Penn

ESES532:
System-on-a-Chip Architecture

Day 4: September 13, 2017
Parallelism Overview

&Penn

ESE532 Fall 2017 - DeHon

Today

» Types of Parallelism
« Compute Models

Message

* Many useful models for parallelism
— Help conceptualize

* One-size does not fill all
— Match to problem

- - 3
enn ESE532 Fall 2017 - DeHon

Types of Parallelism

Penn

Types of Parallelism

* Data Level — Perform same
computation on different data items

* Thread or Task Level — Perform
separable (perhaps heterogeneous)
tasks independently

* Instruction Level — Within a single
sequential thread, perform multiple
operations on each cycle.

- - 5
ESE532 Fall 2017 - DeHon

Pipeline Parallelism

* Pipeline — organize computation as a
spatial sequence of concurrent
operations
— Can introduce new inputs before finishing
— Instruction- or thread-level
— Use for data-level parallelism
— Can be directed graph

Build 1

Sequential

 Single person build E | |

» Latency?
» Throughput?

Penn ESE532 Fall 2017 -- DeHon

Build 2

Data Parallel

Everyone in class build own E

Latency? —I—l

Throughput?

Ideal speedup? I
Resource Bound?
—100 Es, 12 people

When useful?
J_l 8

enn ESE532 Fall 2017 -- DeHon

Data-Level Parallelism

» Data Level — Perform same
computation on different data items

Ideal: T4y = Toog/P

seq

Penn ESE532 Fall 2017 -- DeHon

Thread-Level Parallelism

* Thread or Task Level — Perform
separable (perhaps heterogeneous)
tasks independently

¢ Ideal: Ty, = Te/P
» Can produce a diversity of calculations

— Useful if have limited need for the same
ch}:awlcul—a}vlon 1

Build 3
Thread Parallel

» Each person build indicated letter

» Latency?

» Throughput?

» Speedup over sequential build?

E: Il 2017 -- DeH 10
Build 4

Instruction-Level Data Parallel

* Build E together in lock step

* Instructions from slides
— To get proper flavor, please stay together
— (do not build ahead)

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

- - I | 19
enn ESE532 Fall 2017 - DeHon

Step 8

20

Instruction-Level Data Parallel

» Latency?
» Throughput?

21

enn ESE532 Fall 2017 -- DeHon

Instruction-Level Data Parallel

* Instruction Level — Within a single
sequential thread, perform multiple
operations on each cycle.

+ + Data parallel
— Able to share instructions

22

nn ESE532 Fall 2017 -- DeHon

Build 5
Instruction-Level Parallelism

 Build word in lock step
» Announce step from slides
— Don’t build ahead

« Consult local instructions on what to do
on step

23

enn ESE532 Fall 2017 -- DeHon

Step 0

24

nn ESE532 Fall 2017 -- DeHon

Step 1

Step 2

Penn ESE532 Fall 2017 -- DeHon 25
Step 3

Penn ESE532 Fall 2017 -- DeHon 27
Step 5

29

Penn ESE532 Fall 2017 -- DeHon

Penn ESE532 Fall 2017 -- DeHon 26
Step 4

Penn ESE532 Fall 2017 -- DeHon 28
Step 6

30

Penn ESE532 Fall 2017 -- DeHon

Step 7

31

enn ESE532 Fall 2017 -- DeHon

Instruction-Level Parallelism

» Latency?
» Throughput?

33

enn ESE532 Fall 2017 -- DeHon

Build 6

Instruction-Level Parallelism

Build single letter in lock step
* 4 groups of 3

» Resource Bound for 3 people building
9-brick letter?

* Announce steps from slide
— Stay in step with slides

35

enn ESE532 Fall 2017 -- DeHon

Step 8

32

Instruction-Level Data Parallel

Instruction Level — Within a single
sequential thread, perform multiple
operations on each cycle.

* Able to perform different calculations
concurrently

Requires local instructions

34

Group Communication

Step | Person 1| Person 2| Person 3

Groups of 3 , EI = E‘I
* Note who was

person 1 task 1 Ej & F‘
* 2,3 will need to

pass completed
substructures 2

36

Step 0

37

Penn ESE532 Fall 2017 -- DeHon

532 Fall 2017 -- DeHon

Step 1

38

Step 2

39

Penn ESE532 Fall 2017 -- DeHon

Step 3

40

532 Fall 2017 -- DeHon

Instruction-Level Parallelism

» Latency?
» Throughput?

» Can reduce latency for single letter

* Ideal: Tlatency = Tseqlatency/P

41

Penn ESE532 Fall 2017 -- DeHon

Penn ESE

Build 7
Instruction-Level Pipeline

Each person adds one brick to build
Run pipeline once alone

Latency?

Then run pipeline with 5 inputs
Throughput?

42

532 Fall 2017 -- DeHon

Build 8
Thread Pipeline

« Each person builds letter and adds to
work

« Identify where pipeline flows
* Run once

» Latency?

» Throughput?

