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ESE532: 
System-on-a-Chip Architecture 

Day 2:  September 6, 2017 
Analysis, Metrics, and Bottlenecks 

Work Preclass 
Lecture start 3:05pm 
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Today 
•  Throughput 
•  Latency 
•  Bottleneck 
•  Initiation Interval 
•  Computation as a Graph, Sequence 
•  Critical Path 
•  Resource Bound 
•  90/10 Rule 
•  Amdahl’s Law 

Today: Analysis 
•  How do we quickly estimate what’s 

possible? 
– Before (with less effort than) developing a 

complete solution 
•  How should we attack the problem? 

– Achieve the performance, energy goals? 
•  When we don’t like the performance 

we’re getting, how do we understand it? 
•  Where should we spend our time? 
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Message for Day 

•  Identify the Bottleneck 
– May be in compute, I/O, memory, data 

movement 
•  Focus and reduce/remove bottleneck 

– More efficient use of resources 
– More resources 

•  Repeat 
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Latency vs. Throughput 

•  Latency: Delay from inputs to output(s) 
•  Throughput: Rate at which can 

produce new set of outputs 
–  (alternately, can introduce new set of 

inputs) 
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Preclass  
Washer/Dryer Example 

•  10 shirt capacity 
•  1 Washer Takes 30 minutes 
•  1 Dryer Takes 60 minutes 
•  How long to do one load of wash? 

– ! Wash latency 
•  Cleaning Throughput? 

W D 

60m 

W D 
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Pipeline Concurrency 
•  Break up the computation graph into stages 

– Allowing us to  
•  reuse resources for new inputs (data),  
•  while older data is still working its way through the 

graph 
– Before it has exited graph 

– Throughput > (1/Latency) 
•  Relate liquid in pipe 

– Doesn’t wait for first drop of liquid to exit far end 
of pipe before accepting second drop 
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W D 

Bottleneck 

•  What is the rate limiting item? 
– Resource, computation, …. 
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Preclass  
Washer/Dryer Example 

•  1 Washer Takes 30 minutes 
–  Isolated throughput 20 shirts/hour 

•  1 Dryer Takes 60 minutes 
–  Isolated throughput 10 shirts/hour 

•  Where is bottleneck in our cleaning 
system? 

W D 

60m 

W D 
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Preclass  
Washer/Dryer Example 

•  1 Washer $500 
–  Isolated throughput 20 shirts/hour 

•  1 Dryer $500 
–  Isolated throughput 10 shirts/hour 

•  How do we increase throughput with 
$500 investment 

W D 

60m 

W D 
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Preclass  
Washer/Dryer Example 

•  1 Washer $500 
–  Isolated throughput 20 shirts/hour 

•  2 Dryers $500 
–  Isolated single dryer throughput 10 shirts/

hour 
•  Latency? 
•  Throughput? 

W

D 

D 
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Preclass  
Washer/Dryer Example 

•  1 Washer $500 
–  Isolated throughput 20 shirts/hour 

•  2 Dryers $500 
–  Isolated single dryer throughput 10 shirts/

hour 
•  Able to double the  

throughput without doubling system cost 

W

D 

D 
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Preclass  
Stain Example 

•  1 Washer Takes 30 minutes 
–  Isolated throughput 20 shirts/hour 

•  1 Dryer Takes 60 minutes 
–  Isolated throughput 10 shirts/hour 

•  Shirt need 3 wash cycles 
•  Latency? 
•  Throughput (assuming share)? 

W D 

3x Preclass Cycle 

•  F, G, H – each 1 cycle, throughput 1/cycle 
•  Latency of yi from yi-1 ? 
•  Throughput? (rate of production of yi’s) 
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€ 

yi = F(G(H(xi,yi−1)))

Initiation Interval (II) 
•  Cyclic dependencies can limit throughput 
•  Due to dependent cycles, 

– May not be able to initiate a new computation 
on every cycle 

•  II – cycles (delay) before can initiate 
•  Throughput = 1/II 
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Beyond Computation 
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Bottleneck 

•  Maybe be anywhere in path 
–  I/O, compute, memory, data movement 
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Bottleneck 

•  Where bottleneck? 
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Serial 
1Mb/s 
(64b in 64µs) 

64b!32b in 10ns 

32b!64b in 10ns 

Ethernet 
1Gb/s 
(64b in 64ns) 

64b every 4ns 

64b!64b in 2ns 

64b!64b  
In 5ns 
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Bottleneck 

•  Where bottleneck? 
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64b!32b in 10ns 

32b!64b in 200ns 

64b every 4ns 

64b!64b in 2ns 

64b!64b  
In 5ns 

Ethernet 
1Gb/s 
(64b in 64ns) 

Ethernet 
1Gb/s 
(64b in 64ns) 

Bottleneck 

•  Where bottleneck? 
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64b!32b in 10ns 

32b!64b in 200ns 

64b every 4ns 

64b!64b in 2ns 

64b!64b  
In 1000ns 

Ethernet 
1Gb/s 
(64b in 64ns) 

Ethernet 
1Gb/s 
(64b in 64ns) 

Feasibility / Limits 

•  First things to understand  
– Obvious limits in system? 

