Penn

ESES532:
System-on-a-Chip Architecture

Day 7: September 25, 2017
Pipelining

&Penn

ESE532 Fall 2017 -- DeHon

Previously

* Pipelining in the large

— Not just for gate-level circuits
» Throughput and Latency
» Form of parallelism
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Today

Pipelining details (for gates, primitive ops)

» Systematic Approach

+ Justify Operator and Interconnect Pipelining
* Loop Bodies

* Cycles

* C-slow
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Message

* Pipelining efficient way to reuse
hardware to perform the same set of
operations at high throughput
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Synchronous Circuit Discipline

* Registers that sample inputs at clock
edge and hold value throughout clock
period

« Compute from registers-to-registers

» Cycle time large enough for longest
logic path between registers

* Min cycle = Max path delay between

registers il
logic
./)
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Preclass 1

* Delay between registers as shown?
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Preclass 1

* Move registers so can clock at 2-xor-
delays?
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Preclass 2

* Move registers so can clock at xor-
delays?
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Pipeline Reuse

* Lower delay between clocks
— Higher clock rate
— Higher potential throughput
— Faster we reuse our logic

— More capacity get out of design

» Assuming registers cheap in are and time
overhead
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Levelize-and-Cut Pipelining

» Assuming willing to pipeline into as
many cycles as necessary

Draw circuit in levels by delay from input
— Level=max(level of inputs)+delay operator
 Given cycle time target

» Count forward to target

Bisect circuit adding register on every
cut link

* Repeat count-and-bisect until done

Penn ESE532 Fall 2017 -- DeHon

10

Apply to xor-chain
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* Levelize and Cut
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Note Registers on Links
» Some links end up with multiple

registers.
« Why?
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What Happens?

* What would be wrong with this
pipelining?
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Consistent Pipelining

* Levelize-and-cut guarantees path from
input to any gate input passes through
the same number of registers

» Makes sure a consistent input set
arrives at each gate/operator
— Don’t get mixing between input sets
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Levelize and Cut
* Pipeline to operator level

Add Registers and Move

* If we're willing to add pipeline delay
— Add any number of pipeline registers at
input
— Move registers into circuit to reduce cycle
time
* Reduce max delay between registers

16
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Add Registers at Input
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Legal Register Moves

* Retiming Lag/Lead
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Add Register and Retime

« Add chain of registers on every input
* Retime registers into circuit
— Minimizing delay between registers
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Add Registers and Retime

* Lets us think about behavior
— What the pipelining is doing to cycles of
delay
» Separate from details of how
redistribute registers
» Behavioral equivalence between the

registers-at-front and properly retimed
version of circuit
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Justify Pipelining

(or composing pipelined operators)
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Preclass 1

* Retime
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Automation

RTL Synthesis tools will take care of
retime

RTL Synthesis will not add registers
— Changes behavior

— Changes number of clocks

Add registers and retime --- leave
retiming to automated tools
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Handling Pipelined Operators

Given a pipelined operator

— (or a pipelined interconnect)

Discipline of picking a frequency target

and designing everything for that

— May be necessary to pipeline operator
since it's delay is too high

Due to hierarchy

— Pipelined this operator and now want to

_use irt»as a building block 24




Examples

* Run at 500MHz
* Floating-point unit that takes 9ns
— Can pipeline into 5, 2ns stages
* Multiplier that takes 6ns
* Memory can access in 2ns
— Only if registers on address/inputs and
output

—i.e. exist in own clock stage
25
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Interconnect Delay

Chips >> Clock Cycles
» May have chip 100s of Operators wide

» May only be able to reach across 10
operators in a 2ns cycle

Must pipeline long interconnect links
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Interconnect Example
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Pipelined Operator Graph

Start with logical, unpipelined graph
Treat each pipelined operator as a set
of unit-delay operators of mandatory
depth

Treat each interconnect pipeline stage
as a unit-delay buffer

Add registers as input
Retime into graph
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Model

- 3-stage Multiplier * Interconnect Delay
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Pipeline Loop

(and use for justify pipeline
example)
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Preclass 4
* Logical (unpipelined) dataflow graph for
loop body
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Example Need

* What happens if just use graph as is
(with operators pipelined as required)?

33

Penn ESES532 Fall 2017 -- DeHon

Example Operators

» Operator and Interconnect delays

— Multiplier 3 cycles

— Reading from input
* Memory op is cycle after computing address

» Takes one cycle delay bring data back to
multiplier

Pipeline Graph

* Result after pipelining?

