producer and

consumer.

•  Ideally: dedicated wires

Penn ESE532 Fall 2017 -- DeHon
10

Dedicated Wires?

•  Why might we not be able to have
dedicated wires?

Penn ESE532 Fall 2017 -- DeHon
11

Making Connections

•  Cannot always be dedicated wires
– Programmable
– Wires take up area
– Don’t always have enough traffic to

consume the bandwidth of point-to-point
wire

– May need to serialize use of resource
•  E.g. one memory read per cycle

– Source or destination may be
sequentialized on hardware

Penn ESE532 Fall 2017 -- DeHon
12

3

Model

•  Programmable, possibly shared
interconnect

Penn ESE532 Fall 2017 -- DeHon
13

Simple Realization

Shared Bus
•  Write to bus with

address of destination
•  When address match,

take value off bus
•  Pros?
•  Cons?

Penn ESE532 Fall 2017 -- DeHon
14

Alternate: Crossbar
•  Provide programmable connection

between all sources and destinations
•  Any destination can be connected to

any single source

Penn ESE532 Fall 2017 -- DeHon
15

Crossbar

Penn ESE532 Fall 2017 -- DeHon
16

Preclass 2
•  K-input, O-output Crossbar
•  How many 2-input muxes?

Penn ESE532 Fall 2017 -- DeHon
17

Crossbar

•  Provides high bandwidth
– Minimal blocking

•  Costs large amounts of area
– Grows fast with inputs, outputs

Penn ESE532 Fall 2017 -- DeHon
18

4

General Interconnect

•  Generally, want to be able to
parameterize designs

•  Here: tune area-bandwidth
– Control how much bandwidth provide

Penn ESE532 Fall 2017 -- DeHon
19

Interconnect

•  How might get design points between
bus and crossbar?

Penn ESE532 Fall 2017 -- DeHon
20

Multiple Busses
•  Think of crossbar as one bus per output
•  Simple bus is one bus total
•  In between,

– How many simultaneous
 busses support?

Penn ESE532 Fall 2017 -- DeHon
21

Share Crossbar Outputs

•  Group set of outputs together on a bus

Penn ESE532 Fall 2017 -- DeHon
22

Share Crossbar Inputs

•  Group number of inputs together on an input
port to crossbar

Penn ESE532 Fall 2017 -- DeHon
23

Locality in Interconnect

•  How allow physically local items to be
closer?

Penn ESE532 Fall 2017 -- DeHon
24

5

Hierarchical Busses

Penn ESE532 Fall 2017 -- DeHon
25

Mesh

Penn ESE532 Fall 2017 -- DeHon
26

Interconnect
•  Will need an infrastructure for

programmable connections
•  Rich design space to tune

area-bandwidth-locality
– Will explore more

later in course

Penn ESE532 Fall 2017 -- DeHon
27

Masters and Slaves

•  Regardless of form, potentially have two
kinds of entities on interconnect

•  Master – can initiate requests
– E.g. processor that can perform a read or

write
•  Slaves – can only respond to requests

– E.g. memory that can return the read data
from a read requset

Penn ESE532 Fall 2017 -- DeHon
28

Long Latency Memory
Operations

Penn ESE532 Fall 2017 -- DeHon
29

Day 3

•  Large memories are slow
– Latency increases with memory size

•  Distant memories are high latency
– Multiple clock-cycles to cross chip
– Off-chip memories even higher latency

Penn ESE532 Fall 2017 -- DeHon
30

6

Day 3, Preclass 2

•  10 cycle latency to memory
•  If must wait for data return, latency can

degrade throughput
•  10 cycle latency + 10 op + (assorted)

– More than 20 cycles / result

Penn ESE532 Fall 2017 -- DeHon
31

Preclass 3

•  Throughput using 3 threads?

