
1

Penn ESE532 Fall 2017 -- DeHon
1

ESE532:
System-on-a-Chip Architecture

Day 7: September 25, 2017
Pipelining

Previously

•  Pipelining in the large
– Not just for gate-level circuits

•  Throughput and Latency
•  Form of parallelism

Penn ESE532 Fall 2017 -- DeHon
2

Penn ESE532 Fall 2017 -- DeHon
3

Today
Pipelining details (for gates, primitive ops)
•  Systematic Approach
•  Justify Operator and Interconnect Pipelining
•  Loop Bodies
•  Cycles
•  C-slow

Message

•  Pipelining efficient way to reuse
hardware to perform the same set of
operations at high throughput

Penn ESE532 Fall 2017 -- DeHon
4

Synchronous Circuit Discipline
•  Registers that sample inputs at clock

edge and hold value throughout clock
period

•  Compute from registers-to-registers
•  Cycle time large enough for longest

logic path between registers
•  Min cycle = Max path delay between

registers

Penn ESE532 Fall 2017 -- DeHon
5

Comb
logic

Preclass 1

•  Delay between registers as shown?

Penn ESE532 Fall 2017 -- DeHon
6

2

Preclass 1

•  Move registers so can clock at 2-xor-
delays?

Penn ESE532 Fall 2017 -- DeHon
7

Preclass 2

•  Move registers so can clock at xor-
delays?

Penn ESE532 Fall 2017 -- DeHon
8

Pipeline Reuse

•  Lower delay between clocks
– Higher clock rate
– Higher potential throughput
– Faster we reuse our logic
– More capacity get out of design

•  Assuming registers cheap in are and time
overhead

Penn ESE532 Fall 2017 -- DeHon
9

Levelize-and-Cut Pipelining
•  Assuming willing to pipeline into as

many cycles as necessary
•  Draw circuit in levels by delay from input

– Level=max(level of inputs)+delay operator
•  Given cycle time target
•  Count forward to target
•  Bisect circuit adding register on every

cut link
•  Repeat count-and-bisect until done

Penn ESE532 Fall 2017 -- DeHon
10

Apply to xor-chain

•  Levelize and Cut

Penn ESE532 Fall 2017 -- DeHon
11

Note Registers on Links

•  Some links end up with multiple
registers.

•  Why?

Penn ESE532 Fall 2017 -- DeHon
12

3

What Happens?

•  What would be wrong with this
pipelining?

Penn ESE532 Fall 2017 -- DeHon
13

Consistent Pipelining

•  Levelize-and-cut guarantees path from
input to any gate input passes through
the same number of registers

•  Makes sure a consistent input set
arrives at each gate/operator
– Don’t get mixing between input sets

Penn ESE532 Fall 2017 -- DeHon
14

Levelize and Cut
•  Pipeline to operator level

Penn ESE532 Fall 2017 -- DeHon
15

Add Registers and Move

•  If we’re willing to add pipeline delay
– Add any number of pipeline registers at

input
– Move registers into circuit to reduce cycle

time
•  Reduce max delay between registers

Penn ESE532 Fall 2017 -- DeHon
16

Add Registers at Input

Penn ESE532 Fall 2017 -- DeHon
17

Penn ESE535 Spring 2013 -- DeHon
18

Legal Register Moves

•  Retiming Lag/Lead

4

Add Register and Retime

•  Add chain of registers on every input
•  Retime registers into circuit

– Minimizing delay between registers

Penn ESE532 Fall 2017 -- DeHon
19

Preclass 1

•  Retime

Penn ESE532 Fall 2017 -- DeHon
20

Add Registers and Retime

•  Lets us think about behavior
– What the pipelining is doing to cycles of

delay
•  Separate from details of how

redistribute registers
•  Behavioral equivalence between the

registers-at-front and properly retimed
version of circuit

Penn ESE532 Fall 2017 -- DeHon
21

Automation

•  RTL Synthesis tools will take care of
retime

•  RTL Synthesis will not add registers
– Changes behavior
– Changes number of clocks

