
1

Penn ESE532 Spring 2017 -- DeHon
1

ESE532:
System-on-a-Chip Architecture

Day 2: September 6, 2017
Analysis, Metrics, and Bottlenecks

Work Preclass
Lecture start 3:05pm

Penn ESE532 Spring 2017 -- DeHon
2

Today
•  Throughput
•  Latency
•  Bottleneck
•  Initiation Interval
•  Computation as a Graph, Sequence
•  Critical Path
•  Resource Bound
•  90/10 Rule
•  Amdahl’s Law

Today: Analysis
•  How do we quickly estimate what’s

possible?
– Before (with less effort than) developing a

complete solution
•  How should we attack the problem?

– Achieve the performance, energy goals?
•  When we don’t like the performance

we’re getting, how do we understand it?
•  Where should we spend our time?

Penn ESE532 Spring 2017 -- DeHon
3

Penn ESE532 Spring 2017 -- DeHon
4

Message for Day

•  Identify the Bottleneck
– May be in compute, I/O, memory, data

movement
•  Focus and reduce/remove bottleneck

– More efficient use of resources
– More resources

•  Repeat

Penn ESE532 Spring 2017 -- DeHon
5

Latency vs. Throughput

•  Latency: Delay from inputs to output(s)
•  Throughput: Rate at which can

produce new set of outputs
–  (alternately, can introduce new set of

inputs)

Penn ESE532 Spring 2017 -- DeHon
6

Preclass
Washer/Dryer Example

•  10 shirt capacity
•  1 Washer Takes 30 minutes
•  1 Dryer Takes 60 minutes
•  How long to do one load of wash?

– ! Wash latency
•  Cleaning Throughput?

W D

60m

W D

2

Pipeline Concurrency
•  Break up the computation graph into stages

– Allowing us to
•  reuse resources for new inputs (data),
•  while older data is still working its way through the

graph
– Before it has exited graph

– Throughput > (1/Latency)
•  Relate liquid in pipe

– Doesn’t wait for first drop of liquid to exit far end
of pipe before accepting second drop

Penn ESE532 Spring 2017 -- DeHon
7

W D

Bottleneck

•  What is the rate limiting item?
– Resource, computation, ….

Penn ESE532 Spring 2017 -- DeHon
8

Penn ESE532 Spring 2017 -- DeHon
9

Preclass
Washer/Dryer Example

•  1 Washer Takes 30 minutes
–  Isolated throughput 20 shirts/hour

•  1 Dryer Takes 60 minutes
–  Isolated throughput 10 shirts/hour

•  Where is bottleneck in our cleaning
system?

W D

60m

W D

Penn ESE532 Spring 2017 -- DeHon
10

Preclass
Washer/Dryer Example

•  1 Washer $500
–  Isolated throughput 20 shirts/hour

•  1 Dryer $500
–  Isolated throughput 10 shirts/hour

•  How do we increase throughput with
$500 investment

W D

60m

W D

Penn ESE532 Spring 2017 -- DeHon
11

Preclass
Washer/Dryer Example

•  1 Washer $500
–  Isolated throughput 20 shirts/hour

•  2 Dryers $500
–  Isolated single dryer throughput 10 shirts/

hour
•  Latency?
•  Throughput?

W

D

D

Penn ESE532 Spring 2017 -- DeHon
12

Preclass
Washer/Dryer Example

•  1 Washer $500
–  Isolated throughput 20 shirts/hour

•  2 Dryers $500
–  Isolated single dryer throughput 10 shirts/

hour
•  Able to double the

throughput without doubling system cost

W

D

D

3

Penn ESE532 Spring 2017 -- DeHon
13

Preclass
Stain Example

•  1 Washer Takes 30 minutes
–  Isolated throughput 20 shirts/hour

•  1 Dryer Takes 60 minutes
–  Isolated throughput 10 shirts/hour

•  Shirt need 3 wash cycles
•  Latency?
•  Throughput (assuming share)?

W D

3x Preclass Cycle

•  F, G, H – each 1 cycle, throughput 1/cycle
•  Latency of yi from yi-1 ?
•  Throughput? (rate of production of yi’s)

Penn ESE532 Spring 2017 -- DeHon
14

€

yi = F(G(H(xi,yi−1)))

Initiation Interval (II)
•  Cyclic dependencies can limit throughput
•  Due to dependent cycles,

– May not be able to initiate a new computation
on every cycle

•  II – cycles (delay) before can initiate
•  Throughput = 1/II

Penn ESE532 Spring 2017 -- DeHon
15

Beyond Computation

Penn ESE532 Spring 2017 -- DeHon
16

Bottleneck

•  Maybe be anywhere in path
–  I/O, compute, memory, data movement

Penn ESE532 Spring 2017 -- DeHon
17

Bottleneck

•  Where bottleneck?