43

Penn ESE532 Fall 2017 -- DeHon

Parallel Compute Models

45

Penn ESE532 Fall 2017 -- DeHon

Parallelism can be explicit

* ILP Build example * Multiply, add for

quadratic equation

» Coordinate data

X [cycle | mpy | add |
parallel operations 1 Bx
2 X,X (Bx)+C
3 Ax2
4 Ax2+(Bx+C)

* Coordinate ILP

47

Penn ESE532 Fall 2017 -- DeHon

Penn ESE

Build 9

Thread Graph

Each person build designated sub-
assembly and pass off

Who gets E, S?
Who gets 3, 2?

Who gets E, 5, and ES, 32 sub-
assemblies?

Run once
Latency?
Throughput?

532 Fall 2017 -- DeHon

44

Control flow

Sequential Control Flow

Model of correctness

Program is a is sequential
sequence of execution
operations Examples
Operation reads C (Java, ...)
inputs and writes FSM/FA

outputs into common

store
» One operation runs at
a time
— defines successor
Penn ESE532 Fall 2017 -- DeHon 46
Parallelism can be implicit
» Sequential T1=x*x
expression T2=A*T1
* Infer data T3=B*x
dependencies T4=T2+T3
Y=C+T4
* Or

Y=A*x*x+B*x+C

48

Penn ESE532 Fall 2017 -- DeHon

Implicit Parallelism
o d=(x1-x2)*(x1-x2) + (y1-y2)*(y1-y2)

* What parallelism exists here?

49

Penn ESE532 Fall 2017 -- DeHon

Parallelism can be implicit

» Sequential for (i=0;i<100;i++)
expression V[i]=A*X[i]*x[i]+B*x[i]+C
* Infer data

dependencies Why can these

operations be
performed in parallel?

50

Penn ESE532 Fall 2017 -- DeHon

Term: Operation

* Operation — logic computation to be
performed

51

Penn ESE532 Fall 2017 -- DeHon

Dataflow / Control Flow

Dataflow Control flow (e.g. C)
+ Programis agraph * Programis a

of operations sequence of
« Operation consumes ~ oPerations

tokens and » Operation reads

inputs and writes
outputs into
common store

produces tokens
All operations run

concurrently X
» One operation runs
at a time
— defines successor
[~ 52
Penn ESE532 Fall 2017 -- DeHon

Token

» Data value with presence indication
— May be conceptual
* Only exist in high-level model
* Not kept around at runtime
— Or may be physically represented
 One bit represents presence/absence of data

53

Penn ESE532 Fall 2017 -- DeHon

Token Examples?

* What are familiar cases where data may
come with presence tokens?
— Network packets
— Memory references from processor
« Variable latency depending on cache presence
— Start bit on serial communication

54

Penn ESE532 Fall 2017 -- DeHon

Operation

» Takes in one or more inputs
+ Computes on the inputs
* Produces results

Logically self-timed
— “Fires” only when input set present
— Signals availability of output

. 55
Penn ESE532 Fall 2017 - DeHon

Dataflow Graph

* Represents
— computation sub-blocks
—linkage

* Abstractly
— controlled by data presence

57
Penn ESE532 Fall 2017 -- DeHon

Sequential / FSM

* FSM is degenerate dataflow graph
where there is exactly one token

X not

[cycle [mpy| _add [next | present?
S1 B,x x-->82,
else S1
s2 XX (BX)}*C s3
S3 Ax? S4
S4 Ax2+(Bx+C) S1
.) 59
Penn ESE532 Fall 2017 -- DeHon

Dataflow Graph Example

Sequential / FSM

* FSM is degenerate dataflow graph
where there is exactly one token

S1 B,x x-->S2
else S1
s2 XX (BX)*C s3
S3 Ax2 S4
S4 Ax2+(Bx+C) S1
o 60
Penn ESE532 Fall 2017 -- DeHon

10

Communicating Threads

» Computation is a collection of
sequential/control-flow “threads”
* Threads may communicate
— Through dataflow I/O
— (Through shared variables)
» View as hybrid or generalization

* CSP — Communicating Sequential

Processes - canonical model example
61

Penn ESES532 Fall 2017 -- DeHon

Video Decode

* Why might need to synchronize to send
to HDMI?

Penn ESE532 Fall 2017 -- DeHon

62

Compute Models

Multithread/CSP
Dataflow Sequential Control
Dynamic DF with Peek Sequential Data Parallel
| _Control
Dynamic Stre?ming DF with AIIIocatlon Data—centric
Synchronous Dataflow (SDF) Finite
| Automata

Single-Rate SDF

63

Penn ESES532 Fall 2017 -- DeHon

Value of Multiple Models

* When you have a big enough
hammer, everything looks like
a nail.

» Many stuck on single model
— Try to make all problems look like their nail

+ Value to diversity / heterogeneity
— One size does not fit all

64
Penn ESE532 Fall 2017 -- DeHon

Big Ideas

* Many parallel compute models
— Sequential, Dataflow, CSP

* Find natural parallelism in problem
* Mix-and-match

65
Penn ESE532 Fall 2017 - DeHon

Admin

* Reading Day 5 ...
* HW2 due Friday

66
Penn ESE532 Fall 2017 -- DeHon

11