•  Add registers and retime --- leave
retiming to automated tools

Penn ESE532 Fall 2017 -- DeHon
22

Justify Pipelining

(or composing pipelined operators)

Penn ESE532 Fall 2017 -- DeHon
23

Handling Pipelined Operators

•  Given a pipelined operator
–  (or a pipelined interconnect)

•  Discipline of picking a frequency target
and designing everything for that
– May be necessary to pipeline operator

since it’s delay is too high
•  Due to hierarchy

– Pipelined this operator and now want to
use it as a building block

Penn ESE532 Fall 2017 -- DeHon
24

5

Examples

•  Run at 500MHz
•  Floating-point unit that takes 9ns

– Can pipeline into 5, 2ns stages
•  Multiplier that takes 6ns
•  Memory can access in 2ns

– Only if registers on address/inputs and
output

–  i.e. exist in own clock stage
Penn ESE532 Fall 2017 -- DeHon

25

Interconnect Delay

•  Chips >> Clock Cycles
•  May have chip 100s of Operators wide
•  May only be able to reach across 10

operators in a 2ns cycle
•  Must pipeline long interconnect links

Penn ESE532 Fall 2017 -- DeHon
26

Interconnect Example

Penn ESE532 Fall 2017 -- DeHon
27

Pipelined Operator Graph

•  Start with logical, unpipelined graph
•  Treat each pipelined operator as a set

of unit-delay operators of mandatory
depth

•  Treat each interconnect pipeline stage
as a unit-delay buffer

•  Add registers as input
•  Retime into graph

Penn ESE532 Fall 2017 -- DeHon
28

Model
•  3-stage Multiplier •  Interconnect Delay

Penn ESE532 Fall 2017 -- DeHon
29

M1

M2

M3

I1

I2

I3

A

B

Pipeline Loop

(and use for justify pipeline
example)

Penn ESE532 Fall 2017 -- DeHon
30

6

Preclass 4
•  Logical (unpipelined) dataflow graph for

loop body

Penn ESE532 Fall 2017 -- DeHon
31

Example Operators

•  Operator and Interconnect delays
– Multiplier 3 cycles
– Reading from input

•  Memory op is cycle after computing address
•  Takes one cycle delay bring data back to

multiplier

Penn ESE532 Fall 2017 -- DeHon
32

Example Need
•  What happens if just use graph as is

(with operators pipelined as required)?

Penn ESE532 Fall 2017 -- DeHon
33

Model Graph
•  Revised graph for modeling

Penn ESE532 Fall 2017 -- DeHon
34

Pipeline Graph
•  Result after pipelining?

Penn ESE532 Fall 2017 -- DeHon
35

Pipelining Result

•  Can always pipeline an acyclic graph to
fixed frequency target
–  fixed pipelining of primitive operators
– Pipeline interconnect delays

•  Need to keep track of registers to
balance paths
– So see consistent delays to operators

Penn ESE532 Fall 2017 -- DeHon
36

7

Preclass 5
•  How preclass 5 relate to preclass 4?

Penn ESE532 Fall 2017 -- DeHon
37

Loop Unrolling

•  Instantiate the loop body multiple times
(with suitable change of loop variables)

•  Full unrolling
– Replace whole loop with straight-line code

sequence that performs the same thing
– Roughly with N copies of the loop body

•  Partial
– Some number of instances

Penn ESE532 Fall 2017 -- DeHon
38

Simple Unrolling

•  For (i=0;i<4;i++)
C[i]=A[i]*B[i];

•  Unroll 2
•  For (i=0;i<4;i+=2)

C[i]=A[i]*B[i];
C[i+1]=A[i+1]*B[i+1];

•  Full Unroll
C[0]=A[0]*B[0]
C[1]=A[1]*B[1]
C[2]=A[2]*B[2]
C[3]=A[3]*B[3]

Penn ESE532 Fall 2017 -- DeHon
39

Graph Cycles

Penn ESE532 Fall 2017 -- DeHon
40

Preclass 3

•  What cycle time can we achieve?
•  How retime?

