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University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2018 Final Friday, December 14

• Exam ends at 11:00am; begin as instructed (target 9:00am).
Do not open exam until instructed.

• Problems weighted as shown.

• Calculators allowed.

• Closed book = No text or notes allowed.

• Show work for partial credit consideration.

• Unless otherwise noted, answers to two significant figures are sufficient.

• Sign Code of Academic Integrity statement (see last page for code).

I certify that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this exam.

Name: Solution

1a 1bc 2a 2b 2c 3 4 5 6a 6b 6c

5 5 2 2 8 9 10 9 3 3 4

7a 7b 7cd 7e 8a 8b 8c 8d Total

6 2 6 8 6 2 6 4 100

Average 58, Std. Dev. 11
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// You will be determining a value for FREQBYTES

#define WINDOW 1024

#define MAXBITLEN 11

#define LOG_MAXBITLEN 4

#define MAX_FREQS 255

#define MASKLOOKUP ((1<<MAXBITLEN)-1)

#define MASKLEN ((1<<LOG_MAXBITLEN)-1)

#define AMPLEN 14

#define FREQLEN 14

#define MASKAMP ((1<<AMPLEN)-1)

#define MASKFREQ ((1<<FREQLEN)-1)

uint8_t in[FREQBYTES];

uint32_t fa[FREQS];

uint32_t lookup[1<<MAXBITLEN];

uint16_t s[MAX_FREQS][WINDOW];

while(1) { // Outer while loop

uint32_t ts[WINDOW];

for (j=0;j<WINDOW;j++) ts[j]=0; // Loop A

uint8_t freqs=read_flash_byte(); // max rate 100MB/s

for(int i=0;i<FREQBYTES;i++) // Loop B

in[i]=read_flash_byte();

uint11_t top11=((int *)in)[0]>>21;

uint11_t next11=(((int *)in)[0]>>10)&MASKLOOKUP;

int next11bitpos=11;

for(i=0;i<freqs;i++) { // freqs<MAX_FREQS // Loop C

uint32_t res=lookup[top11];

uint32_t tfa=res>>LOG_MAXBITLEN; fa[i]=tfa;

uint4_t len=MASKLEN & res;

uint32_t t1=(top11<<len); uint4_t t2=(MAXBITLEN-len); uint32_t t3=(next11>>t2);

top11= t1|t3;

next11bitpos+=len;

uint32_t bytepos=next11bitpos>>3; uint3_t bitoffset=next11bitpos%8;

uint32_t wordval=(*((int *)(&in[bytepos]))); // treat as 1 cycle

uint4_t t4=(21-bitoffset); uint32_t t5=(wordval>>t4);

next11=MASKLOOKUP & t5;

}

for (i=0;i<freqs;i++) { // Loop D

uint16_t freq=(fa[i]>>AMPLEN) & MASKFREQ;

uint16_t amp=fa[i] & MASKAMP;

for (j=0;j<WINDOW;j++) // Loop E

ts[j]+=s[freq][j]*amp;

}

for (j=0;j<WINDOW;j++) // Loop F

output(ts[j]); // max rate 4GB/s

}
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We start with a baseline, single processor system as shown.

32KB
Scratchpad P

4GB/s
Output Channel

100MB/s 4GB/s, 6ns latency

4GB/s
1ns latency

1MB Flash Memory 1MB SRAM Memory

10ns latency

• For simplicity throughout, we will treat non-memory indexing adds (subtracts count
as adds), shifts, mod-by-power-of-two, ORs, ANDs, and multplies as the only compute
operations. We’ll assume the other operations take negligible time or can be run in
parallel (ILP) with the adds, multiplies, and memory operations. (Some consequences:
You may ignore loop and conditional overheads in processor runtime estimates; you
may ignore computations in array indecies.)
• Assume all additions are associative.
• Baseline processor can execute one compute operation (above) per cycle and runs at

1 GHz.
• Constant expressions (like 1 << 8) are evaluated by the compiler and take no time to

compute at runtime.
• Maximum data rate for reading from flash is 100MB/s. Latency of read is 10 ns.
• The output port used by output() can transfer data at 4GB/s (one 32b word per cycle

at 1 GHz).
• Baseline processor has a 32KB local scratchpad memory.
• in[], fa[], ts[], and lookup[] fit in the local scratchpad memory close to the processor

and can be read or written in a single cycle.
• For the baseline processor, s[] lives in the large (1MB) memory and requires 6 cycles

to access.
• lookup[] and s[] are prepopulated with content before entering the while loop (not

shown).
• Assume adds and multiplies take 1 ns when implemented in hardware accelerator, so

fully pipelined accelerators also run at 1 GHz.
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1. For sequential evaluation and assuming FREQBYTES is 256.

