ESE532: System-on-a-Chip Architecture

Day 6: September 20, 2017 Data-Level Parallelism

Today

Data-level Parallelism

- · For Parallel Decomposition
- Architectures
- · Concepts
- NEON

Penn ESE532 Fall 2017 -- DeHon

2

Message

- Data Parallelism easy basis for decomposition
- Data Parallel architectures can be compact – pack more computations onto a die

enn ESE532 Fall 2017 -- DeHon

enn ESE532 Fall 2017 -- DeHon

nn ESE532 Fall 2017 -- DeHon

Preclass 1

- · 400 news articles
- · Count total occurrences of a string
- How can we exploit data-level parallelism on task?
- · How much parallelism can we exploit?

Penn ESE532 Fall 2017 -- DeHon

4

Parallel Decomposition

Data Parallel

- Data-level parallelism can serve as an organizing principle for parallel task decomposition
- Run computation on independent data in parallel

Penn ESE532 Fall 2017 -- DeHon

Exploit

- · Can exploit with
 - Threads
 - Pipeline Parallelism
 - Instruction-level Parallelism
 - Fine-grained Data-Level Parallelism

nn ESE532 Fall 2017 -- DeHon

Thread Exploit DP

 How exploit threads for data-parallel text search?

Penn ESE532 Fall 2017 -- DeHon

0

SPMD

Single Program Multiple Data

- · Only need to write code once
- · Get to use many times

Penn ESE532 Fall 2017 -- DeHon

Pipeline Exploit

 How exploit hardware pipeline for text search?

Penn ESE532 Fall 2017 -- DeHon

10

Pipeline Text Search Text Document Match Targets and Penn ESE532 Fall 2017 -- DeHon

Common Examples

- · What are common examples of DLP?
 - Simulation
 - Numerical Linear Algebra
 - Graphics
 - Signal Processing
 - Image Processing
 - Optimization
 - Other?

Penn ESE532 Fall 2017 -- DeHon

Hardware Architectures

in ESE532 Fall 2017 -- DeHon

Idea

- If we're going to perform the same operations on different data, exploit that to reduce area, energy
- Reduced area means can have more computation on a fixed-size die.

Penn ESE532 Fall 2017 -- DeHon

13

14

SIMD • Single Instruction Multiple Data Shared Instruction

W-bit ALU as SIMD

- · Familiar idea
- A W-bit ALU (W=8, 16, 32, 64, ...) is SIMD
- Each bit of ALU works on separate bits
 - Performing the same operation on it
 - Trivial to see bitwise AND, OR, XOR
 - Also true for ADD (each bit performing Full Adder)
- Share one instruction across all ALU bits

Segmented Datapath

- Relatively easy (few additional gates) to convert a wide datapath into one supporting a set of smaller operations
 - Just need to squash the carry at points
- But need to keep instructions (description) small
 - So typically have limited, homogeneous widths supported

23

nn ESE532 Fall 2017 -- DeHon

Opportunity

- Don't need 64b variables for lots of things
- · Natural data sizes?
 - Audio samples?
 - Input from A/D?
 - Video Pixels?
 - X, Y coordinates for 4K x 4K image?

enn ESE532 Fall 2017 -- DeHon

26

Vector Computation

- Easy to map to SIMD flow if can express computation as operation on vectors
 - Vector Add
 - Vector Multiply
 - Dot Product

Penn ESE532 Fall 2017 -- DeHon

Vector Register File

27

- Need to be able to feed the SIMD compute units
 - Not be bottlenecked on data movement to the SIMD ALU
- · Wide RF to supply
- · With wide path to memory

Point-wise Vector Operations

 Easy – just like wide-word operations (now with segmentation)

Point-wise Vector Operations

- · ...but alignment matters.
- If not aligned, need to perform data movement operations to get aligned

Ideal

- for (i=0;i<64;i=i++)c[i]=a[i]+b[i]
- · No data dependencies
- · Access every element
- Number of operations is a multiple of number of vector lanes

enn ESE532 Fall 2017 -- DeHon

32

Vector Length

- · May not match physical hardware length
- · What happens when
 - Vector length > hardware SIMD operators?
 - Vector length < hardware SIMD operators?</p>
 - Vector length % hdw operators !=0
 - E.g. vector length 20, for 8 hdw operators

Penn ESE532 Fall 2017 -- DeHon

33

Skipping Elements?

