
1

Penn ESE532 Fall 2017 -- DeHon 1

ESE532:
System-on-a-Chip Architecture

Day 16: October 25, 2017
Deduplication and Compression Project

Midterm: average 56, std. dev 16

Midterm

•  Solution … (not out, next few days…)
•  Suspect bit time constrained
•  Biggest role prepare you for final

– Know what these exams look like
– Don’t Panic – but take as serious diagnostic
– 10% of grade
– Will replace midterm grade with final exam

grade if that is higher

Penn ESE532 Fall 2017 -- DeHon 2

Penn ESE532 Fall 2017 -- DeHon 3

Today
•  Motivation
•  Project
•  Content-Defined Chunking
•  Hashing / Deduplication
•  LZW Compression

•  Exam in after us today
– Try to finish 4:20pm
– …and we should clear room for them

Message

•  Can reduce data size by identifying and
reducing redundancy

•  Can spend computation and data
storage to reduce communication traffic

Penn ESE532 Fall 2017 -- DeHon 4

Problem
•  Always want more

– Bandwidth
– Storage space

•  Carry data with me (phone, laptop)
•  Backup laptop, phone data

– Maybe over limited bw links
•  Never delete data
•  Download movies, books, datasets
•  Make most use of space, bw given

Penn ESE532 Fall 2017 -- DeHon 5

Opportunity

•  Significant redundant content in our raw
data streams (data storage)

•  More formally:
–  Information content < raw data

•  Reduce the data we need to send or
store by identifying redundancies

Penn ESE532 Fall 2017 -- DeHon 6

2

Example

•  Two identical files
– Different parts of my file systems

•  Don’t store separate copies
– Store one
– And the other says “same as the first file”

•  e.g. keep a pointer

Penn ESE532 Fall 2017 -- DeHon 7

Why Identical?

•  Eniac file system (common file server)
– Multiple students have copies of

assignment(s)
– Snapshots (.snapshot)

•  Has copies of your directory an hour ago, days
ago, weeks ago

– …but most of that data hasn’t changed

Penn ESE532 Fall 2017 -- DeHon 8

Broadening

•  History file systems
– snapshot, Apple Time Machine

•  Version Control (git, svn)
•  Manually keep copies
•  Download different software release

versions
– With many common files

Penn ESE532 Fall 2017 -- DeHon 9

Cloud Data Storage
•  E.g. Drop Box, Apple Cloud
•  Saves data for large class of people

– Want to only store one copy of each
•  Synchronize with local copy on phone/laptop

– Only want to send one copy on update
– Only want to send changes

•  Data not already known on other side
•  (or, send that data compactly by just naming it)

Penn ESE532 Fall 2017 -- DeHon 10

Placement
•  At file server

– Deduplicate/compress data as stored
•  In client

– Dedup/compress to send to server
•  In data center network

– Dedup/compress data to send between server
•  Network infrastructure

– Dedup/compress from central to regional server

Penn ESE532 Fall 2017 -- DeHon 11

Optimizing the Bottleneck

•  Saving data (transmitted, stored)
•  By spending compute cycles

– And storage database

•  When communication (storage) is the
bottleneck
– We’re willing to spend computation to

better utilize the bottleneck resource

Penn ESE532 Fall 2017 -- DeHon 12

3

Project

Penn ESE532 Fall 2017 -- DeHon 13

Project

•  Perform deduplication/compression at
network speeds (1Gb/s, 10Gb/s)

•  Use “chunks” instead of files
•  Turn a raw/uncompressed data stream

into one that exploits
– Duplicate chunks
– Redundancies within chunks

Penn ESE532 Fall 2017 -- DeHon 14

Project Context

•  File server input link from network
– Compress data before sending to disk

•  Network link in data center or
infrastructure
– Compress data that goes over network

Penn ESE532 Fall 2017 -- DeHon 15

Project Task

Penn ESE532 Fall 2017 -- DeHon 16

Content-Defined Chunking

Penn ESE532 Fall 2017 -- DeHon 17

Files or chunks?

•  Why files might be wrong granularity?

Penn ESE532 Fall 2017 -- DeHon 18

4

Blocks

•  We regularly cut files into fixed-sized
blocks
– Disk sectors or blocks
–  inodes in File systems

•  Why might fixed-sized blocks not be
right division for deduplication?

Penn ESE532 Fall 2017 -- DeHon 19

Common Modifications

•  Add a line of text
•  Remove a line of text
•  Fix a typo
•  Rewrite a paragraph
•  Trim or compose a video sequence

Penn ESE532 Fall 2017 -- DeHon 20

Content-Define Chunking

•  Would like to re-align pieces around
unchanged/common sequences
– Around the content

•  Break up larger thing (file) into pieces
based on features of content

Penn ESE532 Fall 2017 -- DeHon 21

Preclass 1 and 2

•  How much duplication opportunity in
– Preclass 1 blocks?
– Preclass 2 chunks?