(a) Worst-case cycles to compute one iteration of the outer while loop?
(show cycles per loop for partial credit consideration.)

A WINDOW 1024
B FREQBYTES×10 2560

100 MB/s bandwidth=10 cycles/byte
between 5 5

C 15 × MAX FREQS 3825
12 ops, 3 scratchpad memory accesses

D, E MAX FREQS × ( 5 + WINDOW × 10) 2,612,475
E 10: 6 for read from s[][] + read and write ts[] + multiply, add

F WINDOW 1024

Total 2,620,913

2.6 million cycles
(b) Which outer loop is the bottleneck?

Circle One:

A B C (D) F

(c) What is the Amdhal’s Law maximum speedup for accelerating the identified loop?
A+B+C+D+F
A+B+C+F = 2,620,913

2,620,913−2,612,475 = 310
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2. Loop C

(a) How many memory operations does one instance of the loop perform?

3 – lookup[], fa[], in[]
(b) How many compute operations (of the set identified) does the loop perform?

12
(c) Assuming unlimited compute operators and memory ports, what is the minimum

achievable Initiation Interval (II) for this loop?
Draw dataflow graph and identify any data-dependent loops for full credit.

II=5

res=lookup[top11]

tfa=res>>LOG_MAXBITLEN

fa[i]=tfa

len=MASLEN & res

t1=top11<<len t2=MAXBITLEN−len

t3=next11>>t2

top11=t1|t3

next11bitpos+=len

bytepos=next11bitpos>>3 bitoffset=next11bitpos%8

wordval=in[bytepos] t4=21−bitoffset

t5=wordval>>t4

next11=MASKLOOKUP & t5

loop of length 5

"loop" of length 4

(fot next iteration)

Note: Critical path is 7. The key loop is the one around top11,
which is of length 5. We must also be able to update next 11,
and that is in a loop of length 4. Strictly, it’s not a loop itself,
but we do need to be able to compute the next11 within one II,
and this does fit.
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3. Data Parallel: Classify Loops C, D, and E:

Data Associative Must be

Loop Parallel? Reduce? Sequential?

C Yes

D Yes

E Yes

C: The dependent loop for top11 identified in Problem2c forces
sequentialization of the loop.
E: operations are independent for each j. Can perform the entire
multiplication and add concurrently. This vectorizable.
D: If you think about unrolling E into a vector, then unrolling
D as well, the only dependency is the add chain for each freq
into ts[j]. The add is associative, so this is an associative reduce
operation.
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4. What is the latency bound for executing Loops C and D
(from the beginning of C to the end of D)?

• assume memories of unbounded width (no bandwidth limits)

• respect latencies for memory access

Loop C: From Problems 2 and 3, we know this loop is sequentially
dependent with an II of 5. So, it will take:
MAX FREQS × II=255×5=1275 cycles.

Loop E: This is data parallel. Fully unrolled this takes 6 (read
s[][])+1=7 cycles to get to the products.

Loop D: This is a reduce add across MAX FREQS values to
produce each ts[j]. That can be done in log2(MAX FREQS) =
8 cycles. There’s a final write into ts[j] at the end.

Together, this gives us 1275+7+8+1=1291 cycles or 1.3µs.

We can do slightly better observing that we can overlap some (or
most) of the additions in D-E with C. So, even if we sequentially
perform the E vector adds, we can complete one per cycle and
match pace with C. So, after finishing C, we only need to perform
the 7 cycles for the E lookup and multiply, then a final add and
store So, we can perform this is 1275+7+1+1=1284. To two
significant figures, this is also 1.3µs.
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5. Data Streaming: How big (minimum size) does the buffer need to be between the
identified loops in order to allow the loops to profitably execute concurrently.
(Hint: Based on data dependencies, under what scenarios and granularity can the
identified loops act as a producer-consumer pair in a pipeline.)

