

Preclass 1

- 400 news articles
- Count total occurrences of a string
- How can we exploit data-level parallelism on task?
- How much parallelism can we exploit?

Parallel Decomposition

Data Parallel

- Data-level parallelism can serve as an organizing principle for parallel task decomposition
- Run computation on independent data in parallel

Exploit

- Can exploit with
- Threads
- Pipeline Parallelism
- Instruction-level Parallelism
- Fine-grained Data-Level Parallelism
\qquad

SPMD

Single Program Multiple Data

- Only need to write code once
- Get to use many times

Pipeline Text Search

Text Document

Common Examples

-What are common examples of DLP?

- Simulation
- Numerical Linear Algebra
- Graphics
- Signal Processing
- Image Processing
- Optimization
- Other?

Idea
- If we're going to perform the same
operations on different data,
exploit that to reduce area, energy
:---
computation on a fixed-size die.

ESE532 Fall 2017 - - DeHon

SIMD

- Single Instruction Multiple Data

Shared Instruction

Register File

- Small Memory
- Usually with multiple ports
- Ability to perform multiple reads and writes simultaneously
- Small
- To make it fast (small memories fast)
- Multiple ports are expensive

Segmented Datapath

- Relatively easy (few additional gates) to convert a wide datapath into one supporting a set of smaller operations
- Just need to squash the carry at points

22

Segmented Datapath

- Relatively easy (few additional gates) to convert a wide datapath into one supporting a set of smaller operations - Just need to squash the carry at points
- But need to keep instructions (description) small
- So typically have limited, homogeneous widths supported

Segmented 128b Datapath

- 1x128b, 2x64b, 4x32b, 8x16b

Opportunity

- Don't need 64b variables for lots of things
- Natural data sizes?
- Audio samples?
- Input from A/D?
- Video Pixels?
- X, Y coordinates for 4K x 4K image?

Penn ESE532 Fall 2017 -- DeHon

Vector Computation

- Easy to map to SIMD flow if can express computation as operation on vectors
- Vector Add
- Vector Multiply
- Dot Product

Vector Register File

- Need to be able to feed the SIMD compute units
- Not be bottlenecked on data movement to the SIMD ALU
- Wide RF to supply
- With wide path to memory

Point-wise Vector Operations

- Easy - just like wide-word operations (now with segmentation)

Ideal

- No data dependencies
- Access every element
- Number of operations is a multiple of number of vector lanes

Vector Length

- May not match physical hardware length
- What happens when
- Vector length > hardware SIMD operators?
- Vector length < hardware SIMD operators?
- Vector length \% hdw operators !=0
- E.g. vector length 20, for 8 hdw operators

Skipping Elements?

- How does this work with datapath?
- Assume loaded a[0], a[1], ..a[63] and b[0],
$\mathrm{b}[1], \ldots \mathrm{b}[63]$ into vector register file
- for ($\mathrm{i}=0 ; \mathrm{i}<64 ; \mathrm{i}=\mathrm{i}+2$)
$-c[i / 2]=a[i]+b[i]$

Stride

- Stride: the distance between vector elements used
- for ($\mathrm{i}=0 ; \mathrm{i}<64 ; \mathrm{i}=\mathrm{i}+2$)
$-c[i / 2]=a[i]+b[i]$
- Accessing data with stride=2

Load/Store

- Strided load/stores
- Some architectures will provide strided memory access that compact when read into register file
- Scatter/gather
- Some architectures will provide memory operations to grab data from different places to construct a dense vector

Dot Product

- What happens when need a dot product?
- res=0;
- for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$)
- res+=a[i]*b[i]

Reduction

- Common operations where want to perform a combining operation to reduce a vector to a scalar
- Sum values in vector
- AND, OR
- Reduce Operation

Reduce Tree

- Efficiently handled with reduce tree

Penn ESE532 Fall 2017 - DeHon

Dot Product Revisited

Vector Reduce Instruction

- Usually include support for vector reduce operation
- Doesn't need to add much to delay
- Maybe even faster than performing larger operation
- 8 16x16 multiplies with sum reduce
less complex than one 128×128 multiply
- ...can exploit datapath of larger operation

Conditionals?

- What happens if want to do something different?
- For ($\mathrm{i}=0 ; \mathrm{i}<8 ; \mathrm{i}++$)
- if (a[i]<b[i])
- $d[i]=a[i]+c[i]$
- else
- $d[i]=b[i]+c[i]$

Conditionals

- Only have one instruction
- Cannot perform separate operations on each ALU in datapath

Pipelined Vector Units

- Will get both pipelining and parallel vector lanes
- Exploit data-level parallelism for both

Conditionals

- Only have one Program Counter
- Cannot implement conditional via branching

Conditionals

- Only have one Program Counter
- Cannot implement conditional via branching
- Only have one instruction
- Cannot perform separate operations on each ALU in datapath
- Must perform an invariant operation sequence
- Simple answer: prevent using SIMD unit
- Better: predicated execution

Eenn ESE532 Fall 2017 - DeHon

Predicated Operation

- Many architectures will provide a predicated operation
- Only perform operation when predicate matches instruction

Predicated Operation

- What does this do to instructions must be issued?
- What does this do to efficiency?
- Useful operations performed per cycle
- $p[i]=a[i]<b[i]$
- p[i]: d[i]=c[i] +a[i]
- $\sim p[i]: d[i]=c[i]+b[i]$

Neon Vector

Sample Instructions

- VADD - basic vector
- VCEQ - compare equal
- Sets to all 0s or 1s, useful for masking
- VMIN - avoid using if's
- VMLA - accumulating multiply
- VPADAL - maybe useful for reduce - Vector pair-wise add
- VEXT - for "shifting" vector alignment
- VLDn - deinterleaving load

Neon Notes

- Didn't see
- Vector-wide reduce operation
- Conditionals within vector lanes
- Do need to think about operations being pipelined within lanes

Admin

- No reading for day 7
- HW3 due Friday
- HW4 out

Big Ideas

- Data Parallelism easy basis for decomposition
- Data Parallel architectures can be compact - pack more computations onto a chip
- SIMD, Pipelined
- Benefit by sharing (instructions)
- Performance can be brittle
- Drop from peak as mismatch

Penn ESE532 Fall 2017 - - DeHon $\quad 56$

Admin
- No reading for day 7
- HW3 due Friday
- HW4 out

