Penn

ESES532:
System-on-a-Chip Architecture

Day 7: September 25, 2017
Pipelining

&Penn

ESE532 Fall 2017 -- DeHon

Previously

* Pipelining in the large

— Not just for gate-level circuits
» Throughput and Latency
» Form of parallelism

Penn ESE532 Fall 2017 -- DeHon

Today

Pipelining details (for gates, primitive ops)

» Systematic Approach

+ Justify Operator and Interconnect Pipelining
* Loop Bodies

* Cycles

* C-slow

nn ESE532 Fall 2017 -- DeHon

Message

* Pipelining efficient way to reuse
hardware to perform the same set of
operations at high throughput

Penn ESE532 Fall 2017 -- DeHon

Synchronous Circuit Discipline

* Registers that sample inputs at clock
edge and hold value throughout clock
period

« Compute from registers-to-registers

» Cycle time large enough for longest
logic path between registers

* Min cycle = Max path delay between

registers il
logic
./)

enn ESE532 Fall 2017 -- DeHon

Preclass 1

* Delay between registers as shown?

) >—a—
T

——
—i—

=)

Penn ESE532 Fall 2017 -- DeHon

Preclass 1

* Move registers so can clock at 2-xor-
delays?

Penn ESES532 Fall 2017 -- DeHon

Preclass 2

* Move registers so can clock at xor-
delays?

OO \§>_._

-

ﬁuz;

Penn ESE532 Fall 2017 -- DeHon

Pipeline Reuse

* Lower delay between clocks
— Higher clock rate
— Higher potential throughput
— Faster we reuse our logic

— More capacity get out of design

» Assuming registers cheap in are and time
overhead

Penn ESES532 Fall 2017 -- DeHon

Levelize-and-Cut Pipelining

» Assuming willing to pipeline into as
many cycles as necessary

Draw circuit in levels by delay from input
— Level=max(level of inputs)+delay operator
 Given cycle time target

» Count forward to target

Bisect circuit adding register on every
cut link

* Repeat count-and-bisect until done

Penn ESE532 Fall 2017 -- DeHon

10

Apply to xor-chain

D >——
ot

* Levelize and Cut

)

Penn ESE532 Fall 2017 -- DeHon

Note Registers on Links
» Some links end up with multiple

registers.
« Why?

Penn ESE532 Fall 2017 -- DeHon

What Happens?

* What would be wrong with this
pipelining?

: >
§>!,4>>J"

;:zbf

Fall 2017

Consistent Pipelining

* Levelize-and-cut guarantees path from
input to any gate input passes through
the same number of registers

» Makes sure a consistent input set
arrives at each gate/operator
— Don’t get mixing between input sets

enn ESE532 Fall 2017 -- DeHon

Levelize and Cut
* Pipeline to operator level

Add Registers and Move

* If we're willing to add pipeline delay
— Add any number of pipeline registers at
input
— Move registers into circuit to reduce cycle
time
* Reduce max delay between registers

16

nn ESE532 Fall 2017 -- DeHon

Add Registers at Input

enn ESE532 Fall 2017 -- DeHon

Legal Register Moves

* Retiming Lag/Lead

LUT
[

B S
Lead

Add Register and Retime

« Add chain of registers on every input
* Retime registers into circuit
— Minimizing delay between registers

19
enn ESE532 Fall 2017 - DeHon

Penn

Add Registers and Retime

* Lets us think about behavior
— What the pipelining is doing to cycles of
delay
» Separate from details of how
redistribute registers
» Behavioral equivalence between the

registers-at-front and properly retimed
version of circuit

21
ESE532 Fall 2017 - DeHon

Justify Pipelining

(or composing pipelined operators)

23
enn ESE532 Fall 2017 - DeHon

——
—a—i

Preclass 1

* Retime

e
Dﬁpf

=)

20
Penn ESE532 Fall 2017 -- DeHon

Automation

RTL Synthesis tools will take care of
retime

RTL Synthesis will not add registers
— Changes behavior

— Changes number of clocks

Add registers and retime --- leave
retiming to automated tools

22
nn ESE532 Fall 2017 - DeHon

Penn ESE532 Fall 2017 -

Handling Pipelined Operators

Given a pipelined operator

— (or a pipelined interconnect)