Penn ESE532 Fall 2017 -- DeHon
41

Retimed Preclass 3

Penn ESE532 Fall 2017 -- DeHon
42

8

Retiming Limits?
•  What prevents us from further retiming?

Penn ESE532 Fall 2017 -- DeHon
43

Cycle Observation

•  Retiming does not allow us to change
the number of registers inside a cycle.

•  Limit to cycle time
– Max delay in cycle / Registers in cycle

•  Pipelining doesn’t help inside cycle
– Cannot push registers into cycle

Penn ESE532 Fall 2017 -- DeHon
44

Simple Cycle

•  What happens to cycle if try to apply
lead/lag?

Penn ESE532 Fall 2017 -- DeHon
45

Retiming

Penn ESE532 Fall 2017 -- DeHon
46

Loop

•  What does graph look like for this loop
body?

 [multiply and mod each take 3 cycles]
•  For (i=0;i<N;i++)

C[i]=(C[i-1]*A[i])%N;

Penn ESE532 Fall 2017 -- DeHon
47

Loop

•  For (i=0;i<N;i++)
C[i]=(C[i-1]*A[i])%N;

Penn ESE532 Fall 2017 -- DeHon
48

9

Initiation Interval (II)
•  Cyclic dependencies can limit throughput
•  Due to dependent cycles,

– May not be able to initiate a new computation
on every cycle

•  II – cycles (delay) before can initiate
•  Throughput = 1/II

Penn ESE532 Spring 2017 -- DeHon
49

Loop

•  For (i=0;i<N;i++)
C[i]=(C[i-1]*A[i])%N;

•  Initiation Interval?

Penn ESE532 Fall 2017 -- DeHon
50

Class Ended Here

Penn ESE532 Fall 2017 -- DeHon
51

C-Slow

Penn ESE532 Fall 2017 -- DeHon
52

Problem

•  Pipelining cannot push registers into
cycle

•  Graph cycles can prevent running at full
pipeline target (maximum frequency)

•  If not reusing operators at full pipeline
target are underutilizing resources

•  Can we use the resources for
something?

Penn ESE532 Fall 2017 -- DeHon
53

C-Slow
•  Observation: if we have data-level

parallelism, can use to solve
independent problems on same
hardware

•  Transformation: make C copies of
each register

•  Guarantee: C computations operate
independently
– Do not interact with each other

Penn ESE532 Fall 2017 -- DeHon
54

10

2-Slow Simple Cycle

•  Replace register with pair

•  Retime

Penn ESE532 Fall 2017 -- DeHon
55

2-Slow Simple Cycle

•  Replace register with pair

•  Retime

•  Observe independence of red/blue
computations

Penn ESE532 Fall 2017 -- DeHon
56

Equivalence
•  The 2-slow operator is equivalent to two

data parallel operators running at half
the speed

Penn ESE532 Fall 2017 -- DeHon
57

Automation

•  No mainstream tool today will perform
C-slow transformation for you
automatically

•  Synthesis tools will retime registers

Penn ESE532 Fall 2017 -- DeHon
58

Lesson

•  Cyclic dependencies limit throughput on
single task or data stream
– Cycle-length / registers-in-cycle

•  Can use on C independent (data
parallel) tasks

Penn ESE532 Fall 2017 -- DeHon
59

Big Ideas
•  Pipeline computations to reuse

hardware and maximize computational
capacity

•  Can compose pipelined operators and
accommodate fixed-frequency target
– Be careful with data retiming

•  Cycles limit pipelining on single stream
•  C-slow to share hardware among

multiple, data-parallel streams
Penn ESE532 Fall 2017 -- DeHon

60

11

Admin
•  Reading for Day 8 on web
•  HW4 due Friday

Penn ESE532 Fall 2017 -- DeHon
61