Input4  Input3  Input2  Inputt
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Model Graph
* Revised graph for modeling
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Pipelining Result

» Can always pipeline an acyclic graph to
fixed frequency target
— fixed pipelining of primitive operators
— Pipeline interconnect delays
* Need to keep track of registers to
balance paths
— So see consistent delays to operators
36
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Preclass 5

* How preclass 5 relate to preclass 4?

for (int X = 0; X < OUTPUT_WIDTH; X++)
{
unsigned int Sum = 0;
for (int i = 0; i < FILTER_LENGTH; i++)

Output [Y * OUTPUT_WIDTH + X] = Sum >> 8;
¥
Sum = Coefficients_0 * InputO +
Coefficients_1 * Inputl +
Coefficients_2 * Input2 +
Coefficients_3 * Input3 +
Coefficients_4 * Input4 +
Coefficients_5 * Inputb +
Coefficients_6 * Input6;
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Output [Y * OUTPUT_WIDTH + X] = Sum >> 8;

Sum += Coefficients[i] * Input[Y * INPUT_WIDTH + X + il;

Simple Unrolling

» For (i=0;i<4;i++)
C[i]=Alil"BIi];

* Unroll 2

* For (i=0;i<4;i+=2)
C[i]=Alil"BIi];
Cli+11=A[i+11*B[i+1];

« Full Unroll

C[0]=A[0]"BI[0]
C[1]=A[1]"B[1]
C[2]=A[2]"B[2]
C[3]=A[3I'B[3]

Loop Unrolling

Instantiate the loop body multiple times
(with suitable change of loop variables)
Full unrolling

— Replace whole loop with straight-line code
sequence that performs the same thing

— Roughly with N copies of the loop body
 Partial
— Some number of instances

38
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Graph Cycles

40
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Preclass 3
» What cycle time can we achieve?
* How retime?
Output
41
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Retimed Preclass 3
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Retiming Limits?

» What prevents us from further retiming?

Input D )
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Simple Cycle

* What happens to cycle if try to apply
lead/lag?

i i
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Loop

» What does graph look like for this loop
body?

[multiply and mod each take 3 cycles]
* For (i=0;i<N;i++)
C[i]=(C[i-1]*Ali]) %N;
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Cycle Observation

Retiming does not allow us to change
the number of registers inside a cycle.

Limit to cycle time

— Max delay in cycle / Registers in cycle
Pipelining doesn’t help inside cycle
— Cannot push registers into cycle

44
enn ESE532 Fall 2017 -- DeHon

Retiming

Penn

Loop

* For (i=0;i<N;i++)
CliI=(C-1T"ALi]) %N;
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Initiation Interval (Il)

Cyclic dependencies can limit throughput

Due to dependent cycles,

— May not be able to initiate a new computation
on every cycle

Il — cycles (delay) before can initiate
Throughput = 1/II

7

Loop

s For (i=0;i<N;i++)
Clil=(Cl-11"Ali]) %N;

* Initiation Interval?

50
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Class Ended Here

51
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C-Slow

52
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Problem

Pipelining cannot push registers into
cycle

Graph cycles can prevent running at full
pipeline target (maximum frequency)

If not reusing operators at full pipeline
target are underutilizing resources

Can we use the resources for

something?
53
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C-Slow

* Observation: if we have data-level
parallelism, can use to solve
independent problems on same
hardware

» Transformation: make C copies of
each register

* Guarantee: C computations operate
independently

— Do not interact with each other “
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2-Slow Simple Cycle

* Replace register with pair
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* Retime
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2-Slow Simple Cycle

* Replace register with pair

* Retime

it

» Observe independence of red/blue
computations
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Equivalence

* The 2-slow operator is equivalent to two
data parallel operators running at half
the speed

Automation

* No mainstream tool today will perform
C-slow transformation for you
automatically

Synthesis tools will retime registers
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Lesson

» Cyclic dependencies limit throughput on
single task or data stream
— Cycle-length / registers-in-cycle

» Can use on C independent (data
parallel) tasks

59
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Big Ideas

Pipeline computations to reuse
hardware and maximize computational
capacity

» Can compose pipelined operators and
accommodate fixed-frequency target

— Be careful with data retiming

Cycles limit pipelining on single stream
+ C-slow to share hardware among
multiple, data-parallel streams
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Admin

* Reading for Day 8 on web
* HW4 due Friday
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