Penn ESE532 Fall 2017 -- DeHon
32

Fetch (Write) Threads

•  Potentially useful to move data in
separate thread

•  Especially when
– Long (potentially variable) latency to data

source (memory)
•  Useful to split request/response

Penn ESE532 Fall 2017 -- DeHon
33

Peripherals

Penn ESE532 Fall 2017 -- DeHon
34

Input and Output

•  Typical SoC has I/O
with external world
–  Sensors
–  Actuators
–  Keyboard/mouse,

display
–  Communications

•  Also accessible from
interconnect

Penn ESE532 Fall 2017 -- DeHon
35

Simple Peripheral Model

•  Peripherals are
slave devices
–  Masters can read

input data
–  Masters can write

output data
–  To move data,

master (e.g.
processor) initiates

Penn ESE532 Fall 2017 -- DeHon
36

7

Simple Model Implications

•  What implication to processor grabbing/
moving each input (output) value?

Penn ESE532 Fall 2017 -- DeHon
37

Timing Demands

•  Must read each input before overwritten
•  Must write each output within real-time

window
•  Must guarantee processor scheduled to

service each I/O at appropriate
frequency

•  How many cycles between inputs for
1Gb/s network and 32b, 1GHz
processor?

Penn ESE532 Fall 2017 -- DeHon
38

Refine Model

•  Give each peripheral
local FIFO

•  Processor must still
move data

•  How does this
change
requirements and
impact?

Penn ESE532 Fall 2017 -- DeHon
39

DMA

Penn ESE532 Fall 2017 -- DeHon
40

Preclass 4
•  How much hardware to support fetch

thread:
– Counter bits?
– Registers?
– Comparators?
– Other gates?

•  Compare to MicroBlaze
–  (minimum config 630 6-LUTs)

Penn ESE532 Fall 2017 -- DeHon
41

Observe

•  Modest hardware can serve as data
movement thread
– Much less hardware than a processor
– Offload work from processors

•  Small hardware allow peripherals to be
master devices on interconnect

Penn ESE532 Fall 2017 -- DeHon
42

8

DMA

•  Direct Memory
Access (DMA)

•  Peripheral as Master
–  Can write directly

into (read from)
memory

–  Saves processor
from copying

–  Reduces demand to
schedule processor
to service

Penn ESE532 Fall 2017 -- DeHon
43

DMA Engine

•  Data Movement Thread
– Specialized Processor that moves data

•  Act independently
•  Implement data movement
•  Can build to move data between

memories (Slave devices)
•  E.g., Implement P1, P3 in Preclass 3

Penn ESE532 Fall 2017 -- DeHon
44

DMA Engine

Penn ESE532 Fall 2017 -- DeHon
45

Programmable DMA Engine

•  What copy from?
•  Where copy to?
•  Stride?
•  How much?
•  What size data?
•  Loop?
•  Transfer Rate?

Penn ESE532 Fall 2017 -- DeHon
46

Multithreaded DMA Engine

•  One copy task not necessarily saturate
bandwidth of DMA Engine

•  Share engine performing many
transfers (channels)

•  Separate transfer state for each
– Hence thread (or channel)

•  Swap among threads
– E.g., round-robin

Penn ESE532 Fall 2017 -- DeHon
47

Penn ESE532 Fall 2017 -- DeHon
48

9

Hardwired and Programmable

•  Zynq has hardwired DMA engine
•  Can also add data movement engines

(Data Movers) in FPGA fabric

Penn ESE532 Fall 2017 -- DeHon
49

Example
•  Networking Application

•  Header on processor
•  Payload (encrypt, checksum) on FPGA
•  DMA from ethernet!main memory
•  DMA main memory!BRAM
•  Stream between payload components
•  DMA from chksum to ethernet out

Penn ESE532 Fall 2017 -- DeHon
50

header Payload
encrypt

chksum ethernet ethernet

Big Ideas

•  Need to move data
•  Shared Interconnect to make physical

connections – can tune area/bw/locality
•  Useful to

– move data as separate thread of control
– Have dedicated data-movement hardware:

DMA

Penn ESE532 Fall 2017 -- DeHon
51

Admin

•  Day 12
– DRAM reading if not read on Day 3

•  HW5 due Friday

Penn ESE532 Fall 2017 -- DeHon
52

