
ESE532 Fall 2018

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE532, Fall 2018 HW5: Accelerator Wednesday, September 26

Due: Friday, October 12, 5:00pm

In this assignment, we will accelerate an application by implementing functions on the pro-
grammable fabric. You can find the sources for this homework the course website.

Collaboration

In this assignment, you work with partners that we assigned. You can find the assignment on
Canvas in the Partners map under the Files section. In the event that the partner assignment
does not work out, contact the instructor or TA as soon as possible. Partners may share
code and results and discuss analysis, but each writeup should be prepared independently.
Outside the assigned groups, only sharing of tool knowledge is allowed. See the course
policies on the course web page http://www.seas.upenn.edu/~ese532 for full details of
our policies for this course.

Hardware Acceleration

To implement a hardware function, it will ultimately be necessary to perform low-level
placement and routing of the hardware onto the FPGA substrate. That is, SDSoC must
decide which particular instance of each primitive is used (placement) or which wires to use
for connections (routing). These tasks are typically much slower (20 minutes to an hour) than
the compilation time for software (a few minutes). This means you will need to plan your
time carefully for this lab and for subsequent labs. One way to optimize our development
time is to be careful about when we invoke low-level placement and routing and when we
can avoid it. This lab and next will show you a few techniques that allow you to reduce the
number of times you need to invoke low-level placement and routing.

Ideally, you can tell SDSoC which function to implement in hardware, add a few pragmas
to your code, and SDSoC does the rest. In practice, you will often discover that existing
functions cannot be mapped directly on the hardware because they are not synthesizable or
because their direct implementation is inefficient. In those cases, you will need to rewrite
your code. You can iteratively improve your design in SDSoC, but our experience is that the
errors and warnings in SDSoC are often unclear or hidden. Moreover, a debug cycle typically
takes longer. SDSoC uses Vivado HLS under the covers. Ideally, SDSoC would hide the need
to use Vivado HLS independently, but it also hides useful errors and warnings. Hence, we

1

http://www.seas.upenn.edu/~ese532/fall2018/handouts/hw5_code.tar.gz
http://www.seas.upenn.edu/~ese532


ESE532 Fall 2018

start the acceleration of a function in Vivado HLS, which has better debug facilities. Once
your function has been verified and synthesized successfully in Vivado HLS, you can copy it
to SDSoC and integrate it into the system. Vivado HLS is also based on Eclipse, so most of
the GUI should be familiar.

Creating a new project in Vivado HLS is explained here. Make sure you enter the top-level
function during the creation of the project (although you can also change it later). The
top-level function is the function that will be called by the part of your application that runs
in software. Vivado HLS needs it for synthesis. You can also indicate which files you want
to create. It is wise to add a testbench file too, while you are creating the project.

[As of 9/26/18, that stand-alone Vivado HLS is not starting up on Windows in Detkin and
Ketterer. We have asked CETS to investigate. In the mean time, it works on the Linux
machines in Detkin and Ketterer. You may need to use the Linux machines. Watch Piazza
for updates.]

Although you can and should also verify your system in SDSoC like before, you will generally
need more time to build your project since it will also automatically invoke placement and
routing; consequently, we have provided a testbench in Vivado HLS to debug the hardware.
The requirements for testbenches are not any different from other software applications
written in C. Similar to them, testbenches have a main function that is invoked. To the
main function you can add any functionality needed to test your function. That includes
calling the top function that you would like to test. When the testbench is satisfied that the
function is correct, it should return 0. Otherwise, it should return another value.

You can run the testbench by selecting Project → Run C Simulation from the menu. A
window should pop up. The default settings of the dialog should be fine. You can dismiss
the dialog by pressing OK. You can see in the Console whether your test has passed. If
your test fails, you can run the test in debug mode. This can be done by repeating the
same procedure, except that you should check the box in front of Launch Debugger this time
before you dismiss the dialog. This will take you to the Debug perspective, which should
look familiar by now. You can go back to the original perspective by pressing the Synthesis
button in the top, right corner. Note that in SDSoC you may be used to the fact that it
builds your project automatically when you change your code and start or relaunch a debug
session. Unfortunately, Vivado HLS will only build your code if you select Run C Simulation
from our experience.

Once you are satisfied with your code, you can run Solution → Run C Synthesis → Active
Solution from the menu to synthesize your design. You can also verify the synthesized
version of your accelerator in your testbench. If you choose to do so, Vivado HLS will run
your accelerator in a simulator, so this method is called C/RTL Cosimulation. The employed
cycle-level simulation is much slower than realtime execution, so this method may not be
practical for every testbench. Anyway, you can start it by choosing Solution → Run C/RTL
Cosimulation from the menu.

The hardware implementation that Vivado HLS selects can be controlled by including prag-
mas such as #pragma HLS inline in your code. The different pragmas that you can use
in your functions are listed in the sections for the associated TCL commands in the Vi-
vado HLS manual. If you need information about the inline pragma, you can look up the

2

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf#page=24
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf#page=446
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf#page=446


ESE532 Fall 2018

set_directive_inline command for example. While you could also use TCL commands,
we do not recommend that because they cannot be imported into SDSoC as easily as the
pragmas in a C file.

When you have obtained a satisfying hardware description in Vivado HLS, you can import
the same source into a new SDSoC project. Chapter 2 of the SDSoC tutorial explains how
you can select create a project and select the function that must be accelerated.