Discipline of picking a frequency target

and designing everything for that

— May be necessary to pipeline operator
since it's delay is too high

Due to hierarchy

— Pipelined this operator and now want to

_use irt»as a building block 24

Examples

* Run at 500MHz
* Floating-point unit that takes 9ns
— Can pipeline into 5, 2ns stages
* Multiplier that takes 6ns
* Memory can access in 2ns
— Only if registers on address/inputs and
output

—i.e. exist in own clock stage
25

Penn ESE532 Fall 2017 -- DeHon

Interconnect Delay

Chips >> Clock Cycles
» May have chip 100s of Operators wide

» May only be able to reach across 10
operators in a 2ns cycle

Must pipeline long interconnect links

26
Penn ESE532 Fall 2017 -- DeHon

Interconnect Example
L]

0o oo
O Odod

OO0 oo o
OO0 oo o
OO GO 0 O O
OO0000d0ogd

D000 00oo
000

OO0 o0Oo0oo
OO0 O

27

m

m
n
Iy

o]
T

Penn

Pipelined Operator Graph

Start with logical, unpipelined graph
Treat each pipelined operator as a set
of unit-delay operators of mandatory
depth

Treat each interconnect pipeline stage
as a unit-delay buffer

Add registers as input
Retime into graph

Penn ESE532 Fall 2017 -- DeHon

28

Model

- 3-stage Multiplier * Interconnect Delay

29

Penn ESE532 Fall 2017 -- DeHon

Pipeline Loop

(and use for justify pipeline
example)

30

Penn ESE532 Fall 2017 -- DeHon

Preclass 4
* Logical (unpipelined) dataflow graph for
loop body

31

Penn ESES532 Fall 2017 -- DeHon

Example Need

* What happens if just use graph as is
(with operators pipelined as required)?

33

Penn ESES532 Fall 2017 -- DeHon

Example Operators

» Operator and Interconnect delays

— Multiplier 3 cycles

— Reading from input
* Memory op is cycle after computing address

» Takes one cycle delay bring data back to
multiplier

Pipeline Graph

* Result after pipelining?

Input4 Input3 Input2 Inputt

Penn ESES532 Fall 2017 --

35

I 32
Penn ESE532 Fall 2017 -- DeHon
Model Graph
* Revised graph for modeling
X
l CR®)
b |
\ Input5 Input4 Input3 Input2 Inputt Inputd
Inputs, D—
M1 \ M) (M M) (M M1
M2 \ w2 (M) (M) (M2) (M2
%@xiéééii
Y%
Rncal
o
\ +
o - Mem 34
Penn ESE532 Fall 2017 -- uerun

Pipelining Result

» Can always pipeline an acyclic graph to
fixed frequency target
— fixed pipelining of primitive operators
— Pipeline interconnect delays
* Need to keep track of registers to
balance paths
— So see consistent delays to operators
36

Penn ESE532 Fall 2017 -- DeHon

Preclass 5

* How preclass 5 relate to preclass 4?

for (int X = 0; X < OUTPUT_WIDTH; X++)
{
unsigned int Sum = 0;
for (int i = 0; i < FILTER_LENGTH; i++)

Output [Y * OUTPUT_WIDTH + X] = Sum >> 8;
¥
Sum = Coefficients_0 * InputO +
Coefficients_1 * Inputl +
Coefficients_2 * Input2 +
Coefficients_3 * Input3 +
Coefficients_4 * Input4 +
Coefficients_5 * Inputb +
Coefficients_6 * Input6;

Penn ESE532 Fall 2017 -- DeHon

Output [Y * OUTPUT_WIDTH + X] = Sum >> 8;

Sum += Coefficients[i] * Input[Y * INPUT_WIDTH + X + il;

Simple Unrolling

» For (i=0;i<4;i++)
C[i]=Alil"BIi];

* Unroll 2

* For (i=0;i<4;i+=2)
C[i]=Alil"BIi];
Cli+11=A[i+11*B[i+1];