Penn ESE532 Spring 2017 -- DeHon
18

Serial
1Mb/s
(64b in 64µs)

64b!32b in 10ns

32b!64b in 10ns

Ethernet
1Gb/s
(64b in 64ns)

64b every 4ns

64b!64b in 2ns

64b!64b
In 5ns

4

Bottleneck

•  Where bottleneck?

Penn ESE532 Spring 2017 -- DeHon
19

64b!32b in 10ns

32b!64b in 200ns

64b every 4ns

64b!64b in 2ns

64b!64b
In 5ns

Ethernet
1Gb/s
(64b in 64ns)

Ethernet
1Gb/s
(64b in 64ns)

Bottleneck

•  Where bottleneck?

Penn ESE532 Spring 2017 -- DeHon
20

64b!32b in 10ns

32b!64b in 200ns

64b every 4ns

64b!64b in 2ns

64b!64b
In 1000ns

Ethernet
1Gb/s
(64b in 64ns)

Ethernet
1Gb/s
(64b in 64ns)

Feasibility / Limits

•  First things to understand
– Obvious limits in system?

•  Impossible?
•  Which aspects will demand efficient

mapping?
•  Where might there be spare capacity

Penn ESE532 Spring 2017 -- DeHon
21

Generalizing

Penn ESE532 Spring 2017 -- DeHon
22

Computation as Graph

•  Shown “simple”
graphs (pipelines)
so far

Penn ESE532 Spring 2017 -- DeHon
23

€

yi = F(G(H(xi,yi−1)))

Computation as Sequence

•  Shown “simple”
graphs (pipelines)
so far

•  For (i=1 to N)
 X=readX()
 T1=H(x,y)
 T2=G(T1)
 Y=F(T2)
 writeY(Y)

Penn ESE532 Spring 2017 -- DeHon
24

€

yi = F(G(H(xi,yi−1)))

5

Computation as Graph

•  Y=Ax2+Bx+C T1=x*x
T2=A*T1
T3=B*x
T4=T2+T3
Y=C+T4

Penn ESE532 Spring 2017 -- DeHon
25

Computation as Graph

•  Nodes have
multiple input/
output edges

•  Edges may
fanout
–  Results go to

multiple
successors

Penn ESE532 Spring 2017 -- DeHon
26

Computation as Graph

•  Latency multiply = 3
•  Latency add = 1
•  Latency from B to

output?
•  Latency from x to

output?
–  Through Ax2 ?
–  Through Bx ?

Penn ESE532 Spring 2017 -- DeHon
27

Delay in Graphs

•  There are multiple paths from inputs to
outputs

•  Need to complete all of them to produce
outputs

•  Limited by longest path
•  Critical path: longest path in the graph

Penn ESE532 Spring 2017 -- DeHon
28

Computation as Graph

•  Latency multiply = 3
•  Latency add = 1
•  Critical Path?

Penn ESE532 Spring 2017 -- DeHon
29

Bottleneck
•  Where is the bottleneck?

Penn ESE532 Spring 2017 -- DeHon
30

6

Time and Space

Penn ESE532 Spring 2017 -- DeHon
31

Space-Time

•  In general, we can spend resources to
reduce time
–  Increase throughput

Penn ESE532 Spring 2017 -- DeHon
32

W

D

D

W D W W

Three wash stain removal case

Space Time

•  Computation
– A=x0+x1
– B=A+x2
– C=B+x3

•  Adder takes one cycle
•  Throughput on one adder?
•  Throughput on 3 adders?

Penn ESE532 Spring 2017 -- DeHon
33

 + +

 +

Dependencies and S-T

•  Dependencies may limit throughput
acceleration
– Give benefit less than 1/space

Penn ESE532 Spring 2017 -- DeHon
34

Computation as Graph

•  Latency multiply = 3
•  Thput mult = 1/3
•  Space multiply = 3
•  Latency add = 1
•  Space add = 1
•  Thput and Space

–  3 mul, 2 add

Penn ESE532 Spring 2017 -- DeHon
35

Computation as Graph

•  Latency multiply = 3
•  Thput mult = 1/3
•  Space multiply = 3
•  Latency add = 1
•  Space add = 1
•  Thput and Space

–  1 mul, 1 add
–  Where is

bottleneck?

