
1

Penn ESE532 Fall 2017 -- DeHon 1

ESE532:
System-on-a-Chip Architecture

Day 17: October 30, 2017
Associative Maps, Hash Tables

Penn ESE532 Fall 2017 -- DeHon 2

Today
•  Motivation/Reminder
•  Hardware Associative Memory
•  Software Maps

– Hash Tables
•  Hardware Maps

– Associative Memories from BRAMs
– Multi-hash Hash tables from BRAMs

Message

•  Rich design space for Maps
•  Hash tables are useful tools
•  Multiple hashes are better than one

Penn ESE532 Fall 2017 -- DeHon 3

Reminder from Last Time

Penn ESE532 Fall 2017 -- DeHon 4

Deduplicate
•  Compute chunk hash
•  Use chunk hash to lookup known

chunks
– Data already have on disk
– Data already sent to destination, so

destination will know
•  If lookup yields a chunk with same hash

– Check if actually equal (maybe)
•  If chunks equal

– Send (or save) pointer to existing chunk
Penn ESE532 Fall 2017 -- DeHon 5

Deduplication Architecture

Penn ESE532 Fall 2017 -- DeHon 6

2

Associative Memory

•  Maps from a key to a value
•  Key not necessarily dense

– Contrast simple RAM

Penn ESE532 Fall 2017 -- DeHon 7

Memory Tree Algorithm
curr – pointer into input chunk
// follow tree
y=0;
while(encode[x][input[curr]]!=NONE)
 x=encode[x][c]; y++;
If (y>0)
 send <x,y>
 send input[curr]
 encode[x][input[curr]]=curr

Penn ESE532 Fall 2017 -- DeHon 8

Compact Memory

•  int encode[SIZE][256];
•  Table is very sparse
•  Store as associative memory

– At most SIZE entries

Penn ESE532 Fall 2017 -- DeHon 9

Custom Hardware
Associative Memory

Penn ESE532 Fall 2017 -- DeHon 10

Penn ESE532 Fall 2017 -- DeHon 11

Memory Block Review
•  Match on address
•  Select wordline for a row
•  Reads out a word
•  Address dense

and hardwired
•  One row for

each 2Abits
values

width

depth

Penn ESE532 Fall 2017 -- DeHon 12

Memory Block Review
•  Want address as key
•  Word is value
•  Key sparse
•  Rows<2kbits
•  Key

programmable

width

depth

3

Programmable Key

Penn ESE532 Fall 2017 -- DeHon 13

•  Make row select
programmable

Associative Memory Bank

Penn ESE532 Fall 2017 -- DeHon 14

Associative Memory Bank

•  Will need to be able to write into key
– Another “fixed” decoder to generate

 key-word line for programming
Penn ESE532 Fall 2017 -- DeHon 15

Associate Memory Cost

•  More expensive than equal capacity
SRAM memory bank
– Memory cells in decoder
– No sharing of AND-terms in decoder
– Need to support write into key

Penn ESE532 Fall 2017 -- DeHon 16

Software Map

Penn ESE532 Fall 2017 -- DeHon 17

Software Map

•  Map abstraction
– void insert(key,value);
– value lookup(key);

•  Will typically have many different
implementations

Penn ESE532 Fall 2017 -- DeHon 18

4

Map Implementations

•  How could we implement Map in
software?

Penn ESE532 Fall 2017 -- DeHon 19

Preclass 1

•  For a capacity of 4096
•  How many memory accesses needed

– When lookup fail?
– When lookup succeed (on average)?

Penn ESE532 Fall 2017 -- DeHon 20

Tree

•  Build search tree
•  Walk down tree
•  For a capacity of 4096, assume balanced…
•  How many tree nodes visited

– When lookup fail?
– When lookup succeed (on average)?

Penn ESE532 Fall 2017 -- DeHon 21

Tree Insert

•  Need to maintain balance
•  Doable with O(log(N)) insert

– Tricky
– See Red-Black Tree

Penn ESE532 Fall 2017 -- DeHon 22

High Performance Map

•  Would prefer not to search
•  Want to do better than log(N) time
•  Direct lookup of arrays, memory is

good…

Penn ESE532 Fall 2017 -- DeHon 23

Hash Table

•  Attempt to turn into direct lookup
•  Compute some function of key

– A hash
•  Perform lookup at that point
•  If hash maps a single entry

– Great, got direct lookup

Penn ESE532 Fall 2017 -- DeHon 24

hash

Mem

key

value

5

Preclass 3a

•  Average number of entries per hash
when N > HASH_CAPACITY?