•  Impossible? 
•  Which aspects will demand efficient 

mapping? 
•  Where might there be spare capacity 
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Generalizing 
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Computation as Graph 

•  Shown “simple” 
graphs (pipelines) 
so far 
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€ 

yi = F(G(H(xi,yi−1)))

Computation as Sequence 

•  Shown “simple” 
graphs (pipelines) 
so far 

•  For (i=1 to N) 
  X=readX() 
  T1=H(x,y) 
  T2=G(T1) 
  Y=F(T2) 
  writeY(Y) 
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€ 

yi = F(G(H(xi,yi−1)))
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Computation as Graph 

•  Y=Ax2+Bx+C T1=x*x 
T2=A*T1 
T3=B*x 
T4=T2+T3 
Y=C+T4 
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Computation as Graph 

•  Nodes have 
multiple input/
output edges 

•  Edges may 
fanout  
–  Results go to 

multiple 
successors 

Penn ESE532 Spring 2017 -- DeHon 
26 

Computation as Graph 

•  Latency multiply = 3 
•  Latency add = 1 
•  Latency from B to 

output? 
•  Latency from x to 

output?  
–  Through Ax2 ? 
–  Through Bx ? 
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Delay in Graphs 

•  There are multiple paths from inputs to 
outputs 

•  Need to complete all of them to produce 
outputs 

•  Limited by longest path 
•  Critical path: longest path in the graph 
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Computation as Graph 

•  Latency multiply = 3 
•  Latency add = 1 
•  Critical Path? 
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Bottleneck 
•  Where is the bottleneck? 
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Time and Space 
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Space-Time 

•  In general, we can spend resources to 
reduce time 
–  Increase throughput 
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W

D 

D 

W D W W

Three wash stain removal case 

Space Time 

•  Computation 
– A=x0+x1 
– B=A+x2 
– C=B+x3 

•  Adder takes one cycle 
•  Throughput on one adder? 
•  Throughput on 3 adders? 
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 +  + 

 + 

Dependencies and S-T 

•  Dependencies may limit throughput 
acceleration 
– Give benefit less than 1/space 
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Computation as Graph 

•  Latency multiply = 3 
•  Thput mult = 1/3 
•  Space multiply = 3 
•  Latency add = 1 
•  Space add = 1 
•  Thput and Space 

–  3 mul, 2 add 
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Computation as Graph 

•  Latency multiply = 3 
•  Thput mult = 1/3 
•  Space multiply = 3 
•  Latency add = 1 
•  Space add = 1 
•  Thput and Space 

–  1 mul, 1 add 
–  Where is 

bottleneck? 
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Computation as Graph 

•  Latency multiply = 3 
•  Thput mult = 1/3 
•  Space multiply = 3 
•  Latency add = 1 
•  Space add = 1 
•  Thput and Space 

–  2 mul, 1 add 
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Space-Throughput Graph 
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Two Bounds 

(still in Time and Space) 
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Bounds 

•  Quick lower bounds can estimate 
•  Two: 

– CP: Critical Path 
•  Sometimes call it “Latency Bound” 

– RB: Resource Bound 
•  Sometimes call it “Throughput Bound” or 

“Compute Bound” 
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Critical Path Lower Bound 

•  Critical path assuming infinite resources 

•  Certainly cannot finish any faster than 
that 
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Resource Capacity Lower 
Bound 

•  Sum up all capacity required per 
resource 

•  Divide by total resource (for type) 
•  Lower bound on compute 

–  (best can do is pack all use densely) 
–  Ignores data dependency constraints 
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Example 

Critical Path 

Resource Bound (2 resources) 

Resource Bound (4 resources) 
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Example 

Critical Path 

Resource Bound (2 resources) 

Resource Bound (4 resources) 

3 

7/2=4 

7/4=2 

Critical Path 

•  Latency multiply = 3 
•  Thput mult = 1/3 
•  Space multiply = 3 
•  Latency add = 1 
•  Space add = 1 
•  Critical Path? 

Penn ESE532 Spring 2017 -- DeHon 
45 

Resource Bound 

•  Latency multiply = 3 
•  Thput mult = 1/3 
•  Space multiply = 3 
•  Latency add = 1 
•  Space add = 1 
•  Resource Bound  

–  1 mul, 1 add 
–  2 mul, 1 add 
–  3 mul, 2 add 
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90/10 Rule (of Thumb) 
•  Observation that code is not used uniformly 
•  90% of the time is spent in 10% of the code 
•  Knuth: 50% of the time in 2% of the code 
•  Implications 

– There will typically be a bottleneck 
– We don’t need to optimize everything 
– We don’t need to uniformly replicate space to 

achieve speedup 
– Not everything needs to be accelerated 
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Amdahl’s Law 

•  If you only speedup Y(%) of the code, 
the most you can accelerate your 
application is 1/(1-Y) 

•  Tbefore = 1*Y + 1*(1-Y) 
•  Speedup by factor of S 
•  Tafter=(1/S)*Y+1*(1-Y) 
•  Limit S!infinity Tbefore/Tafter=1/(1-Y) 
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Amdahl’s Law 

•  Tbefore = 1*Y + 1*(1-Y) 
•  Speedup by factor of S 
•  Tafter=(1/S)*Y+1*(1-Y) 
•  Y=70% 

– Possible speedup (S!infinity) ? 
– Speedup if S=10? 
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Amdahl’s Law 
•  If you only speedup Y(%) of the code, 

the most you can accelerate your 
application is 1/(1-Y) 

•  Implications 
– Amdhal: good to have a fast sequential 

processor 
– Keep optimizing  

•  Tafter=(1/S)*Y+1*(1-Y) 
•  For large S, bottleneck now in the 1-Y 
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Big Ideas 

•  Identify the Bottleneck 
– May be in compute, I/O, memory ,data 

movement 
•  Focus and reduce/remove bottleneck 

– More efficient use of resources 
– More resources 

Admin 
•  Reading for Day 3 on canvas 
•  HW1 due Friday 
•  HW2 out 

– Assigning partners (see canvas) 

•  Remember feedback 

Penn ESE532 Spring 2017 -- DeHon 
52 