•  Why chunks able to do better?

Penn ESE532 Fall 2017 -- DeHon 22

Chunks

•  Pieces of some larger file (data stream)
•  Variable size

– Over a limited range
•  Discretion in how formed / divided

Penn ESE532 Fall 2017 -- DeHon 23

Chunk Creation

•  How do we identify chunks?

Penn ESE532 Fall 2017 -- DeHon 24

5

Signature or Hash Digest
•  A short, deterministic value generated

from a set of data bytes
– A document, chunk, block, or object

•  Use for
– Detecting equality (or likely equality)
– Or, at least, detecting equivalence classes

•  Something must at least have the same
signature to possibly be equal

•  Hash should be short
– Cannot be a 1:1 mapping from a large file

(or chunk) to a short hash value
Penn ESE532 Fall 2017 -- DeHon 25

Example Hashes

•  Sum up the bytes (or words) modulo
some value
– Variant: weighted sum

•  XOR together the bits in some way
– Variant: lots of different ways to shuffle bits

for xor

Penn ESE532 Fall 2017 -- DeHon 26

Hashes and Chunk Creation

•  Compute a hash on a window of values
– Window: sequence of N-bytes

•  Scan window over the input
•  When hash has some special value

(like 0)
– Declare separate off a new chunk

Penn ESE532 Fall 2017 -- DeHon 27

Hashes as Chunk Cut Points
•  What does this do?
•  Guarantees that each chunk begins (or

ends) at some fixed hash
•  For a particular substring that matches

the target hash
– Always occurs at beginning (or end) of

chunk
•  If have a large body of repeated text

– Will synchronize cuts at the same points
based on the content

Penn ESE532 Fall 2017 -- DeHon 28

Chunk Size
•  Assume hash is uniformly random
•  The likelihood of each window having a

particular value is the same
•  So, if hash has a range of N,

the probability of a particular window
having the magic “cut” value is 1/N

•  …making the average chunk size N
•  So, we engineer chunk size by selecting

the range of the hash we use
– E.g. 12b hash for 212 = 4KB chunks

Penn ESE532 Fall 2017 -- DeHon 29

Chunking Design

•  Raises questions
– How big should chunks be?

•  Apply maximum and minimum size beyond
content definition?

– How big should hash window be?
•  Discuss

– What forces drive larger chunks, smaller?
– What forces drive larger windows, smaller?

Penn ESE532 Fall 2017 -- DeHon 30

6

Example Text

•  Beginning of repeated block of text.
•  This stuff is has already been seen.
•  But, we are only matching on something

that has a hash of zero.
•  Maybe this line has a hash of zero.
•  But, our repeated text is before and

after the magic window with the
matched hash value.

Penn ESE532 Fall 2017 -- DeHon 31

Example Data Stream

Penn ESE532 Fall 2017 -- DeHon 32

Example Data Stream

Penn ESE532 Fall 2017 -- DeHon 33

Rolling Hash

•  A Windowed hash that can be computed
incrementally

•  Hash(a[x+0],a[x+1],…a[x+W-1])=
 Hash(a[x-1],a[x+0],…a[x+W-2])

- F(a[x-1])+F(A[x+W-1])
•  i.e., hash computation is associative
•  (+,- used abstractly here, could be in some

other domain than modulo arithmetic)

Penn ESE532 Fall 2017 -- DeHon 34

Rabin Fingerprinting

•  Particular scheme for rolling hash due
to Michael Rabin based on polynomial
over a finite field

•  Commonly used for this chunking
application

Penn ESE532 Fall 2017 -- DeHon 35

Content-Defined Chunking

•  Compute rolling hash (Rabin
Fingerprint) on input stream

•  At points where hash value goes to 0,
create a new chunk

Penn ESE532 Fall 2017 -- DeHon 36

7

Hashing Deduplication

Penn ESE532 Fall 2017 -- DeHon 37

Hashes for Equality

•  We can also (separately) take the hash
signature of an entire chunk

•  The longer we make the hash,
the lower the likelihood two different
chunks will have the same hash

•  If hash is perfectly uniform,
– N-bit hash, two chunks have a 2-N chance

of having the same hash.

Penn ESE532 Fall 2017 -- DeHon 38

Deduplicate
•  Compute chunk hash
•  Use chunk hash to lookup known

chunks
– Data already have on disk
– Data already sent to destination, so

destination will know
•  If lookup yields a chunk with same hash

– Check if actually equal (maybe)
•  If chunks equal

– Send (or save) pointer to existing chunk
Penn ESE532 Fall 2017 -- DeHon 39

Deduplication Architecture

Penn ESE532 Fall 2017 -- DeHon 40

Associative Memory

•  Maps from a key to a value
•  Key not necessarily dense

– Contrast simple RAM

•  Talk about options to implement next
week

Penn ESE532 Fall 2017 -- DeHon 41

Secure Hash

•  We regularly use signatures to identify if
a file has been tampered with

•  Again, hashes are same, mean data
might be the same

•  For security, we would like additional
property
– not easy to make the anti-tamper signature

match

Penn ESE532 Fall 2017 -- DeHon 42

8

Cryptographic Hash

•  One-way functions
•  Easy to compute the hash
•  Hard to invert

–  Ideally, only way to get back to input data
is by brute force

•  Key: someone cannot change the
content (add a backdoor to code) and
then change some further to get hash
signature to match original