« Full Unroll

C[0]=A[0]"BI[0]
C[1]=A[1]"B[1]
C[2]=A[2]"B[2]
C[3]=A[3I'B[3]

Loop Unrolling

Instantiate the loop body multiple times
(with suitable change of loop variables)
Full unrolling

— Replace whole loop with straight-line code
sequence that performs the same thing

— Roughly with N copies of the loop body
 Partial
— Some number of instances

38

Penn ESE532 Fall 2017 -- DeHon

Graph Cycles

40

Penn ESE532 Fall 2017 -- DeHon

. X - 39
Penn ESE532 Fall 2017 -- DeHon
Preclass 3
» What cycle time can we achieve?
* How retime?
Output
41

Penn ESE532 Fall 2017 -- DeHon

Retimed Preclass 3

) D__ ouput
Dj)»f

—

Penn ESE532 Fall 2017 -- DeHon

42

Retiming Limits?

» What prevents us from further retiming?

Input D)
! o

—
o

43
Penn ESE532 Fall 2017 -- DeHon

Simple Cycle

* What happens to cycle if try to apply
lead/lag?

i i

45
Penn ESE532 Fall 2017 -- DeHon

Loop

» What does graph look like for this loop
body?

[multiply and mod each take 3 cycles]
* For (i=0;i<N;i++)
C[i]=(C[i-1]*Ali]) %N;

47
Penn ESE532 Fall 2017 - DeHon

Cycle Observation

Retiming does not allow us to change
the number of registers inside a cycle.

Limit to cycle time

— Max delay in cycle / Registers in cycle
Pipelining doesn’t help inside cycle
— Cannot push registers into cycle

44
enn ESE532 Fall 2017 -- DeHon

Retiming

Penn

Loop

* For (i=0;i<N;i++)
CliI=(C-1T"ALi]) %N;

48

ESE532 Fall 2017 - DeHon

Initiation Interval (Il)

Cyclic dependencies can limit throughput

Due to dependent cycles,

— May not be able to initiate a new computation
on every cycle

Il — cycles (delay) before can initiate
Throughput = 1/II

7

Loop

s For (i=0;i<N;i++)
Clil=(Cl-11"Ali]) %N;

* Initiation Interval?

50

enn ESE532 Fall 2017 -- DeHon

Class Ended Here

51

nn ESE532 Fall 2017 -- DeHon

C-Slow

52

nn ESE532 Fall 2017 -- DeHon

Problem

Pipelining cannot push registers into
cycle

Graph cycles can prevent running at full
pipeline target (maximum frequency)

If not reusing operators at full pipeline
target are underutilizing resources

Can we use the resources for

something?
53

enn ESE532 Fall 2017 -- DeHon

C-Slow

* Observation: if we have data-level
parallelism, can use to solve
independent problems on same
hardware

» Transformation: make C copies of
each register

* Guarantee: C computations operate
independently

— Do not interact with each other “

nn ESE532 Fall 2017 -- DeHon

2-Slow Simple Cycle

* Replace register with pair

ﬂ%—'—

* Retime

—-—-‘w

Penn ESE53 &

2-Slow Simple Cycle

* Replace register with pair

* Retime

it

» Observe independence of red/blue
computations

56

enn ESE532 Fall 2017 -- DeHon

Equivalence

* The 2-slow operator is equivalent to two
data parallel operators running at half
the speed

Automation

* No mainstream tool today will perform
C-slow transformation for you
automatically

Synthesis tools will retime registers

58

Lesson

» Cyclic dependencies limit throughput on
single task or data stream
— Cycle-length / registers-in-cycle

» Can use on C independent (data
parallel) tasks

59

Penn ESE532 Fall 2017 -- DeHon

Penn

E

Big Ideas

Pipeline computations to reuse
hardware and maximize computational
capacity

» Can compose pipelined operators and
accommodate fixed-frequency target

— Be careful with data retiming

Cycles limit pipelining on single stream
+ C-slow to share hardware among
multiple, data-parallel streams

60

SE532 Fall 2017 -- DeHon

10

Admin

* Reading for Day 8 on web
* HW4 due Friday

61

enn ESE532 Fall 2017 -- DeHon

11