Penn ESE532 Fall 2017 -- DeHon 25

Hash Table

•  Attempt to turn into direct lookup
•  Compute some function of key

– A hash
•  Perform lookup at that point
•  Typically, prepared for several keys to

map to same hash ! call it a bucket
– Keep list or tree of things in each bucket

Penn ESE532 Fall 2017 -- DeHon 26

hash

Mem

key

value

Hash Table

•  Compute some function of key
– A hash

•  Perform lookup at that point
•  Find bucket with small number of

entries
– Searching that bucket easier
– …but challenge if bucket can get big

Penn ESE532 Fall 2017 -- DeHon 27

hash

Mem

key

value

Preclass 3b

•  Probability of conflict if
N<<HASH_CAPACITY ?

•  How can we reduce bucket sizes?

Penn ESE532 Fall 2017 -- DeHon 28

Preclass 4

m! 0 1 2 3 4+
C=1024 0.37
C=2048
C=4096

Penn ESE532 Fall 2017 -- DeHon 29

N=1024

€

N
m
⎛

⎝
⎜
⎞

⎠
⎟
1
C
⎛

⎝
⎜

⎞

⎠
⎟
m

1− 1
C

⎛

⎝
⎜

⎞

⎠
⎟
N −m

Hash

•  Can tune hash parameters to control
distribution

•  Spend more memory ! smaller buckets
! less work finding things in buckets
– Memory-Time tradeoff

•  Still have possibility of large buckets

Penn ESE532 Fall 2017 -- DeHon 30

6

Perfect Hash

•  Perfect hash: every key maps to a
unique hash value

•  Can create perfect hash if know keys in
advance

Penn ESE532 Fall 2017 -- DeHon 31

Graph and Edge Model
•  Use 2 hashes
•  Each hash value is

node
•  Each entry is edge

–  2 hashes, connects 2
nodes

•  Program output by
filling in value for
nodes

•  add node values
modulo capacity to get
edge value

int G[capacity];
int value[capacity];
h0=hash0(key);
h1=hash1(key);
addr=(G[h0]+G[h1])

%capacity;
res=value[addr];

ISP-Hive July 2016 32

Graph and Edge Model

ISP-Hive July 2016 33

H0
none

H1
none

H0
0x23

H1
none

H0
0x23

H1
0x73

Consider insert 0xB0 in each case

Case 1:

Case 2:

Case 3:

•  Use 2 hashes
•  Each hash value is

node
•  Each entry is edge

–  2 hashes, connects 2
nodes

•  Program output by
filling in value for
nodes

•  add node values
modulo capacity to get
edge value

Case 3 often Solvable

•  How solve?

ISP-Hive July 2016 34

H1
0x73

H0
0x23 0x05

0x93

0xA7

Consider insert 0xB0 in each case

Case 3 not always solvable

•  Why not solvable?

ISP-Hive July 2016 35

H1
0x73

H0
0x23 0x05

0x93

0xA7

Consider insert 0xB0 in each case

Perfect Hash Theory
•  If graph is acyclic

– Can always assign values to nodes to
satisfy/produce any edge values

– Walk graph in order from starting point

ISP-Hive July 2016 36

7

Perfect Hash Theory

•  If graph is acyclic
– Can always assign values to nodes to

satisfy/produce any edge values
•  Random graphs with a sufficiently low

edge to node ratio are acyclic with high-
probability
– Good hash functions (random) makes

graph random

ISP-Hive July 2016 37

Perfect Hash

•  If do get cycle
– Change hash
– Change modulus

•  (add a bit more capacity)

Penn ESE532 Fall 2017 -- DeHon 38

Variants for Hardware

•  Modulus can be expensive
– Unless it is a power of 2

•  Set capacity to next power of 2
– …and modulus becomes simple
– Can use xor instead of addition

•  No delay for carry, O(1) combining

Penn ESE532 Fall 2017 -- DeHon 39

Perfect Hash

•  Can find tools to compute the perfect
hash (e.g. gnuperf)

Penn ESE532 Fall 2017 -- DeHon 40

Hardware Map

Penn ESE532 Fall 2017 -- DeHon 41

FPGA

•  Has BRAMs – normal memories, not
associative

•  36Kb BRAM
– 1024x36

•  Can be 10b key ! 36b value
– Just using the memory sparsely

Penn ESE532 Fall 2017 -- DeHon 42

8

Assoc. Mem from BRAM
•  For wider match
•  Cover 10b of key with each BRAM
•  Use 36 output bits to indicate if one of

36 entries match
•  AND together corresponding entries
•  Get 36 match bits
•  Re-encode match

bits to lookup value

Penn ESE532 Fall 2017 -- DeHon 43

BRAM Associative Memory

•  How would we expand capacity?