Homework Submission

1. Initial implementation

(a) Report the latency of the matrix multiplier in Multiply_SW on the ARM core
without hardware acceleration. This is our baseline. Make sure you set the
optimization level of the SDS++ compiler to -O3. (1 line)

(b) Simulate the matrix multiplier in Vivado HLS. Start with launching Vivado HLS.
Afterwards, create a new project and add MatrixMultiplication.cpp as source
file, and Testbench.c as testbench. Specify Multiply_HW as top function. Select
the ZedBoard in the device selection. Use a 7 ns clock, identical to the 143 MHz
clock that accelerators use by default in SDSoC. Launch a C simulation, and verify
that the test passes in the console. Include the console output in your report.

(c) Look at the testbench. How does the testbench verify that the code is correct?
(3 lines)
(We provide you a testbench here. As you develop your own components for the
project, you will need to develop your own testbenches. Our testbenches can serve
as an example and template for you.)

(d) Synthesize the matrix multiplier in Vivado HLS. Analyze the Synthesis Report.
What is the expected latency of the hardware accelerator? (1 line)

(e) How many resources of each type (BlockRAM, DSP unit, flip-flop, and LUT) does
the implementation consume? (4 lines)

(f) Analyze how the computations are scheduled in time. You can see this information
in the Performance view of the Analysis perspective. How many cycles does a
multiplication take? (1 line)

(g) Make a schematic drawing of the hardware implementation consisting of the data
path and state machine similar to Figure 1-2 of the Vivado HLS manual. You
can ignore the addressing and loop hardware (such as phi_mux and icmp) in your
data path.

(h) Explain why the performance of this accelerator is worse than the software im-
plementation. (3 lines)

3

https://github.com/Xilinx/SDSoC-Tutorials/blob/master/getting-started-tutorial/lab-2-performance-estimation.md
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf#page=10


ESE532 Fall 2018

2. Loop unrolling

(a) Go back to the Synthesis perspective, and unroll the loop with label Main_loop_k
2 times using an unroll pragma. Synthesize the code and look again at the sched-
ule. Explain how the schedule for the unrolled loop is able to reduce the latency of
the entire loop evaluation (all iterations) compared to the original (non-unrolled)
loop. Hint: What characteristic of the original code prevented this optimization?
and why is the unrolled loop able to exploit more parallelism? (3-4 lines).

(b) We could also have unrolled the loop manually. What would the equivalent C
code look like?

(c) Inspect the resource usage over time in the Resource view of the Analysis perspec-
tive. Of the computational resources (fmul and fadd) which one(s) are shared by
multiple operations? (1 line)

(d) Unroll the loop with label Main_loop_k completely, and synthesize the design
again. You will likely notice that the estimated clock period in the Synthesis
Report is shown in red.1 What does this mean? (3 lines)

(e) Increase the clock period to 8 ns, and synthesize it again. What is the expected
latency of the new accelerator? (1 line)

(f) How many resources of each type (BlockRAM, DSP unit, flip-flop, and LUT) does
this implementation consume? (4 lines)

(g) You may have noticed that all floating-point additions are scheduled in series.
What does this imply about floating-point additions? (2 lines)

(h) We want to multiply two streams of matrices with each other. We can fill the
FPGA with copies of one of the accelerators from question 1d or 2d. Which
accelerator would you choose for the highest throughput?

3. Pipelining

(a) Remove the unroll pragma, and pipeline the Main_loop_j loop with the minimal
initiation interval (II) of 1 using the pipeline pragma. Restore the clock period
to 7 ns. Synthesize the design again. Report the initiation interval that the design
achieved. (1 line)

(b) Draw a schematic for the data path of Main_loop_j and show how it is connected
to the memories. You can find the variables that are mapped onto memories in
the Synthesis Report.

(c) Assuming a continuous flow of input data, how many data words does the pipelined
loop need per clock cycle from Buffer_1? (1 line)

1Due to variation among Vivado HLS versions, sometimes it works and nothing is flagged. The intent of
this question is to illustrate things you may encounter and (with the following questions) show you how to
address them. If it’s not flagged in read, just report the estimated clock period.

4



ESE532 Fall 2018

(d) Considering what you found in the two previous questions, why does the tool not
achieve an initiation interval of 1? (3 lines)

(e) We can partition Buffer_1 and Buffer_2 to achieve a better performance. Illus-
trate the best way to divide each of the arrays with a picture that shows how the
elements of these arrays are accessed by one iteration of the pipelined loop.

(f) Partition the buffers according to your description in the previous question with
the array_partition pragma. Synthesize the design and report the expected
latency. (1 line)

(g) How many resources of each type (BlockRAM, DSP unit, flip-flop, and LUT) does
this implementation consume? (4 lines)

(h) Pipeline the Init_loop_j loop also with an II of 1. Save your design and quit
Vivado HLS. Launch SDSoC and create a new SDSoC project. Import the sources
that you optimized in Vivado HLS. Add Multiply_HW as hardware function in the
project overview. Build the design and run it on the ZedBoard. Make sure you
set the optimization level of the SDS++ compiler to -O3. Note that this process
is much slower than a synthesis in Vivado HLS because Vivado only translates
the design to a lower-level hardware description language, but it does not perform
low-level placement and routing. What is the speedup that the accelerated design
achieves? (2 lines)

4. Reflection

(a) This assignment took you through a specific optimization sequence for this task.
Describe the optmization sequence in terms of identification and reduction of
bottlenecks. (4 lines)

(b) Make an area-time plot for the three designs with a curve for DSPs and Block-
RAMs.

5