Explain size choices for partial credit consideration.

Loop Pair Size (bytes)

B→C 1 or 4

C→D 4

D→F 4096

B→C: Each byte read can be passed directly to C, and C can
perform a lookup. Technically, C may read a whole 32b word.
However, depending on length, it may consume less than a byte
on each iteration. If C is consuming less than a byte, it can use
each byte as it shows up. If C is consuming a whole 32b word,
then it will need to get a full word (4 bytes) to be able to perform
each operation.

C→D: As each fa[i] is produced, C can pass it to D, allowing D
to perform one loop body on that fa[i]. fa is produced by C and
consumed by D in order.

D→F: ts[] is updated on every invocation of D. The final value
of ts[] is not known until the D completes the final iteration. As
such, D cannot pass ts[] to F until it completes its execution.
Then the whole ts[] (WINDOW×4=4096 bytes) can be given to
F. F can write ts[] out while D is operating on the next iteration
of the outer while loop.
So, the whole B→C→D body can operate as a pipeline. B
and C can operate on data in the same outer while iteration,
passing data in bytes or words as they are produced, while F
must operate on data from an earlier outer while iteration than
B and C.
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6. Consider trying to achieve a real-time rate of one window output per cycle (equivalently,
the II of the outer while loop is WINDOW or 1024 cycles).
Assume you exploit data streaming between loops so they can run concurrently.

(a) Given that Flash memory has a maximum throughput of 100 MB/s, what is the
maximum possible value for FREQBYTES?

100MB/s throughput, means the fastest we can read each
byte is once ever 10 cycles.
FREQBYTES × 10 = 1024 → FREQBYTES=102.

(b) Based on your II identified in Problem 2c, what is the maximum value for freqs
in order fo meet this real-time throughput goal?

freqs × II = 1024 → freqs × 5 = 1024 → freqs=204.

(c) What II do you need to achieve for Loop D to meet this real-time throughput
goal?

The most direct argument is that this needs to match the
rate of Loop C, so also has an II=5 requirement.
Alternately, we have the same equation, now with IID as the
variable.
freqs ×IID=1024 → 204×IID=1024 → IID = 5.
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7. Define the composition of a custom VLIW datapath for loop C that can achieve the
identified II in Problem 2c.
For full credit, minimize area of your implementation.
Assume:

• Design includes at least one write port to a scratchpad memory containing fa[]
and one read port to a scratchpad memory containing in[]

• Assume a crossbar interconnect between operator (and memory port) outputs and
operator (and memory address, data) inputs.

(a) How many operators of each type? Give both Resource Bound (RB) and number
for which you can schedule.

Number
Operator Inputs Outputs RB Schedule

shifters 2 1
⌈

5
5

⌉
= 1 2

ALU (includes |, &, +, - , 2 1
⌈

7
5

⌉
= 2 2

%-by-powers-of-2)

scratchpad memory banks 2 1 1 1
ports to memory containing in[] 1 1 1 1
ports to memory containing fa[] 1 0 1 1

above error, should be 2 0

branch units 1 0 1 1
(b) How are the scratchpad memory banks used?

Hold lookup[] array.
(c) Crossbar Inputs and Outputs for your design (final column, the one you can

schedule)?

Inputs 13 (or 14 with correction)

Outputs 6

10



ESE532 Fall 2018

(d) Estimate the area for your design using the following costs.

• shifters: 1024

• ALU (includes |, &, +, - , %-by-powers-of-2): 32

• Scratchpad memory banks of depth d: 60(d+ 6)

• ports to memory containing in[]: 200

• ports to memory containing fa[]: 200

• branch unit: 100

• crossbar: 128× Inputs×Outputs+ 2400×Outputs
(Each crossbar output includes a 4 word memory acting as a small register
file for input to the associated operator or memory.)

2× 1024 + 2× 32 + 60(2048 + 6) + 200 + 200 + 100 + 128×
13× 6 + 2400× 6 = 150, 236 ≈ 150, 000
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8. Considering a custom hardware accelerator implementation where you are designing
both the compute operators and the associated memory architecture, how would you
use loop unrolling and array partitioning on Loop D to achieve the identified II in
Problem 6c, while minimizing area?
Use the following area model and assume s[], ts[], and fa[] are part of this loop module:

• n-bit counters: n

• 32b adder: 32

• 16×16 multiplier: 256

• Single-port, 32b-wide memory holding d words: 38(d+ 6)

• Double-port, 32b-wide memory holding d words: 60(d+ 6)

(a) Unrolling for each loop (D, E)?

