
ESE532 Fall 2018

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2018 HW2: Profiling Wednesday, September 5

Due: Friday, September 14, 5:00pm

In this assignment, we will profile an application on the ARM core of the ZedBoard.

Importing the Application

To import the application into SDx, we perform follow these steps:

1. Download the archive from here and extract it.

2. Launch SDx, and open the workspace that you used before. You can also create a new
workspace.

3. Import the code into SDx. You can find how to import code in Eclipse manual. Make
sure that you import the files as file system in the import dialog.

4. Download the data file from here. Extract the file to the root of an SD-card. Place
the SD-card in the card reader of the ZedBoard.

5. You can now build and run the code on the target as before.

Collaboration

In this assignment, you work with partners that we assigned. You can find the assignment
on Canvas in the Partners map under the Files section. In the event that the partner
assignment does not work out (e.g., your assigned partner has already dropped the course),
contact the instructor or TA as soon as possible. Partners may share code and results and
discuss analysis, but each writeup should be prepared independently. Outside the assigned
groups, only sharing of tool knowledge is allowed. See the course policies on the course web
page http://www.seas.upenn.edu/~ese532 for full details of our policies for this course.

1

http://www.seas.upenn.edu/~ese532/fall2018/handouts/hw2_code.tar.gz
http://www.seas.upenn.edu/~ese532/fall2017/handouts/hw2_data.tar.gz
http://www.seas.upenn.edu/~ese532


ESE532 Fall 2018

Homework Submission

Your writeup should follow http://www.seas.upenn.edu/~ese532/fall2018/handouts/

writeup_guidelines.pdf Your writeup should include the following:

1. Identify

(a) Describe the operation performed on the input data by each function and why you
might want to perform the operation (3 lines for each of Scale, Filter, Differentiate,
Compress).

2. Measure

(a) Report the latency of the application. For this, you will need to instrument the
code. You can find out how to do this in the SDSoC Profiling and Optimization
Guide. Assume that the ARM runs at 667 MHz. Do not include the time spent
on loading input and storing the output. (1 line)

(b) Create an execution profile of the application using TCF profiler. Add the profile
to your report. You are allowed to make a screenshot of the TCF Profiler view.
Profiling is described in the same section of the user guide as instrumentation.
Do not include disk I/O again.

(c) Estimate the latency of Filter_horizontal. (1 line)

3. Analyze

(a) Which function has the highest latency? Ignore disk I/O again. (1 line)

(b) Assuming that the innermost loop of the first for statement of Filter_horizontal
is unrolled completely, draw a DFG of the body of the loop over X. You can ignore
index computations.

(c) Determine the critical path length of the same unrolled loop in terms of compute
operations. (4 lines)

(d) Estimate the latency of Filter_horizontal. Start with your critical path esti-
mate. Assume that each operation takes one clock cycle at 667 MHz. (4 lines)

(e) If you would apply a 2× speedup to one of the stages (Scale, Filter_horizontal,
Filter_vertical, Differentiate, Compress) which one would you choose to
obtain the best overall performance? (1 line)

(f) Use Amdahl’s Law to determine the highest overall application speedup that one
could achieve assuming you accelerate the one stage that you identified above.
You don’t have to restrict yourself to this platform. (1 line)

(g) Assuming a platform that has unlimited resources and you are free to exploit
associativity for mathematical operations, draw the DFG with the lowest critical
path delay for the same loop body as before.

2

http://www.seas.upenn.edu/~ese532/fall2018/handouts/writeup_guidelines.pdf
http://www.seas.upenn.edu/~ese532/fall2018/handouts/writeup_guidelines.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1235-sdsoc-optimization-guide.pdf


ESE532 Fall 2018

(h) Assuming a platform that has 4 multipliers, 2 adders, and a shifter, report the
resource capacity lower bound. (4 lines)

4. Refine As you hopefully noticed, our model did not estimate Filter_horizontal

very accurately. Let’s see whether we can improve it.

(a) Report all the instructions in the loop body (not the instructions that setup the
loop, but the instruction that are executed on each trip through the loop) of the
innermost loop. (Do not assume that it is unrolled this time.) You can see the
instructions by opening the Disassembly view.

(b) Estimate the latency of the function based on the number of instructions in the
loop body. (1 line)

(c) What is the purpose of all the extra instructions in the loop? Note that we do
not expect an explanation for each individual instruction. (3 lines)

(d) Assuming the constant offset loads complete in one cycle, estimate the average
latency in cycles of the remaining load(s) together? (3 lines)

(e) How many of these non-constant-offset loads are to values not loaded in the recent
past? (e.g., not loaded during this invocation of Filter_horizontal)? (3 lines)

(f) Assuming memory locations loaded in the recent past also take a single cycle, what
is the average number of cycles for the remaining non-constant-offset memory
references? (3 lines)

This gives us a model for the runtime of this filter computation:

Tfilter = Ninstr × Tcycle + Nfast−loads × Tcycle + Nslow−loads × Tslow−load (1)

Nslow−load is what you estimated in 4e and combining the cycle time with the cycle
estimates from 4f, you can estimate Tslow−load. The real model is still more complicated
than this, but this is a first-order model that can start helping us reason about the
performance of the computation including memory access.

3