Penn ESE532 Spring 2017 -- DeHon
36

7

Computation as Graph

•  Latency multiply = 3
•  Thput mult = 1/3
•  Space multiply = 3
•  Latency add = 1
•  Space add = 1
•  Thput and Space

–  2 mul, 1 add

Penn ESE532 Spring 2017 -- DeHon
37

Space-Throughput Graph

Penn ESE532 Spring 2017 -- DeHon
38

Penn ESE532 Spring 2017 -- DeHon
39

Two Bounds

(still in Time and Space)

Penn ESE532 Spring 2017 -- DeHon
40

Bounds

•  Quick lower bounds can estimate
•  Two:

– CP: Critical Path
•  Sometimes call it “Latency Bound”

– RB: Resource Bound
•  Sometimes call it “Throughput Bound” or

“Compute Bound”

Penn ESE532 Spring 2017 -- DeHon
41

Critical Path Lower Bound

•  Critical path assuming infinite resources

•  Certainly cannot finish any faster than
that

Penn ESE532 Spring 2017 -- DeHon
42

Resource Capacity Lower
Bound

•  Sum up all capacity required per
resource

•  Divide by total resource (for type)
•  Lower bound on compute

–  (best can do is pack all use densely)
–  Ignores data dependency constraints

8

Penn ESE532 Spring 2017 -- DeHon
43

Example

Critical Path

Resource Bound (2 resources)

Resource Bound (4 resources)

Penn ESE532 Spring 2017 -- DeHon
44

Example

Critical Path

Resource Bound (2 resources)

Resource Bound (4 resources)

3

7/2=4

7/4=2

Critical Path

•  Latency multiply = 3
•  Thput mult = 1/3
•  Space multiply = 3
•  Latency add = 1
•  Space add = 1
•  Critical Path?

Penn ESE532 Spring 2017 -- DeHon
45

Resource Bound

•  Latency multiply = 3
•  Thput mult = 1/3
•  Space multiply = 3
•  Latency add = 1
•  Space add = 1
•  Resource Bound

–  1 mul, 1 add
–  2 mul, 1 add
–  3 mul, 2 add

Penn ESE532 Spring 2017 -- DeHon
46

90/10 Rule (of Thumb)
•  Observation that code is not used uniformly
•  90% of the time is spent in 10% of the code
•  Knuth: 50% of the time in 2% of the code
•  Implications

– There will typically be a bottleneck
– We don’t need to optimize everything
– We don’t need to uniformly replicate space to

achieve speedup
– Not everything needs to be accelerated

Penn ESE532 Spring 2017 -- DeHon
47

Amdahl’s Law

•  If you only speedup Y(%) of the code,
the most you can accelerate your
application is 1/(1-Y)

•  Tbefore = 1*Y + 1*(1-Y)
•  Speedup by factor of S
•  Tafter=(1/S)*Y+1*(1-Y)
•  Limit S!infinity Tbefore/Tafter=1/(1-Y)

Penn ESE532 Spring 2017 -- DeHon
48

9

Amdahl’s Law

•  Tbefore = 1*Y + 1*(1-Y)
•  Speedup by factor of S
•  Tafter=(1/S)*Y+1*(1-Y)
•  Y=70%

– Possible speedup (S!infinity) ?
– Speedup if S=10?

Penn ESE532 Spring 2017 -- DeHon
49

Amdahl’s Law
•  If you only speedup Y(%) of the code,

the most you can accelerate your
application is 1/(1-Y)

•  Implications
– Amdhal: good to have a fast sequential

processor
– Keep optimizing

•  Tafter=(1/S)*Y+1*(1-Y)
•  For large S, bottleneck now in the 1-Y

Penn ESE532 Spring 2017 -- DeHon
50

Penn ESE532 Spring 2017 -- DeHon
51

Big Ideas

•  Identify the Bottleneck
– May be in compute, I/O, memory ,data

movement
•  Focus and reduce/remove bottleneck

– More efficient use of resources
– More resources

Admin
•  Reading for Day 3 on canvas
•  HW1 due Friday
•  HW2 out

– Assigning partners (see canvas)

•  Remember feedback

Penn ESE532 Spring 2017 -- DeHon
52