- · How does this work with datapath?
 - Assume loaded a[0], a[1], ...a[63] and b[0], b[1], ...b[63] into vector register file
- for (i=0;i<64;i=i+2)
 - -c[i/2]=a[i]+b[i]

Penn ESE532 Fall 2017 -- DeHon

34

Stride

- Stride: the distance between vector elements used
- for (i=0;i<64;i=i+2)
 c[i/2]=a[i]+b[i]
- · Accessing data with stride=2

Penn ESE532 Fall 2017 -- DeHon

35

Load/Store

- · Strided load/stores
 - Some architectures will provide strided memory access that compact when read into register file
- · Scatter/gather
 - Some architectures will provide memory operations to grab data from different places to construct a dense vector

Penn ESE532 Fall 2017 -- DeHon

Dot Product

- What happens when need a dot product?
- res=0;
- for (i=0;i<N;i++)
 - res+=a[i]*b[i]

Penn ESE532 Fall 2017 -- DeHon

37

39

Reduction

- Common operations where want to perform a combining operation to reduce a vector to a scalar
 - Sum values in vector
 - AND, OR
- · Reduce Operation

Penn ESE532 Fall 2017 -- DeHon

38

Reduce Tree

· Efficiently handled with reduce tree

nn ESE532 Fall 2017 -- DeHon

Reduce in Pipeline • Comes almost for free in pipeline a[2] b[2] a[1] b[1] a[0] b[0] 3 stage multiply

Vector Reduce Instruction

- Usually include support for vector reduce operation
 - Doesn't need to add much to delay
 - Maybe even faster than performing larger operation
 - 8 16x16 multiplies with sum reduce less complex than one 128x128 multiply
 - ...can exploit datapath of larger operation

Penn ESE532 Fall 2017 -- DeHon

41

Dot Product Revisited for (i=0;i<N;i++) - res+=a[i]*b[i] a in R0—R4 b in R4—R7 b in R4—R7

Conditionals

- · Only have one Program Counter
 - Cannot implement conditional via branching
- · Only have one instruction
 - Cannot perform separate operations on each ALU in datapath
- Must perform an invariant operation sequence
- · Simple answer: prevent using SIMD unit
- Better: predicated execution

Predicated Operation

- Many architectures will provide a
- p[i]=a[i]<b[i]
- predicated operation
 ~p[i]: d[i]=c[i] + b[i]
- p[i]: d[i]=c[i] + a[i]
- Only perform operation when predicate matches instruction

49

Predicated Operation

- What does this do to
 p[i]=a[i]<b[i] instructions must be • p[i]: d[i]=c[i] + a[i] issued?

 - ~p[i]: d[i]=c[i] + b[i]
- What does this do to efficiency?
 - Useful operations performed per cycle

50

nn ESE532 Fall 2017 -- DeHon

Neon

ARM Vector Accelerator on Zyng

51

Neon Vector

- 128b wide register file, 16 registers
- Support
 - -2x64b
 - 4x32b (also Single-Precision Float)
 - -8x16b
 - 16x8b

nn ESE532 Fall 2017 -- DeHon

53

Sample Instructions

- · VADD basic vector
- · VCEQ compare equal
 - Sets to all 0s or 1s, useful for masking
- VMIN avoid using if's
- VMLA accumulating multiply
- VPADAL maybe useful for reduce
 - Vector pair-wise add
- VEXT for "shifting" vector alignment
- VLDn deinterleaving load

n ESE532 Fall 2017 -- DeHon

Neon Notes

- · Didn't see
 - Vector-wide reduce operation
 - Conditionals within vector lanes
- Do need to think about operations being pipelined within lanes

Penn ESE532 Fall 2017 -- DeHon

55

Big Ideas

- Data Parallelism easy basis for decomposition
- Data Parallel architectures can be compact – pack more computations onto a chip
 - SIMD, Pipelined
 - Benefit by sharing (instructions)
 - Performance can be brittle
 - Drop from peak as mismatch

enn ESE532 Fall 2017 -- DeHon

56

Admin

- No reading for day 7
- HW3 due Friday
- HW4 out

Penn ESE532 Fall 2017 -- DeHon