Penn ESE532 Fall 2017 -- DeHon 44

BRAM Associative Memory

Penn ESE532 Fall 2017 -- DeHon 45

Associative Memory Cost

•  Match unit
– Requires 1 BRAM per 10b of key per 36

entries
–  (keylen/10b) * (capacity/36)

Penn ESE532 Fall 2017 -- DeHon 46

Perfect Hash
•  Can do perfect hash very

compactly
•  Hash to log(capacity)

– Two different hashes
•  Use separate BRAM for

each hash
•  Xor together values
•  Use as dense address to

lookup values
Penn ESE532 Fall 2017 -- DeHon 47

Multi Hash

•  Perfect hash hints that multiple hashes
may be more useful

•  E.g.
– Setup several hashes and memories
– Compute each hash
– See if any are free and put there

•  (in software, put in smallest bucket found
 reduce maximum bucket size)

Penn ESE532 Fall 2017 -- DeHon 48

9

Multihash

•  K hashes
•  Probability of conflict in all K tables

Penn ESE532 Fall 2017 -- DeHon 49

€

N
C
⎛

⎝
⎜

⎞

⎠
⎟
K

dMHC

•  Dynamic Multi-Hash Cache

Penn ESE532 Fall 2017 -- DeHon 50

Two-Level dMHC

Penn ESE532 Fall 2017 -- DeHon 51

Perfect Hash:
Case 3 often Solvable

ISP-Hive July 2016 52

H1
0x73

H0
0x23 0x05

0x93

0xA7

Consider insert 0xB0 in each case

Conflict: victimize and reinsert

ISP-Hive July 2016 53

H1
0x73

H0
0x23 0x05

0x93

0xA7

Consider insert 0xB0 in each case

•  With high likelihood,
the item victimized
has freedom

Perfect Hash:
Case 3 not always solvable

• 

ISP-Hive July 2016 54

H1
0x73

H0
0x23 0x05

0x93

0xA7

Consider insert 0xB0 in each case

10

May not be able to solve

•  Due to cycle
•  …or just too long of

a chain to repair in
limited time

ISP-Hive July 2016 55

H1
0x73

H0
0x23 0x05

0x93

0xA7

Consider insert 0xB0 in each case

On Conflict Reinsert

•  Nearly associative – occasionally need
to drop an entry

•  Makes less than perfect
– Approximates an associative memory

•  Potentially acceptable in some
scenarios

Penn ESE532 Fall 2017 -- DeHon 56

dMHC Lookup Fast

•  Hash (few levels of xor)
•  BRAM read

– 2-3ns
•  Xor (one level)

•  Can run 1/cycle
@200MHz +

Penn ESE532 Fall 2017 -- DeHon 57

dMHC Lookups Fast

•  Virtex 6 (one generation older than Zynq)

Penn ESE532 Fall 2017 -- DeHon 58

Hybrid
•  If the number of conflicts (things we

might drop) are small
– Maybe just save those in a true associative

memory.
•  Use dMHC for bulk
•  When get (unresolvable) conflict

– Stick in small associative memory
•  Use BRAM associative memory

•  Lookup in both in parallel

Penn ESE532 Fall 2017 -- DeHon 59

Hybrid dMHC+Assoc.

Penn ESE532 Fall 2017 -- DeHon 60

11

Design Space
•  Area-Time tradeoffs

– Minimal with sequential search
– Hash capacity (more memory, less time)
– Build fully associative – spend area, instead of time

•  Area-Quality tradeoffs
– dMHC tuning c, k

•  Pre-computation/specialization opportunities
when data known early
– Perfect hash

Penn ESE532 Fall 2017 -- DeHon 61

Big Ideas

•  Sparse, near O(1) Map access ! Hash
Table

•  If know set of keys in advance,
can build perfect hash

•  More hashes, reduce conflicts
•  Rich design space for engineering

associative map solutions

Penn ESE532 Fall 2017 -- DeHon 62

Penn ESE532 Fall 2017 -- DeHon 63

Admin
•  No class Wednesday
•  Go to Horowitz Talk

– Life of Breaking and Making: What
Happens When You Mix a Driving Curiosity
and Episodic Overconfidence

– Wu & Chen at 3pm (classtime)
•  Olukotun Thursday

– Scaling Machine Learning performance…
– Wu & Chen at 3pm

•  First project milestone due Friday
–  Including teaming