Penn ESE532 Fall 2017 -- DeHon 43

SHA-256

•  Standard secure hash with a 256b hash
digest signature

•  Heavily analyzed
•  Heavily used

– TLS, SSL, PGP, Bitcoin, …

Penn ESE532 Fall 2017 -- DeHon 44

LZW Compression

Penn ESE532 Fall 2017 -- DeHon 45

Preclass 3, 4, 5

•  Message?
•  Bits in unencoded (decoded) message?
•  Bits for encoded message?

Penn ESE532 Fall 2017 -- DeHon 46

Idea

•  Use data already sent as the dictionary
– Give short names to things in dictionary
– Don’t need to pre-arrange dictionary
– Adapt to common phrases/idioms in a

particular document

Penn ESE532 Fall 2017 -- DeHon 47

Encoding

•  Greedy simplification
– Encode by successively selecting the

longest match between the head of the
remaining string to send and the current
window

Penn ESE532 Fall 2017 -- DeHon 48

9

Algorithm Concept

•  While data to send
– Find largest match in window of data sent
–  If length too small (length=1)

•  Send character

– Else
•  Send <x,y> = <match-pos,length>

– Add data encoded into sent window

Penn ESE532 Fall 2017 -- DeHon 49

Idea

•  Represent all strings as prefix tree
•  Share prefix among substrings

Penn ESE532 Fall 2017 -- DeHon 50

Tree Example

•  THEN AND THERE, THEY STOOD…

Penn ESE532 Fall 2017 -- DeHon 51

T

H

E

N R Y

E

Tree Algorithm

Root for each character
•  Follow tree according to input until no

more match
•  Send <name of last tree node>

– An <x,y> pair
•  Extend tree with new character
•  Start over with this character

Penn ESE532 Fall 2017 -- DeHon 52

Tree Example
•  Label with <lastpos,len> pair
•  THEN AND THERE, THEY STOOD…

Penn ESE532 Fall 2017 -- DeHon 53

T

H

E

N R Y

E

<0,1>

<1,2>

<2,3>

<3,4> <12,4>

<13,5>

<19,4>

<4,5> <20,5>

T H E N A N D T H E R E , T H E Y

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

Large Memory

•  int encode[SIZE][256];
•  Name tree node by position in chunk

–  lastpos
•  c is a character
•  Encode[lastpos][c] holds the next tree

node that extends tree node lastpos by c
– Or NONE if there is no such tree node

Penn ESE532 Fall 2017 -- DeHon 54

10

Tree Example
•  Label with <lastpos,len> pair
•  THEN AND THERE, THEY STOOD…

Penn ESE532 Fall 2017 -- DeHon 55

T

H

E

N R Y

E

<0,1>

<1,2>

<2,3>

<3,4> <12,4>

<13,5>

<19,4>

<4,5> <20,5>

T H E N A N D T H E R E , T H E Y

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

encode[2][‘N’]=3

encode[2][‘R’]=12

encode[2][‘Y’]=19

encode[2][‘A’]=NONE

Memory Tree Algorithm
curr – pointer into input chunk
// follow tree
y=0;
while(encode[x][input[curr]]!=NONE)
 x=encode[x][c]; y++;
If (y>0)
 send <x,y>
 send input[curr]
 encode[x][input[curr]]=curr

Penn ESE532 Fall 2017 -- DeHon 56

Complexity

•  How much work per character to
encode?

Penn ESE532 Fall 2017 -- DeHon 57

Compact Memory

•  int encode[SIZE][256];
•  How many entries in this table are not

NONE?

Penn ESE532 Fall 2017 -- DeHon 58

Compact Memory

•  int encode[SIZE][256];
•  Table is very sparse
•  Store as associative memory

– At most SIZE entries

•  Look at how to implement associative
memories next time

Penn ESE532 Fall 2017 -- DeHon 59

Project Task

Penn ESE532 Fall 2017 -- DeHon 60

11

Big Ideas

•  Can reduce data size by identifying and
reducing redundancy

•  Can spend computation and data
storage to reduce communication traffic

Penn ESE532 Fall 2017 -- DeHon 61 Penn ESE532 Fall 2017 -- DeHon 62

Admin
•  HW7 due Friday
•  Project assignment out
•  Shuffling schedule a bit to deal with

project needs
– Monday ! (near) associative memories
–  (…more shuffling to come…)

•  First project milestone due next Friday
–  Including teaming