Loop Unroll Factor

D 1

E 205

To meet the II = 5 goal, we must perform
⌈

1024
5

⌉
= 205 loop

bodies of E on each cycle. So, we can unroll E 205 times and
pipeline the computation.

(b) For the unrolling, how many multipliers and adders?

Multipliers 205

Adders 205

Note: Since E is inside D, unrolling D Dunroll times and
E Eunroll times, will result in Dunroll × Eunroll adders and
multipliers.

(c) Array partitioning for each array (s[], ts[], fa[])?
(each memory block has either 1 or 2 ports)

Array Array Partition Ports Words/partition

(select one)

s[][] cyclic 205 (1) 2 1280

dimension 1

ts[] cyclic 205 1 (2) 5

fa[] 1 1 (2) 256

Note that s[] is only read. ts[] must be both read and written
on each iteration. fa[] must be written by C and read by D.
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Properly pipelined fa[] could get away with one port; when C
and D are run concurrently fa[] could go away as a memory
and just become a register between C and D.

(d) Identify the component(s) that consumes most (>80%) of the area?
(you don’t necessarily need to compute the area to fine precision, but you need
to estimate where area is going well enough to answer the question above.)

Component Calculate Area

8-bit counter for E 8 11

3-bit counter for D 3

Adder 32× 205 6560

Multiplier 256× 205 52480

s[][] 205× 38(1280 + 6) 10017940

ts[] 205× 60(5 + 6) 135300

fa[] 60(256 + 6) 15720

total 10228011

98% of area is the single-ported memory for s[][].

Memory (for s[][]) consumes >80% of the area.
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This page left almost blank for pagination. You may use for answers and computations.
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Code of Academic Integrity

Since the University is an academic community, its fundamental purpose is the pursuit of
knowledge. Essential to the success of this educational mission is a commitment to the
principles of academic integrity. Every member of the University community is responsible
for upholding the highest standards of honesty at all times. Students, as members of the
community, are also responsible for adhering to the principles and spirit of the following
Code of Academic Integrity.*

Academic Dishonesty Definitions

Activities that have the effect or intention of interfering with education, pursuit of knowledge,
or fair evaluation of a students performance are prohibited. Examples of such activities
include but are not limited to the following definitions:

A. Cheating Using or attempting to use unauthorized assistance, material, or study aids
in examinations or other academic work or preventing, or attempting to prevent, another
from using authorized assistance, material, or study aids. Example: using a cheat sheet in
a quiz or exam, altering a graded exam and resubmitting it for a better grade, etc.

B. Plagiarism Using the ideas, data, or language of another without specific or proper
acknowledgment. Example: copying another persons paper, article, or computer work and
submitting it for an assignment, cloning someone elses ideas without attribution, failing to
use quotation marks where appropriate, etc.

C. Fabrication Submitting contrived or altered information in any academic exercise. Ex-
ample: making up data for an experiment, fudging data, citing nonexistent articles, contriv-
ing sources, etc.

D. Multiple Submissions Multiple submissions: submitting, without prior permission,
any work submitted to fulfill another academic requirement.

E. Misrepresentation of academic records Misrepresentation of academic records: mis-
representing or tampering with or attempting to tamper with any portion of a students
transcripts or academic record, either before or after coming to the University of Pennsyl-
vania. Example: forging a change of grade slip, tampering with computer records, falsifying
academic information on ones resume, etc.

F. Facilitating Academic Dishonesty Knowingly helping or attempting to help another
violate any provision of the Code. Example: working together on a take-home exam, etc.

G. Unfair Advantage Attempting to gain unauthorized advantage over fellow students in
an academic exercise. Example: gaining or providing unauthorized access to examination
materials, obstructing or interfering with another students efforts in an academic exercise,
lying about a need for an extension for an exam or paper, continuing to write even when
time is up during an exam, destroying or keeping library materials for ones own use., etc.

* If a student is unsure whether his action(s) constitute a violation of the Code of Academic
Integrity, then it is that students responsibility to consult with the instructor to clarify any
ambiguities.
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